Damage Detection in Beam-like Structures using Finite Volume Method

B. Mohebi¹, A.R. Kaboudan² and O. Yazdanpanah²
1. Assistant Professor, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
2. Ph.D. Student, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

* Corresponding author: mohebi@eng.ikiu.ac.ir

ARTICLE INFO
Article history:
Received: 18 February 2017
Accepted: 09 July 2017

Keywords:
Damage detection, Static and dynamic noisy data, Finite volume method, Buckling analysis, Displacement based indicator.

ABSTRACT

In this paper a damage location in beam-like-structure is determined using static and dynamic data obtained using finite volume method. The change of static and dynamic displacement due to damage is used to establish an indicator for determining the damage location. In order to assess the robustness of the proposed method for structural damage detection, three test examples including a static analysis, free vibration analysis and buckling analysis for a simply supported beam having a number of damage scenarios are considered. The acquired results demonstrate that the method can accurately locate the single and multiple structural damages when considering the measurement noise. Finite volume method results provided in this study for finding the damage location is compared with the same indicator derived via finite element method in order to evaluate the efficiency of FVM. The acquired results are showed a good match between both Finite Volume method and Finite Element method and there are reasonable correlations between ones.

1. Introduction

Local damage may happen during the lifetime of structural systems. So a rehabilitation process is necessary to increase the lifetime of the damaged system. Hence, finding the damage location is the main object before doing any rehabilitation process. Health monitoring is a process which leads to find the local damage in the damaged structural system. Many structural systems may experience some local damage during their lifetime. If the local damage is not identified timely, it may lead to a terrible outcome. Therefore, structural damage detection is of a great importance, because early detection and repair of damage in a structure can increase its life and prevent from an overall failure. During the last years, many approaches have been introduced to determine the location and extent of eventual damage in the structural systems. In recent
years many efforts have been performed to introduce new techniques for finding damage locations in structural systems. One of these techniques is based on the changes in vibration characteristics of the damaged system like changes in natural frequencies which can be find in [1-2]. Many structural systems may experience some local damage during their lifetime. If the local damage is not identified timely, it may lead to a terrible outcome. Therefore, damage identification is an essential issue for structural engineering and it has received a considerable attention during the last years [3-4]. Structural damage detection consists of four different levels [5]. The first level determines the presence of damage in the structure. The second level includes locating the damage, while the third level quantifies the severity of the damage. The final level uses the information from the first three steps to predict the remaining service life of the damaged structure. After discovering the damage occurrence, damage localization is more important than damage quantification. Due to a great number of elements in a structural system, properly finding the damage location has been the main concern of many studies. In the last years, numerous methods have been proposed for accurately locating structural damage. Structural damage detection by a hybrid technique consisting of a grey relation analysis for damage localization and an optimization algorithm for damage quantification has been proposed by He and Hwang [6]. Yang et al. used an improved Direct Stiffness Calculation (DSC) technique for damage detection of beam in beam structures. In this work a new damage index, namely Stiffness Variation Index (SVI) was proposed based on the modal curvature and bending moments using modal displacements and frequencies extracted from a dynamic test and it was shown that this damage index is more accurate in comparison to most other indexes [7]. Damage identification methods based on using the modal flexibility of a structure were utilized by [8-11]. Techniques based on frequency response functions (FRFs) of a system were adopted by [12-14]. Damage identification based on Peak Picking Method and Wavelet Packet Transform for Structural Equation has been used by Naderpour and Fakharman [14]. In this paper a two-step algorithm have been proposed for identification of damage based on modal parameters. Results show that this preprocessing step causes noise reduction and lead to more accurate estimation. Moreover, investigating the effect of noise on the proposed method revealed that noise has no great effect on results. Moreover for estimation damage locations and also severity of the damage two separate optimization procedures have been used [15]. A two-stage method for determining structural damage sites and extent using a modal strain energy based index (MSEBI) and particle swarm optimization (PSO) has been proposed by Seyedpoor [16]. An efficient method for structural damage localization based on the concepts of flexibility matrix and strain energy of a structure has been suggested by Nobahari and Seyedpoor [17]. An efficient indicator for structural damage localization using the change of strain energy based on static noisy data (SSEBI) has been proposed by Seyedpoor and Yazdanpanah [18]. The acquired results clearly showed that the proposed indicator can precisely locate the damaged elements. Most of the methods developed for structural damage detection have been founded on using dynamic information of a structure that can be obtained slowly and expensively. However,
the methods of structural damage detection employing static data are comparatively fewer, while static information can be obtained more quickly and cheaply. Finite volume method (FVM) is a popular method in fluid mechanics problems analysis and it is rarely used in solid mechanics problems analysis. There is not any investigation on damage detection of structures using finite volume method. But some works have been done to show the efficiency of the method in analysis of structures. The accuracy of finite volume method in bending analysis of Timoshenko beams under external loads was investigated in [19]. In this paper the accuracy of finite volume method was investigated in some benchmark tests. It was shown that shear locking would not happen in thin beams while this happens in bending analysis of thin beams using finite element method. This is a drawback of finite element method which can be eliminated using some techniques like reduced integration. The application of finite volume method in calculation of buckling load and natural frequencies of beams is found in [20]. The method has been utilized in analysis of very thin and thick beams in some benchmark tests to show the robustness of the finite volume method. All the results were in good agreement with respect to analytical solution and again shear locking was not observed in very thin beams. THE FVM has been utilized by Wheel [21] for plate bending problems based on Mindlin plate theory. In that work, the results have been obtained for thick and thin square and circular plates which revealed that shear locking does not appear in the thin plate analysis. The effect of mesh refinement was also investigated in that work. Also, FVM based on cell-centered and cell-vertex schemes for plate bending analysis has been utilized by Fallah [22]. In that work some test cases have been examined for beams and square plates. The accuracy of the results has been compared with the conventional FEM to show the efficiency of FVM. He also arrived to the same conclusions that shear locking does not happen in the analysis of thin beams and thin plates. More studies of utilizing finite volume method in solid mechanics problems can be find in [23] (about dynamic solid mechanics problems), [24] (about large strain problems), [25] (about dynamic fracture problems) and [26-28].

