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A triangular model base on an investigation which has done 

by Sinha et al. has been developed for evaluating embedded 

crack localization in beam-column structures. In the 

assessment of this member’s behavior, the effects of 

displacement slope are necessary. In order to propose a crack 

localization method for embedded crack, an efficient static 

data based indicator is proposed for this crack in Euler-

Bernoulli beam-columns under axial load effect. A finite 

element procedure is implemented for calculating the Static 

responses. Then, base on a central finite difference method, 

the slope and curvatures of horizontal displacements are 

evaluated. For this purpose, a simply supported beam-

column and a two-span beam-column are considered and two 

different scenarios base on the damage of one element 

(single damage) and multiple elements (multiple damages) 

by considering the noise have been assessed. The numerical 

results have shown that this crack localization method has 

considerable accurate. 
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1. Introduction 

The recent decades have experienced a rise in 

the importance of damage detection. Nearly 

all of the structures are at the expose of local 

damage during their lifetime. The total age of 

the structure, if the local damage can be 

detected and rehabilitated in an appropriate 

time, is more likely to rise. Health 

monitoring and structural damage 

identification, therefore, is a vital topic in 

structural engineering. When detecting and 

repairing the damage of elements, engineers 

can improve the safety of the whole structure 

and they will prevent catastrophic dangers. 

During the last years, many approaches have 

been introduced to determine the location 

and extent of the eventual damage in the 

structural systems. Structural damage 

detection consists of four different levels [1]. 

http://civiljournal.semnan.ac.ir/
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In the first step, the presence of damage in 

the structure is determined. The second level 

includes locating the damage, while the third 

level quantifies the severity of the damage is 

evaluated. In the final step, the previous 

information is implemented to predict the 

remaining service life of the structure. 

Although, all maintained steps are really 

important, the second step is the most 

important part of the damage studies. In the 

last years, many global monitoring 

techniques based on changes in the vibration 

characteristics of structures have been 

developed. For instance, procedures based on 

natural frequencies and mode shape 

characteristics were used to identify damage 

by researchers [2-6]. Numerous methods 

have been proposed for accurately locating 

structural damage. Structural damage 

detection by a hybrid technique consisting of 

a grey relation analysis for damage 

localization and an optimization algorithm 

for damage quantification has been proposed 

by He and Hwang [7]. Yang et al. used an 

improved Direct Stiffness Calculation (DSC) 

technique for damage detection of the beam 

in beam structures. In this study a new 

damage index, namely Stiffness Variation 

Index (SVI) was proposed based on the 

modal curvature and bending moments using 

modal displacements and frequencies 

extracted from a dynamic test and it was 

shown that this damage index has more 

accurate in comparison whit other indexes 

[8]. Damage identification methods based on 

the use of the modal flexibility of a structure 

were utilized [9-14]. Techniques based on 

frequency response functions (FRFs) of a 

system were adopted [15-17]. Spanos et al. 

utilized a spatial wavelet transform (WT) for 

damage detection in Euler–Bernoulli beams 

under static loads. The result showed that 

using the WT and via difference between the 

displacement responses of the damaged and 

the undamaged beams for different loading 

conditions, the damaged scenarios and 

maximum local of damage can be precisely 

detected in the WT modulus map. In 

addition, for estimating the damage locations 

and also the severity of theirs, two separate 

optimization procedures have been used [18]. 

Damage identification based on Peak Picking 

Method and Wavelet Packet Transform for 

Structural Equation has been used by 

Naderpour and Fakharian [19]. In this paper 

a two-step algorithm has been proposed for 

identification of damage based on modal 

parameters. Results show that this 

preprocessing step causes noise reduction 

and lead to more accurate estimation. 

