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In this paper, buckling of simply supported column with an 

edge crack is investigated numerically and analytically. Four 

different scenarios of damage severities are applied to a 

column, open crack assumption and the effect of closing 

crack in stability of the column which depends on position 

and size of cracks, are numerically compared. Crack surfaces 

contact is modeled with GAP element using SAP2000. For 

analytical solution, transfer matrix method, combined with 

fundamental solutions of the intact columns is used to obtain 

the capacity of slender prismatic columns. The stiffness of 

the cracked section is modeled by a massless rotational 

spring and governing equations are obtained explicitly for 

simply supported column from second-order determinant. As 

expected results show that the effect of a closing crack in 

presence of compressive load may lead to an increment in 

buckling load depending on crack depth and position. For the 

first time, a dimensionless formulation based on numerical 

results is presented in this study. Proposed formula predicts 

increment effect of closing crack in buckling results of a 

notched column.     
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1. Introduction 

One of the primary requirements imposed on 

structures is that they possess both stability 

and strength. Stability is the ability of 

structure to withstand the action of forces 

attempting to drive it out of a state of 

equilibrium. In classical stability analysis, 

an elastic column is said to be stable if for 

any arbitrarily small displacement from its 

equilibrium position to the column either 

returns to its original undisturbed position or 

acquires an adjoined stable position when 

left to itself [1]. Buckling is one of the 

fundamental forms of instability of column 

structures. In practice, buckling is 
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characterized by a sudden failure of a 

structure member subjected to high 

compressive force. 

Columns and compression members may 

contain various imperfections such as 

cracks. Mechanical vibrations, long term 

services or applied cyclic loads may results 

in the initiation of structural defects such as 

cracks in the structures. Therefore the 

determinations of the effect of this defect on 

the stability of structure is worthy of 

attention. Cracks lower the structural 

integrity and should be considered in the 

stability analysis of cracked structures [2]. 

Analytical research on buckling of circular 

rings and columns with cracks have been 

reported by Dimarogonas [3] using 

perturbation method, Leibowitz et al [4] and 

Leibowitz and Claus [5] used sine and 

cosine functions to model buckling loads for 

pre-cracked columns. Their model was 

approximate as it disregarded the 

discontinuity of the sine and cosine 

functions in their study. An analytical 

solution for buckling of slender prismatic 

columns with a single edge crack under 

concentric vertical loads has been proposed 

by Gurel and Kisa [6]. This method is based 

on rotational discontinuity of a cracked 

column at the crack location.   Numerical 

studies employing the finite element method 

to study pre-cracked structures have been 

reported by Papadopolus [7], Chondros and 

Dimarogonas [8].  

However, to the best of knowledge of 

present authors, open crack assumption is 

used for typical analytical methods to obtain 

critical buckling load of a notched column. 

In this study, using the transfer matrix 

method and fundamental solution of an 

intact column, a buckling analysis of slender 

prismatic columns of rectangular cross 

section, with single nonpropagating edge 

crack is performed. The crack section is 

replaced with a massless rotational spring. 

FE and analytical methods are applied to 

analyze a simply supported pre-cracked 

column. FE analysis and crack closing 

modeling using GAP elements has been 

performed using SAP2000 package. New 

formula is proposed for the first time in this 

paper to determine crack closing effect in 

typical buckling analysis which is based on 

open crack assumption. 

2. Formulation of the Problem 

The formulation and figures presented here 

is a brief solution process of what Gurel and 

Kisa have reported in [6]. A column with a 

rectangular cross section and having a non-

propagating edge crack is shown in figure1 

(a). Typical analytical solutions consider the 

effect of crack with a massless rotational 

spring with flexibility C. It should be noted; 

this quantity is a function of the crack depth 

and height of the cross section of the column 

and can be written as [9]: 

5.346 ( )C hf            (1) 

                    
Where h  is   the height  of  the  column  and  

ξ =a/h, where a is the depth of the crack, as 

seen in figure 1(a). f(ξ) is called the local 

flexibility function and is given by [9]: 

2 3 4 5 6

7 8 9 10

( ) 1.8624 3.95 16.375 37.226 76.81

126.9 172 143.97 66.56

f

                       (2) 
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Fig. 1. (a) Column with a nonpropagating edge 

crack, (b) Its mathematical model [6]. 

 

 As it can be seen in figure 1(b), column is 

divided by the rotational spring into 2 

segments. The differential equation for 

buckling of segment 1 (0 ≤ x ≤ xc) can be 

written as [10]: 

4 2
21 1

4 2
0

d y d y
k

dx dx
            (3)

      

Where k2=P/EI, and P and EI are the axial 

compressive force and flexural rigidity, 

respectively.  