In this study, an efficient method using finite volume theory is introduced to estimate the damage locations in a structural system. The change of static and dynamic displacement between healthy and damaged structure has been used to form an index for damage localizations. Various test examples are selected to assess the efficiency of the index for accurately locating the damage. Numerical results showed that the method based on finite volume analysis can also identify the defective elements in a damaged structure rapidly and precisely compared with those of a finite element method (FEM).

2. The finite volume (FV) procedure

In this section the governing equation of a beam is obtained based on a FV procedure. It should be mentioned that all of the below formulations are based on the works reported in [19] and [20].

2.1. Static Analysis

Fig. 1 shows a part of a beam meshed into 2-node elements along the centerline of the beam which are considered as the control volumes (CVs) or cells. Centers of the CVs are considered as the computational points
where the unknown variables will be computed at these points. So a cell-centered scheme is utilized in analysis. For each cell, the acting resultant bending moments and shear forces are evaluated at gauss-points located on cell faces, see Fig. 1. to obtain the beam governing equations, Timoshenko beam theory and small displacements assumption are utilized, so shear deformations are included in the formulation derivation (as shown in the Fig. 2). is the transverse displacement and is the rotation of the CVs.

\[\sum M_p = 0 \Rightarrow \sum_{i=L,R} [M_i n_i - Q_i n_i (x_i - x_p)] - \sum_{k=1}^{n_{of}} F_k (x_k - x_p) = 0 \]

(1)

\[\sum F_z = 0 \Rightarrow \sum_{i=L,R} [Q_i n_i + q n_i (x_i - x_p)] + \sum_{k=1}^{n_{of}} F_k = 0 \]

(2)

The first equation is the equilibrium of moments about the center of the CV and the second one is the equilibrium of forces in \(z \) direction. \(M_i \) and \(Q_i \) are the bending moments and shear forces at the \(i \)-th face of the CV respectively, \(x_p \) is the distance of the center of the control volume from the origin, \(x_i \) denotes the location of the concentrated applied load \(F_k \) and \(n_i \) is the cosine direction of outward normal of the face.