Moreover, investigating the effect of noise on 

the proposed method revealed that noise has 

no great effect on results. Bakhtiari-Nejad et 

al. [20] presented a method base on static test 

data. A method based on stored strain energy 

was used to predict the loading locations. In 

addition, they have tested this method 

experimentally. They showed that this 

method can localize identify the damage 

magnitudes which are slight to moderate with 

a high accuracy. Crack detection in elastic 

beams by static measurement has been done 

by Caddemi and Morassi [21]. The method 

can be used to identify a single crack in a 

beam by static deflection of the beam. They 

showed that numerical results are in good 

agreement with the proposed theory. A 

parametric study using static response based 

displacement curvature for damage detection 

of beam structures has been investigated by 

Abdo [22]. The results exhibited that changes 

in displacement curvature can be used as a 

good damage indicator even for small 

damages. Seyedpoor and Yazdanpanah [23] 

have been proposed an efficient indicator for 

structural damage localization using the 
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change of strain energy based on noisy static 

data (SSEBI).The acquired results crystal 

clearly showed that the proposed indicator 

could precisely locate the damaged elements. 

The previous research works did not 

investigate a beam column element under 

axial load effects, and they did not consider 

embedded crack; the main purpose of this 

study, therefore, is the investigation and 

detection the embedded cracks in beam 

columns elements under axial load effects. 

For this aim, an efficient damage indicator is 

extended to estimate the embedded crack 

locations in beam-column structures 

proposing by the author for beam-like 

structures (Yazdanpanah et al. [24]). 

Numerical results demonstrate that the 

proposed index can well determine the 

locations of single and multiple embedded 

damage cases whit different characteristics. 

2. Embedded damage (crack) 

modeling in beam-column 

In this study, it is assumed that damage 

occurs by a transverse surface crack located 

at xcr from the left end of a beam-column as 

shown in Fig. 1. For crack modeling, a fully 

open transverse surface crack model, 

illuminated by Sinha et al. [25], is adopted. 

The effect of the crack on the mass is small 

and can be neglected. The crack only leads to 

local stiffness reduction in a specified length 

adjacent to the crack. It is assumed that the 

reduction of stiffness due to the crack is 

inside one element. Considering one cracked 

element as shown in Fig. 2, the flexural 

rigidity EI of the cracked element varies 

linearly from the cracked position towards 

both sides in an effective length lc. The 

stiffness matrix of the damaged element can 

be represented as: 

e e

crack u cjK K K 
                 (1)                               

 

 

Fig. 1. A simply supported beam-column having a 

crack located at xcr from the left end  

 
Fig. 2. Variation of EI due to the crack in an element 

with length le  

 

Where e

uK  represents the element stiffness 

matrix of the intact element; cjK is the 

stiffness reduction on the intact element 

stiffness matrix due to the j
th

 crack. 

According to Euler–Bernoulli beam-column 

element, the element stiffness matrix of the 

intact beam-column is expressed as [26]: 
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By using the linear variation of EI as 

proposed by Sinha et al. [25], the reduction 

on the beam-column element stiffness matrix 

can be obtained as: 
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where the stiffness factors are given by 
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the reduction stiffness matrix on the beam 

element can be extended for a beam-column 

element as: 
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                  (6) 

where the aK  factor is given by 

( )o c

a

e

E A A
K

L


                      (7)                 

Where xc is the crack location in the local 

coordinate, le is the length of the element and 

lc is the effective length of the stiffness 

reduction. The value of lc is assumed to be 

1.5 times the beam-column height. Also, E is 
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Young’s modulus,
 

3 12oI wh , 

 c cA w h h   and  
3

12c cI w h h   are 

the moment of inertia of the intact and 

cracked cross sections, respectively, w and h 

are the width and height of the intact beam-

column and is the crack depth. For cases of 

more than one cracked elements, the same 

procedure can be followed. The global 

stiffness matrix of the beam-column Kc is 

obtained by assembling the element stiffness 

matrices including those of cracked elements. 

3. The proposed damage detection 

method 

In this paper, embedded damage detection of 

a prismatic beam-column with a specified 

length is studied. First, the beam-column is 

divided into a number of finite elements. 

Then, the horizontal displacement of the 

healthy beam-column in measurement points 

is evaluated using the finite element method. 