In this case, the relationships among the 

displacement, slope, bending moment and 

shear force are 

1
1

2

1
1 2

1 1
1

( )

( )

( )

dy
x

dx

d y
M x EI

dx

dM dy
V x P

dx dx

           (4)

                 

The general solution of Eq. (3) is given by: 

1 1 2 3 4( ) sin( ) cos( )y x A A x A kx A kx  
                     (5) 

 

 

Using Eqs. (4) and (5), the following 

relationship can be written : 
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Where 

1 sin( ) cos( )

0 1 cos( ) sin( )
( )

0 0 sin( ) cos( )

0 0 0

x kx kx

k kx k kx
B x
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              (7)              

 

The relationship between the parameters 

written above at the 2 ends of segment 1 can 

be expressed as: 

1 1

1 1

1

1 1

11

( ) (0)

( ) (0)

( ) (0)

(0)( )

c

c

c

c

y x y

x
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           (8)

     

In which 

1

1 ( ) (0)cT B x B            (9)

      

[T1] transfers the parameters at the upper 

end (x=0) to those at the lower end (x=xc) of 

segment 1 and is called t transfer matrix. 

The boundary conditions at x=xc due the 

continuity among the displacements, 

bending moments and shear forces are: 

1 2

1 2

1 2

1

( ) ( )

( ) ( )

( ) ( )

( ) ( )

c c

c c

c c

c c

y x y x

y x y x

y x y x

x Cy x

          (10)

     

Equation (10) can be written in matrix form 

as  
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Substitution of Eq. (8) into Eq. (11) yields 
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In which  

1

1 0 0 0

0 1 0

0 0 1 0

0 0 0 1

C

C

T EI          (13)

                

The equation for segment 2 can be obtained 

by using Eq. (12) and (8) 

2 1

2 1

4 4

2 1

2 1

(0) (0)

(0) (0)

(0) (0)

(0) (0)
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T
M M
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The matrix [T] has the following form: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

T T T T

T T T T
T

T T T T

T T T T

        (15)

                 

 The eigenvalue equations can be established 

by using Eq. (15) and the end conditions. 

For nontrivial solution, by setting the 

determinant of the matrix in Eq. (15) equal 

to zero, one obtains for pinned-pinned 

column: 

T12T34-T14T32=0                   (16) 

                 

After determining the elements of Tij of the 

matrix [T] and then using the Eq. (16), the 

eigenvalue equations are obtained in explicit 

from: 

Sin(kL)-CkSin(βkL)sin[(1-β)kL]=0      (17) 

     

Where β=xc/L, and L is length of column. 

By using MATLAB, a root-finder code is 

programmed to obtain roots (eigenvalues) of 

the above transcendental equation. The 

unknown parameter 'k' has been stated 

earlier. 

3. Finite Element Analysis 

Consider a prismatic column with 

rectangular section, material and geometry 

definition is presented in Table (1).  

Table 1. Geometric and material properties of 

column 

Element type 3D 

Geometry 

type 

Plane 

stress-Solid 

Material Isotropic 

Width 40mm 

Depth 20mm 

Span 1m 

Boundary 

condition 

Simply 

supported 

Poisson's 

Ratio 0.3 

Mass density 7850 kg/m
3
 

Modulus of 

elasticity 200 GPa 

 

Column is modeled with eight-node solid 

element based on isoparametric formulation 

with incompatible modes and buckling 

analysis is performed to obtain 

corresponding critical loads for fundamental 

buckling load.  
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Fig 2. 8-node solid element stresses [11]. 

 

Crack contact is modeled with GAP element 

(Compression only -spring), which comes 

into function by defining real separation 

between GAP non-linear link and supported 

joints [11]. In This paper, crack width 

(separation between crack edges) is 

considered 1mm, which showed more 

agreement with Analytical solution results.  

 

 
Fig 3. GAP model behavior [11]. 

 

3. 1 FE Validation 

In first step, FE validation and mesh 

dimension analysis for first buckling load 

(PEuler) of an intact column has been 

analytically calculated. Fine meshing is 

applied to FE model to obtain more 

accuracy,       maximum      error      between   

PE= π2EI/(KL)2 and finite element results is 

less than 8.6% which makes FE model 

acceptable. 

 

 
Fig 4. Buckling load variation with mesh 

dimension 

 

Since comparison of results with this error, 

particularly for the cracked column creates 

difficulties to interpretation, appropriate 

crack width is considered to obtain more 

agreement between numerical and analytical 

results.   

3. 2 Sensitivity analysis of Gap elements 

For buckling analysis, two states for crack 

are considered: i) crack is open, ii) crack is 

closed partially in presence of compressive 

axial force. Crack closing is modeled with 

the aid of nonlinear GAP elements. 