When \(i = L, n_i = \cos(180^\circ) = -1 \) and when \(i = R, n_i = \cos(0^\circ) = 1 \). The bending moments and shear forces at the \(i \)-th face can be related to transverse displacements and rotations as follows:

\[M_i = EI \left(\frac{d\theta}{dx} \right)_i, \quad Q_i = k_s A G \left(\frac{dw}{dx} + \theta \right), \]

(3)

\(EI \) is the flexural rigidity of the beam section, \(k_s \) is the correction shear factor which is equal to 5/6 for a rectangular section, \(A \) is the area of the section and \(G \) is the shear modulus. Bending moment and shear forces are calculated based on the transverse displacements and rotations of the gauss-points. In cell-centered approach the unknown variables of the CVs are located at the centers of the CVs. So it is necessary to
make a relation between the unknown variables of the gauss-points and the corresponding unknown variables of the cell centers. For this purpose a temporary 2-node isoparametric line element is utilized. The temporary element nodes are located at the two adjacent cell centers as shown in the Fig. 4.

\[r_i = \frac{2(x_i - x_1)}{l_{12}} \]

(4)

Using the shape functions defined by the use of the temporary element the transverse displacements and rotations of the gauss-points can be related to the corresponding values at the centers of the CVs.

\[w = \sum_{i=1}^{2} N_i w_i = N_1 w_1 + N_2 w_2 \]

\[\theta = \sum_{i=1}^{2} N_i \theta_i = N_1 \theta_1 + N_2 \theta_2 \]

(5)

\[N_1 = \frac{1-r}{2} \quad N_2 = \frac{1+r}{2} \]

(6)

\[N_1 \] and \[N_2 \] are the shape functions at node 1 and 2 of the temporary elements in natural coordinate system. Derivatives of the unknown variables can be calculated using the chain rule law as below:

\[\frac{d \theta}{dx} = \frac{d \theta}{dr} \frac{dr}{dx} = (\frac{2}{r} \sum_{i=1}^{2} \frac{dN_i}{dr} \theta_i \frac{dr}{dx}, \]

\[\frac{dx}{dr} = \sum_{i=1}^{2} \frac{dN_i}{dr} x_i = \frac{x_2 - x_1}{2} = \frac{l_{12}}{2} \]

(7)

\[\frac{d \omega}{dx} = (\sum_{i=1}^{2} \frac{dN_i}{dr} \theta_i \sum_{i=1}^{2} \frac{dN_i}{dr} x_i)^{-1} = \frac{\omega_2 - \omega_1}{\frac{l_{12}}{2}} \]

(8)

The same procedure is done for \(w \). So:

\[\frac{dw}{dx} = \frac{w_2 - w_1}{l_{12}} \]

(9)

Therefore the unknown variables and their derivatives for the right and left side gauss-points with neighboring CVs \(P-1, P \) and \(P+1 \) can be written as below:

\[(w, \theta)_R = \frac{(w, \theta)_{P+1} + (w, \theta)_P}{2} \]

(10)

\[(w, \theta)_L = \frac{(w, \theta)_P + (w, \theta)_{P-1}}{2} \]

\[\frac{d (w, \theta)}{dx} \]

\[R \]

\[L \]

\[\frac{d (w, \theta)}{dx} \]

\[(w, \theta)_{P+1} - (w, \theta)_{P-1} \]

\[x_{P+1} - x_P \]

\[x_P - x_{P-1} \]

(11)

2.1.1 Applying Boundary Condition

Applying boundary conditions is done by considering point cells located at boundaries and writing the equation expressing the relevant boundary conditions, see Fig. 5. Depending on the type of the supports, three kinds of boundary conditions can be assumed:

- Displacement boundary conditions
- Force boundary conditions
- Mixed boundary conditions
Fig. 5. Point cells bc1 and bc2 used for applying boundary conditions.

In case of displacement boundary condition the transverse displacements and rotations should be equal to the corresponding value at the boundaries.

\[
(w, \theta)_{bc1} = (w^*, \theta^*)_{bc1} \quad \text{(12)}
\]

\[
(w, \theta)_{bc2} = (w^*, \theta^*)_{bc2}
\]

Also in case of force boundary condition the bending moments and shear forces should be equal to the corresponding values at the boundaries.

\[
(M, Q)_{bc1} = (M^*, Q^*)_{bc1},
\]

\[
(M, Q)_{bc2} = (M^*, Q^*)_{bc2}
\]

And in case of mixed boundary conditions an appropriate selection of the above equations is used for applying boundary conditions.