A MATLAB (R2010b [27]) code is prepared 

here for this purpose. Henceforward, 

consider the nodal coordinates (

1 ..., ,2 ,1 ,  nqxq  ) and displacement (

( ) ,  1,  2,  ...,  1h qu q n 
 ) obtained for the 

healthy beam-column as follows:  

( ) 1 1 2 2 i hi 1 ( 1), ( , ),  ( , ),. . .,( , ),. . .,  ( , )q h q h h n h nx u x u x u x u x u 
      

(8) 

Now by having the horizontal displacements, 

the horizontal displacements slope (the first 

derivative of horizontal displacements, 
du du x   ) of the healthy beam can be 

achieved using the central finite difference 

approximation as: 

( 1) ( 1)

( )
2

h q h q

h q

e

u u
u

l

 
                          (9) 

Where le is the distance between the 

measurement co-ordinates or it can be the 

element length. Also, represents the 

displacement at the measurement co-ordinate 

q. 

Also, the horizontal displacement curvature 

(the second derivative of horizontal 

displacements) of healthy beam-column can 

now be determined using the central finite 

difference approximation as: 

( 1) ( ) ( 1)

( ) 2

2h q h q h q

h q

e

u u u
u

l

  
             

(10)        

 

Also, the horizontal displacement curvature 

of damaged beam-column can now be 

approximated as: 

( 1) ( ) ( 1)

( ) 2

2d q d q d q

d q

e
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u
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             (11)  

Finally, using the static responses (horizontal 

displacement, slope and curvature of 

horizontal displacement) obtained for two 

above states, static responses based indicator 

(SRBI) is proposed here as: 
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2 2
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(12)
 

Assuming that the set of the SRBIhd of all 

points(
,  ,   t, 1, 2,..., 1hd qSRBI hd horizontal displacemen q n    

) represents a sample population of a 

normally distributed variable, a normalized 

form of SRBI can be defined as follows: 
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Where SRBIhd,q is defined by Eq. (12). Also, 

mean (SRBIhd,q) and std (SRBIhd,q) represent 

the mean and standard deviation of (

,  ,  1, 2,..., 1hd qSRBI q n   ), respectively. 

5. Numerical examples 

In order to assess the efficiency of the 

proposed method for embedded damage 

detection under axial load, an example 

including a simply supported beam-column is 

considered. Various scenarios together with 

noise effect are studied. 

5.1 Example 1: a simply supported beam-

column 

A simply supported beam-column with span 

L=1 (m) shown in Fig. 3 is selected as the 

sample. The beam-column has a cross-

section with dimensions of 0.04×0.05 m. 

Modulus of elasticity is 
7 22.1 10  /E ton m  . 

As shown in Table 1, for assessment of the 

method, fifteen different damage scenarios 

are considered. The first ten scenarios (cases 

1-10), consist of a single damage under axial 

load. The twelfth-fifteenth scenarios (cases 

12-15), include multiple damage cases with 

different intensity. Measurement noise cannot 

be avoided. Hence, the effect of noise is 

considered to perturb the responses of the 

damaged structure. In this example, 3% noise 

is assumed in scenarios 11 and 13, 

respectively. 

 

fig. 3. (a) Geometry of the simply supported beam-

column  (b) Cross-section of the beam-column  

 

Table 1. Fifteen different damage scenarios induced 

in simply supported beam-column 

Case 
Element 

number 

Damage 

ratio* 
Pa 

(ton) 

(axial) 

noise 

1 1 0.30 1 0 

2 2 0.20 1 0 

3 3 0.25 1 0 

4 4 0.15 1 0 

5 5 0. 30 1 0 

6 6 0.10 1 0 

7 7 0.15 1 0 

8 8 0.20 1 0 

9 9 0.25 1 0 

10 10 0.10 1 0 

11 8 0.25 1 0.03 

12 3 & 8 0.30 & 0.15 1 0 

13 3 & 8 0.30 & 0.15 1 0.03 

14 4 & 7 0.10 1 0 

15 
1 & 4 & 7 

0.35 & 0.10 

& 0.5 

1 
0 

 