Sensitivity analysis of numbers of GAP and 

stiffness is applied via buckling load ratio of 

cracked column. GAP stiffness converges 

for KGap=1000 Kaxial, which is shown in 

figure (5). Pcr(C) and Pcr(O) are buckling 

loads  with GAP and without GAP, 

respectively. Kaxial is axial stiffness of 

beam. 
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Fig 5. Sensitivity analysis of GAP stiffness 

 

Figure (6) represents sensitivity analysis for 

number of GAP elements. While increasing 

number of GAP elements leads to 

convergence of buckling load ratio, location 

of GAP elements in crack is an important 

factor for rapid convergence. 

 

 
Fig 6. Sensitivity analysis on No. of GAP 

elements 

Final layout of GAPs in crack area is shown 

in figure (7). This layout will remain 

constant during buckling analysis of cracked 

beam in closing crack mode. 

 

 
Fig. 7. GAP layout in crack 

 

3. Results 

Four different scenarios, ξ=0.125, 0.25, 

0.375 and 0.5 for damage severity and crack 

location β=0.1, 0.25, 0.5 due model 

symmetry are considered. Buckling analysis 

results are presented in Tables (2) for 

notched column. 
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Table 2. 1
st
 Buckling load for cracked column 

1st Damage Scenario-(ξ=0.125) 

Pcr 

(KN) 
Analytical FE-Open Crack FE-Closing Crack 

Error 

(%) 

β=0.5 52.39 52.00 52.18 0.35 

β=0.25 52.52 52.17 52.33 0.31 

β=0.1 52.64 52.30 52.32 0.04 

2nd Damage Scenario-(ξ=0.25) 

Pcr 

(KN) 
Analytical FE-Open Crack FE-Closing Crack 

Error 

(%) 

β=0.5 51.60 51.12 51.83 1.38 

β=0.25 52.13 51.82 52.08 0.50 

β=0.1 52.56 52.23 52.29 0.12 

 

3rd Damage Scenario-(ξ=0.375) 

Pcr 

(KN) 
Analytical FE-Open Crack FE-Closing Crack 

Error 

(%) 

β=0.5 50.14 49.13 51.55 4.93 

β=0.25 51.35 50.66 51.94 2.53 

β=0.1 52.41 52.01 52.26 0.48 

4th Damage Scenario-(ξ=0.5) 

Pcr 

(KN) 
Analytical FE-Open Crack FE-Closing Crack 

Error 

(%) 

β=0.5 47.50 46.20 50.93 10.23 

β=0.25 49.87 48.96 51.59 5.38 

β=0.1 52.11 51.62 52.15 1.02 

     

For first buckling load, average error 

between analytical and finite element model 

(open crack) is less than 0.5 %. Errors which 

are reported in table (2) are comparison of 

open crack via close crack assumption in FE 

analysis results.  

General trend of buckling load for first 

mode is descending when crack location 

approached to supports, where bending 

moments come to its minimum. It's evident 

from table (2), when the crack depth 

increases, the buckling load decrease as 

expected. Maximum difference for first 

critical buckling load occurs in β=0.5. The 

crack location affects buckling results 

depending on mode number. 

 
Fig. 8. Buckling analysis ratio for Open/Closing 

crack assumption 

 

Proposed formulation presents an equation 

based on crack depth and position. Mean 

squared error for all equations is 

R2=1.formulation is given 
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( ) 3 2

( )

,
cr O

cr C

P
a b c d

P
 

                                                      (18) 

 

2

2

2

2

14.18 10.56 0.817

16.84 13.28 0.996

5.28 3.948 0.298

0.453 0.332 1.024

a

b

c

d
  

                                           (19) 

4. Conclusions  

Buckling analysis of simply supported 

column using analytical and finite element 

methods has been performed to investigate 

crack closing effect and following 

conclusions are drawn as follows:  

Open crack assumption in buckling analysis 

represents more conservative results. 

Considering crack closing increase buckling 

load depending on crack location and 

damage severities. There was very good 

agreement between numerical and analytical 

results for buckling analysis (maximum 

discrepancy less than 0.5%). As expected, 

the load carrying capacity decreases as the 

crack depth increases. When crack is located 

in section of maximum bending in each 

mode of buckling, open crack assumption 

cause more loss of strain energy and 

consequently large difference of results. In 

first critical buckling load which is more of 

interest, maximum difference between open-

close crack assumption for ξ<0.5 which are 

developed in earlier states of damage is 

about 10%, that shows open crack 

assumption is not out of admissibility. 

Numerical formula which is a function of 

crack parameters is derived with best 

polynomial regression. This paper aimed to 

formulate discrepancy of open and closing 

crack assumption in buckling analysis 

results for earlier damage states.  

In addition, buckling happens in the 

direction of minimum moment of inertia. 

When buckling plane is perpendicular to the 

crack direction (in plane), it is realistic to 

assume that cracks are open in deformed 

shape. In this way, buckling plane is ensured 

to be in plane of crack direction for which 

closing crack occurred.  
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