If \((w, \theta, M, Q)_{bc1} = 0\), one can write:

\[
(w, \theta)_{bc1} = 0 \quad \text{(14)}
\]

\[
EI \left(\frac{d\theta}{dx} \right)_{bc1} = 0 \Rightarrow \frac{\theta_{bc1} - \theta_{bc1}}{l_{bc1}} = 0,
\]

\[
k_A \frac{dw}{dx} + \theta_{bc1} = 0 \Rightarrow \frac{w_{bc1} - w_{bc1}}{l_{bc1}} + \theta_{bc1} = 0
\]

\[
EI \left(\frac{d\theta}{dx} \right)_{bc2} = 0 \Rightarrow \frac{\theta_{bc2} - \theta_n}{l_{bc2}} = 0,
\]

\[
k_A \frac{dw}{dx} + \theta_{bc2} = 0 \Rightarrow \frac{w_{bc2} - w_n}{l_{bc2}} + \theta_{bc2} = 0
\]

By assembling the equilibrium equations written for the CVs and equations expressing the boundary conditions obtained using point cells, the discretized governing equations of the beam can be expressed as follows:

\[
K_{2(n+2)\times 2(n+2)} U_{2(n+2)\times 1} = F_{2(n+2)\times 1} \quad \text{(17)}
\]

Where \(n\) is the number of CVs, \(K\) is a matrix containing the coefficients associated with the unknown variables, \(u\) is the displacement vector defined by Eq. 18 and \(F\) is a vector containing the load values acting on the cells and also the known values of the boundary conditions.

\[
u = [\theta_1 w_1 \theta_2 w_2 \ldots \theta_n w_n \theta_{bc1} w_{bc1} \theta_{bc2} w_{bc2}]
\]

Using the above equations and assuming \(l\) for the length of the elements, the sub-matrix \(K_i\) for the \(i-th\) CV can be obtained as below:

\[
K_i = \begin{bmatrix}
(k_{i1}) & (k_{i2}) & (k_{i3}) & (k_{i4}) & (k_{i5}) & (k_{i6}) \\
(k_{i2}) & (k_{i1}) & (k_{i3}) & (k_{i4}) & (k_{i5}) & (k_{i6}) \\
(k_{i3}) & (k_{i4}) & (k_{i1}) & (k_{i2}) & (k_{i5}) & (k_{i6}) \\
(k_{i4}) & (k_{i5}) & (k_{i6}) & (k_{i1}) & (k_{i2}) & (k_{i3}) \\
(k_{i5}) & (k_{i6}) & (k_{i1}) & (k_{i2}) & (k_{i3}) & (k_{i4}) \\
(k_{i6}) & (k_{i1}) & (k_{i2}) & (k_{i3}) & (k_{i4}) & (k_{i5})
\end{bmatrix}
\]

\[
(k_{i1}) = \frac{EI}{l} - \frac{k_A G l}{4}, \quad (k_{i2}) = \frac{k_A G}{2}, \quad (k_{i3}) = \frac{2EI}{l} - \frac{k_A G l}{2}, \quad (k_{i4}) = 0,
\]

\[
(k_{i5}) = \frac{EI}{l} - \frac{k_A G l}{4}, \quad (k_{i6}) = -\frac{k_A G}{2}
\]
\[(k_{21})_i = -\frac{k_j AG}{2}, \quad (k_{22})_i = \frac{k_j AG}{l}, (k_{23})_i = 0, \quad (k_{24})_i = -\frac{2k_j AG}{l}, \quad (k_{25})_i = \frac{k_j AG}{2}, (k_{26})_i = \frac{k_j AG}{l}\]

\[(k_{21})_i = -\frac{k_j AG}{2}, \quad (k_{22})_i = \frac{k_j AG}{l}, (k_{23})_i = 0, \quad (k_{24})_i = -\frac{2k_j AG}{l}, \quad (k_{25})_i = \frac{k_j AG}{2}, (k_{26})_i = \frac{k_j AG}{l}\]