*Damage ratio is ch

h
 where hc is the crack depth 

 

(a) Case-1 

 

(b) Case-2 
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(c) Case-3 

(d) Case-4 

Fig. 4. Damage identification of simply supported 

beam-column for cases 1-4 

(e) Case-5 

(f) Case-6 

(g) Case-7 

(h) Case-8 

 Fig. 4. Damage identification of simply supported 

beam-column for cases 5-8 

     
(i) Case-9 

(j) Case-10 
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(k) Case-11 

(l) Case-12 

 Fig. 4. Damage identification of simply supported 

beam-column for cases 9-12 

(m) Case-13 

(n) Case-14 

 
(o) Case-15 

Fig. 4. Damage identification of simply supported 

beam-column for cases 13-15 

 

Damage identification charts of the simply 

supported beam-column for cases 1 to 15 

listed in Table 1 have been shown in Fig. 4, 

respectively. As shown in the figures, the 

value of nSRBIhd is further in the vicinity of 

some elements that indicate damage occurs 

in these elements. As can be observed in the 

figures, the efficiency of the proposed 

indicator for embedded damage localization 

is high. Moreover, the effect of noise is 

considered here by perturbing the responses 

of the damaged structure. In this example, 

3% noise is assumed in cases 11 and 13. 

Figs. 4 (k) and 4 (m) show damage 

identification charts for the damage scenarios 

11 and 13 considering 3% noise. The 

obtained results are showed a good match 

between both scenarios with and without 
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noise and there are reasonable correlations 

between ones. In other words, the noise has a 

negligible effect on the performance of 

nSRBIhd. 

 

5.2 Example 2: a two-span beam-column 

An indeterminate beam-column with two 

spans with span L=1 (m) shown in Fig. 5 is 

considered as the second example. The 

beam-column has a cross-section with 

dimensions of 0.04×0.05 m. Modulus of 

elasticity is 
7 22.1 10  /E ton m 

. As shown 

in Table 2, for assessment of the method, 

three different damage scenarios are 

considered. The effect of noise is considered 

to perturb the responses of damaged 

structure. In this example, 3% noise is 

assumed in scenarios 3. 

 

 

Fig. 5. (a) Geometry of the two-span continuous 

beam-column.  (b) Cross-section of the beam-column 

 

Table 2. Three different damage scenarios induced 

in two-span continuous beam-column 

Case 
Element 

number 

Damage 

ratio* 

Pa 

(ton) 

(axial) 

noise 

1 2 0.30 1 0 

2 4 0.20 1 0 

3 3 & 8 0.30 & 0.15 1 0.03 

 

*Damage ratio is  where hc is the crack depth 

 

 

(a) Case-1 

 

(b) Case-2 

 
(c) Case-3 

Fig. 6. Damage identification of two-span continuous 

beam -column for cases 1-3 

 

Damage identification charts of the two 

spans beam-column for cases 1 to 3 listed in 

Table 2 have been shown in Fig. 5, 

respectively. As can be observed in the 

figures, the proposed indicator is capable of 

identifying all damage cases correctly 

 

ch

h
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6. Conclusions 

In this paper, the embedded cracks 

identification in beam columns elements 

under axial load effects has been 

investigated. A damaged indicator proposed 

for modal analysis (by the authors) has been 

extended for static data (nSRBI). In order to 

be sure about the accuracy of the proposed 

damage detection method, some illustrative 

damaged scenarios, including different 

characteristics which may affect the 

efficiency of the damage indicators, have 

been studied with considering a simply 

supported and two spans beam-column as a 

test example. The nSRBI is sensitive to the 

stiffness reduction (moments of inertia) and 

as in the identification charts has been 

presented, the proposed indicator could 

identify all damage scenarios properly. 

Moreover, measurement noise has a 

negligible effect on the efficiency of the 

proposed method for damage assessment. 
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