The same procedure can be done to obtain the matrix \(K_{bc1}\) and \(K_{bc2}\). For a simply supported beam at both ends the sub-matrix \(K_{bc1}\) and \(K_{bc2}\) are written as follows:

\[K_{bc1} = \begin{bmatrix}
(k_{11})_{bc1} & (k_{12})_{bc1} & (k_{13})_{bc1} & (k_{14})_{bc1} & (k_{15})_{bc1} & (k_{16})_{bc1} \\
(k_{21})_{bc1} & (k_{22})_{bc1} & (k_{23})_{bc1} & (k_{24})_{bc1} & (k_{25})_{bc1} & (k_{26})_{bc1}
\end{bmatrix}\]

\[u_{bc1} = \begin{bmatrix}
\theta_{x1} \\
w_{x1} \\
\theta_{y1} \\
w_{y1}
\end{bmatrix}\]

\[u_{bc2} = \begin{bmatrix}
\theta_{x2} \\
w_{x2} \\
\theta_{y2} \\
w_{y2}
\end{bmatrix}\]

\[(k_{11})_{bc2} = \frac{EI}{l} - \frac{k_j AG l}{4}, \quad (k_{12})_{bc2} = \frac{k_j AG}{2}, \quad (k_{13})_{bc2} = \frac{3EI}{l} - \frac{k_j AG l}{4}, \quad (k_{14})_{bc2} = \frac{k_j AG}{2}, \quad (k_{15})_{bc2} = \frac{2EI}{l} - \frac{k_j AG l}{2}, \quad (k_{16})_{bc2} = -k_j AG\]

\[(k_{21})_{bc2} = -\frac{k_j AG}{2}, \quad (k_{22})_{bc2} = \frac{k_j AG}{l}, \quad (k_{23})_{bc2} = -\frac{k_j AG}{2}, \quad (k_{24})_{bc2} = \frac{3k_j AG}{l}, \quad (k_{25})_{bc2} = k_j AG, \quad (k_{26})_{bc2} = \frac{2k_j AG}{l}\]

By solving the simultaneous linear equations appearing in Eq. 17, the unknown variables, \(w\) and \(\theta\) are obtained.

2.2. Free vibration analysis

By modifying the static equilibrium equations (1) and (2) and considering the effect of mass moment of inertia and mass of the CVs, dynamic equilibrium equation of a beam in the absence of external load can be written as follows:
\[
\sum M_p = 0 \Rightarrow -j_p \bar{\theta} + \sum_{i=L,R} [M_i n_i - \bar{Q}_i n_i (x_i - x_p)] = 0 \quad (28)
\]

\[
\sum F_z = 0 \Rightarrow -m_p \ddot{w} + \sum_{i=L,R} \bar{Q}_i n_i = 0 \quad (29)
\]

\(m_p\) is the mass of the CV and \(j_p\) is the mass moment of inertia about the axis passing through the center of the CV and normal to the section of the beam.

In the same manner as explained for static analysis the governing equation of the free vibration of the beam can be written in the form of Eq. 30.

\[
M \dddot{\bar{u}} + K^{-1} \ddot{\bar{u}} = 0 \quad (30)
\]

\(\dddot{\bar{u}}\) is the acceleration vector which can be written as follows:

\[
\dddot{\bar{u}} = [\dddot{\bar{\theta}}, \ddot{w}_1, \ddot{w}_2, \ldots, \dddot{\bar{\theta}}, \ddot{w}_n, \dddot{\bar{\theta}}, \ddot{w}_{n+1}]^T \quad (31)
\]

\(M\) is the mass matrix and for the \(i\)th internal CV the mass matrix, \(M_i\), is defined by Eq. 32.

\[
M_i = \begin{bmatrix}
-j_{pi} & 0 \\
0 & -\rho A l_i
\end{bmatrix} \quad (32)
\]

\(j_{pi}\) is the mass moment of inertia of the \(i\)th CV, \(\rho\) is the density, \(A\) is the area of the section and \(l_i\) is the length of the \(i\)th CV.

As boundary cell points are utilized for applying boundary conditions and have no mass, so a small value should be considered at the diagonal elements of \(M_i\) for boundary point cells. So:

\[
M_{bc} = \begin{bmatrix}
a small value & 0 \\
0 & a small value
\end{bmatrix}
\quad (33)
\]

By assuming the displacement vector in the form of Eq. 34 in free vibration of the beam and substituting Eq. 34 in Eq. 30 the free vibration governing equation can be written as Eq. 35.

\[
u = \hat{u} \cos \omega t \quad (34)
\]

\[K\hat{u} = \omega^2 M\hat{u} \quad (35)\]

\(\omega\) is the frequency vector. Eq. 35 is a standard eigenvalue equation. By solving this equation the frequencies and mode shapes of the beam can be obtained.

2.3. Buckling load analysis

In the presence of axial forces, \(N\), the modified form of the Eqs. 1 and 2 can be written as follows:

\[
\sum M_p \Rightarrow \sum_{i=L,R} [M_i n_i - \bar{Q}_i n_i (x_i - x_p)] - \sum_{k=1}^{n_{bc}} F_k (x_k - x_p) = 0 \quad (36)
\]

\[
\sum F_z \Rightarrow \sum_{i=L,R} [Q, n_i \cos \alpha_i + qn_i (x_i - x_p) + Nn_i \sin \alpha_i] + \sum_{k=1}^{n_{bc}} F_k = 0 \quad (37)
\]

By assuming that small deformation assumption and with respect to Fig. 6 the following equations can be written.
By assembling the K_i matrix and F_i vector of each element and applying the boundary conditions using point cells the governing equation of the system is obtained.

$$K_{2(n+2)\times2(n+2)}u_{2(n+2)\times1} = F_{2(n+2)\times1}$$

(39)

By solving the above equation the unknown displacement vector can be obtained.

2.3.1 Calculation of buckling load

Eq. 39 can be written in the form of Eq. 40.

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} \theta \\ w \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

(40)

Using the first equation of Eq. 40 one can write:

$$K_{11}\theta + K_{12}w = F_1 \Rightarrow \theta = K_{11}^{-1}[F_1 - K_{12}w]$$

(41)

K_{12} can be written as sum of the two matrix \bar{K} and \tilde{K}.

$$K_{12} = \bar{K} + N\tilde{K}$$

(42)

Using Eqs. 41 and 42 one can write:

$$\theta = K_{11}^{-1}[F_1 - (\bar{K} + N\tilde{K})w]$$

(43)

The above equation can be substituted in the second equation of Eq. 40 to obtain Eq. 44.

$$K_{22}K_{11}^{-1}[F_1 - (\bar{K} + N\tilde{K})w] + K_{22}w = F_2$$

(44)

$$\Rightarrow [-K_{21}K_{11}^{-1}(\bar{K} + N\tilde{K})w] + K_{22}w = F_2 - K_{21}K_{11}^{-1}F_1$$

Eq. 44 can be represented as follows:

$$[(K_{22} - K_{21}K_{11}^{-1}\bar{K}) - N(K_{21}K_{11}^{-1}\tilde{K})]w = F_2 - K_{21}K_{11}^{-1}F_1$$

(45)

To calculate the buckling load, the determinant of the above equation should be equal to zero. By doing so the below equation is obtained.

$$\left| (K_{22} - K_{21}K_{11}^{-1}\bar{K}) - N(K_{21}K_{11}^{-1}\tilde{K}) \right| = 0$$

(46)

Eq. 46 can be simplified in the form of Eq. 47.

$$|C - N\bar{C}| = 0$$

(47)

By solving the above eigenvalue problem the buckling load of the beam can be obtained.

3. Damage detection indicator

In this paper, damage detection of a prismatic beam with a specified length is studied. First, the beam is divided into a number of CVs. Then, mode shapes of the healthy beam in measurement points are evaluated using the finite volume method. As mentioned before, in cell-centered scheme computational points
are located at the centers of the CVs. In order to make a comparison with the finite element results, the deflections are interpolated at the element faces (element nodes) to obtain the corresponding values. A MATLAB (R2014b) code is prepared here for this purpose. Henceforward, consider the nodal coordinates \(x_q, q = 1, 2, ..., n + 1 \) and \(i \)th mode shape \((\Phi_{h(q,i)}, q = 1, 2, ..., n + 1) \) obtained for the healthy beam as follows:

\[
[x_q, \Phi_{h(q,i)}] = [(x_1, \Phi_{h(1,i)}), (x_2, \Phi_{h(2,i)}), ..., (x_{n+1}, \Phi_{h(n+1,i)})]
\] (48)

This process can also be repeated for damaged beam. It should be noted, it is assumed that the damage decreases the stiffness and therefore can be simulated by a reduction in the modulus of elasticity \((E) \) at the location of damage. In this paper, it is supposed the damage occurs in the center of an element. So, consider the nodal coordinates and \(i \)-th mode shape \((\Phi_{d(q,i)}, q = 1, 2, ..., n + 1) \) obtained for the damaged beam as follows:

\[
[x_q, \Phi_{d(q,i)}] = [(x_1, \Phi_{d(1,i)}), (x_2, \Phi_{d(2,i)}), ..., (x_{n+1}, \Phi_{d(n+1,i)})]
\] (49)

Finally, using the dynamic responses (mode shapes displacement) obtained for two above states, an indicator introduced in the literature is used here as [28-29]:

\[
MSBI_q = \frac{\sum_{i=1}^{nm} (\Phi_{d(q,i)} - \Phi_{h(q,i)})}{nm}
\] (50)

Where \(nm \) is the number of mode shapes considered.

For static data the Eq. 50 can be expressed as

\[
DBI_q = y_{d(q)} - y_{h(q)}
\] (51)

Assuming that the set of the \(MSBI \) of all points \((MSBI_q, q = 1, 2, ..., n + 1) \) represents a sample population of a normally distributed variable, a normalized form of \(MSBI \) can be defined as follows:

\[
nMSBI_q = \max \left[0, \frac{MSBI_q - \text{mean}(MSBI_q)}{\text{std}(MSBI_q)} \right]
\] (52)

\[
nDBI_q = \max \left[0, \frac{DBI_q - \text{mean}(DBI_q)}{\text{std}(DBI_q)} \right]
\] (53)

where \(MSBI_q \) is defined by Eq. 49. Also, mean \((MSBI) \) and std \((MSBI) \) represent the mean and standard deviation of \((MSDBI_q, q = 1, 2, ..., n + 1) \), respectively.

In this paper, the results of FVM based indicator given by Eqs. 52 and 53 are compared with obtained results of FEM.

4. Numerical examples

In order to evaluate the accuracy of FVM for detecting the damage location of beams, the results of FVM are compared with those of FEM. For this purpose, three illustrative test examples including a static analysis, buckling analysis and free vibration analysis of FVM have been considered for a simply supported beam as shown in Fig. 7.
4.1. First example: static analysis

The simply supported beam with uniformly distributed load $q = 1 \text{kN/m}$ shown in Fig. 7 is selected as the first example. The beam is discretized by twenty 2D-beam elements leading to 44 DOFs. In order to assess the efficiency of the indicator given by Eq. 53, four different damage cases listed in Tables 1 and 2 are considered. It should be noted that damage in the damaged element is simulated here by reducing the modulus elasticity (E) at the damaged location.

| Table 1. Four different damage cases induced in simply supported beam |
|--------------------------|----------------|----------------|----------------|----------------|
| Case 1 | Case 2 | Case 3 | Case 4 |
| Element number | Damage ratio |
| 2 | 0.80 | 7 | 0.60 | 17 | 0.80 | 10 | 0.80 |
| | | | | | | | 15 | 0.80 |

*Damage ratio is E_d/E_0

| Table 2. A damage case induced in simply supported beam having different (L/h) |
|-----------------|-----------------|
| Case 4 | Element number =10 | Damage ratio=0.60 |
| $L/h = 2$ |
| $L/h = 5$ |
| $L/h = 10$ |
| $L/h = 100$ |
| $L/h = 1000$ |

*where L is the span length and h is the thickness of the beam

4.1.1. Damage identification without considering noise

Damage identification charts of the simply supported beam in static analysis for cases 1 to 4 are shown in Figs. 8-12, respectively. As shown in the figures, the maximum value of the calculated indicator is located in vicinity of the damage elements. In addition, to verify the indicator given by Eq 53, the result of FVM has been compared with that of FEM. As can be observed in the figures, the finite volume method is reasonably efficient as well as finite element method in determining the damage location of the damaged element.

Fig 8. Damage identification chart of 20-element beam for damage case 1 including FVM and FEM damage based index
4.2. Second example: free vibration analysis

Second example is a simply supported beam with the same properties and geometry as shown in Fig. 7. The density of the beam is \(\rho = 1000 \text{ kg/m}^3 \). The beam is discretized by forty 2D-beam elements leading to 84 DOFs. In order to assess the efficiency of the indicator given by Eq. 52, four different damage cases listed in Table 3 are considered. It should be noted that damage in the damaged element is simulated here by reducing the modulus elasticity \(E \) at the damaged location.

Table 3. Four different damage cases induced in simply supported beam

<table>
<thead>
<tr>
<th>Element number</th>
<th>Damage ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0.70</td>
<td>8</td>
<td>0.70</td>
<td>12</td>
<td>0.70</td>
<td>9</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.70</td>
<td>9</td>
<td>0.70</td>
<td>15</td>
<td>0.70</td>
<td>9</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.70</td>
<td>15</td>
<td>0.70</td>
<td>23</td>
<td>0.70</td>
<td>15</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.70</td>
<td>23</td>
<td>0.70</td>
<td>29</td>
<td>0.70</td>
<td>23</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.70</td>
<td>29</td>
<td>0.70</td>
<td>36</td>
<td>0.70</td>
<td>29</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Damage ratio is \(\frac{E_d}{E} \)
4.2.1. Damage identification without considering noise

Damage identification charts of the simply supported beam in free vibration analysis for cases 1 to 4 are shown in Figs. 13-16, respectively. As shown in the figures, the value of FVM is further in vicinity of some elements that this indicates, damage occurs in these elements. In addition, for verifying the indicator given by Eq. 52, the result of FVM has been compared with that of FEM. As can be observed in the figures, the efficiency of the proposed method for damage localization is high when comparing with the damage indicator based FEM method.

![Fig 13. Damage identification chart of 40-element beam for damage case 1 considering: five modes for FVM and one mode for FEM based index](image)

![Fig 14. Damage identification chart of 40-element beam for damage case 2 considering: five modes for FVM and one mode for FEM based index](image)

![Fig 15. Damage identification chart of 40-element beam for damage case 3 considering: nine modes for FVM and three mode for FEM based index](image)

![Fig 16. Damage identification chart of 40-element beam for damage case 4 considering: twelve modes for FVM and eight mode for FEM based index](image)

4.2.2. The effect of measurement noise

In this part the effect of measurement noise has been studied. For this example, 3% noise is assumed in scenario 4 of Table 3. As shown in Fig. 17, there is a good compatibility between both damage identification charts with and without noise. In other words, the noise has a negligible effect on the performance of FVM.

![Fig 17. Damage identification chart of 40-element beam for damage case 4 considering 3% noise (using 12 mode shapes)](image)
4.3. Third example: buckling analysis

The simply supported beam shown in Fig. 7 is selected as the third example for buckling analysis. The beam is discretized by thirty-five 2D-beam elements leading to 74 DOFs. In order to assess the efficiency of the indicator given by Eq. 52, four different damage cases listed in Table 4 are considered. It should be noted that damage in the damaged element is simulated here by reducing the modulus elasticity (E) at the damaged location.

Table 4. Four different damage cases induced in simply supported beam

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element number</td>
<td>Damage ratio</td>
<td>Element number</td>
<td>Damage ratio</td>
</tr>
<tr>
<td>15</td>
<td>0.50</td>
<td>18</td>
<td>0.50</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>24</td>
<td>0.50</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Damage ratio is $\frac{E_d}{E_	ext{a}}$

4.3.1. Damage identification without considering noise

Damage identification charts of the simply supported beam in buckling analysis for cases 1 to 4 are shown in Figs. 18-21, respectively. As shown in the figures, the value of FVM is further in vicinity of some elements that this indicates, damage occurs in these elements. In addition, for verifying the indicator given by Eq. 52, the result of FVM has been compared with that of FEM. As can be observed in the figures, the efficiency of the proposed method for damage localization is high when comparing with the damage indicator based FEM method.

Fig 18. Damage identification chart of 35-element beam for damage case 1: seven modes

Fig 19. Damage identification chart of 35-element beam for damage case 2: seven modes

Fig 20. Damage identification chart of 35-element beam for damage case 3: seven modes
5. Conclusions

In this paper, evaluating a damaged member in Timoshenko beam using finite volume method (FVM) has been investigated. Damage identification of beams using a mode shape (or displacement) based indicator (MSBI or DBI) has been studied. The efficiency of the FVM based damage indicator has been assessed with considering a simply supported beam having different characteristics for static, buckling and free vibration analysis. As can be observed in the numerical examples, comparing the acquired results by finite volume method with the same procedure extracted from finite element method show a good match between the two methods and there are reasonable correlations between ones. As a result, the finite volume method can be precisely used for damage localization in beam like structures. It was also shown that FVM can show the damaged element for both thin and thick beams without observing shear locking while shear locking is observed in analysis of thin beams using FEM.

References

