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In this paper a damage location in beam like-structure is 

determined using static and dynamic data obtained using 

finite volume method. The change of static and dynamic 

displacement due to damage is used to establish an indicator 

for determining the damage location. In order to assess the 

robustness of the proposed method for structural damage 

detection, three test examples including a static analysis, free 

vibration analysis and buckling analysis for a simply 

supported beam having a number of damage scenarios are 

considered. The acquired results demonstrate that the method 

can accurately locate the single and multiple structural 

damages when considering the measurement noise. Finite 

volume method results provided in this study for finding the 

damage location is compared with the same indicator derived 

via finite element method in order to evaluate the efficiency 

of FVM. The acquired results are showed a good match 

between both Finite Volume method and Finite Element 

method and there are reasonable correlations between ones.       
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1. Introduction 

Local damage may happen during the 

lifetime of structural systems. So a 

rehabilitation process is necessary to increase 

the lifetime of the damaged system. Hence, 

finding the damage location is the main 

object before doing any rehabilitation 

process. Health monitoring is a process 

which leads to find the local damage in the 

damaged structural system. Many structural 

systems may experience some local damage 

during their lifetime. If the local damage is 

not identified timely, it may lead to a terrible 

outcome. Therefore, structural damage 

detection is of a great importance, because 

early detection and repair of damage in a 

structure can increase its life and prevent 

from an overall failure. During the last years, 

many approaches have been introduced to 

determine the location and extent of eventual 

damage in the structural systems. In recent 
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years many efforts have been performed to 

introduce new techniques for finding damage 

locations in structural systems. One of these 

techniques is based on the changes in 

vibration characteristics of the damaged 

system like changes in natural frequencies 

which can be find in [1-2]. Many structural 

systems may experience some local damage 

during their lifetime. If the local damage is 

not identified timely, it may lead to a terrible 

outcome. Therefore, damage identification is 

an essential issue for structural engineering 

and it has received a considerable attention 

during the last years [3-4]. Structural damage 

detection consists of four different levels [5]. 

The first level determines the presence of 

damage in the structure. The second level 

includes locating the damage, while the third 

level quantifies the severity of the damage. 

The final level uses the information from the 

first three steps to predict the remaining 

service life of the damaged structure. After 

discovering the damage occurrence, damage 

localization is more important than damage 

quantification. Due to a great number of 

elements in a structural system, properly 

finding the damage location has been the 

main concern of many studies. In the last 

years, numerous methods have been 

proposed for accurately locating structural 

damage. Structural damage detection by a 

hybrid technique consisting of a grey relation 

analysis for damage localization and an 

optimization algorithm for damage 

quantification has been proposed by He and 

Hwang [6]. Yang et al. used an improved 

Direct Stiffness Calculation (DSC) technique 

for damage detection of beam in beam 

structures. In this work a new damage index, 

namely Stiffness Variation Index (SVI) was 

proposed based on the modal curvature and 

bending moments using modal displacements 

and frequencies extracted from a dynamic 

test and it was shown that this damage index 

is more accurate in comparison to most other 

indexes [7]. Damage identification methods 

based on using the modal flexibility of a 

structure were utilized by [8-11]. Techniques 

based on frequency response functions 

(FRFs) of a system were adopted by [12-14]. 

Damage identification based on Peak Picking 

Method and Wavelet Packet Transform for 

Structural Equation has been used by 

Naderpour and Fakharian [14]. In this paper 

a two-step algorithm have been proposed for 

identification of damage based on modal 

parameters. Results show that this 

preprocessing step causes noise reduction 

and lead to more accurate estimation. 

Moreover, investigating the effect of noise on 

the proposed method revealed that noise has 

no great effect on results. Moreover for 

estimation damage locations and also 

severity of the damage two separate 

optimization procedures have been used [15]. 

A two-stage method for determining 

structural damage sites and extent using a 

modal strain energy based index (MSEBI) 

and particle swarm optimization (PSO) has 

been proposed by Seyedpoor [16]. An 

efficient method for structural damage 

localization based on the concepts of 

flexibility matrix and strain energy of a 

structure has been suggested by Nobahari 

and Seyedpoor [17]. An efficient indicator 

for structural damage localization using the 

change of strain energy based on static noisy 

data (SSEBI) has been proposed by 

Seyedpoor and Yazdanpanah [18]. The 

acquired results clearly showed that the 

proposed indicator can precisely locate the 

damaged elements. Most of the methods 

developed for structural damage detection 

have been founded on using dynamic 

information of a structure that can be 

obtained slowly and expensively. However, 
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the methods of structural damage detection 

employing static data are comparatively 

fewer, while static information can be 

obtained more quickly and cheaply. Finite 

volume method (FVM) is a popular method 

in fluid mechanics problems analysis and it is 

rarely used in solid mechanics problems 

analysis. There is not any investigation on 

damage detection of structures using finite 

volume method. But some works have been 

done to show the efficiency of the method in 

analysis of structures. The accuracy of finite 

volume method in bending analysis of 

Timoshenko beams under external loads was 

investigated in [19]. In this paper the 

accuracy of finite volume method was 

investigated in some benchmark tests. It was 

shown that shear locking would not happen 

in thin beams while this happens in bending 

analysis of thin beams using finite element 

method. This is a drawback of finite element 

method which can be eliminated using some 

techniques like reduced integration. The 

application of finite volume method in 

calculation of buckling load and natural 

frequencies of beams is found in [20]. The 

method has been utilized in analysis of very 

thin and thick beams in some benchmark 

tests to show the robustness of the finite 

volume method. All the results were in good 

agreement with respect to analytical solution 

and again shear locking was not observed in 

very thin beams. THE FVM has been utilized 

by Wheel [21] for plate bending problems 

based on Mindlin plate theory. In that work, 

the results have been obtained for thick and 

thin square and circular plates which 

revealed that shear locking does not appear in 

the thin plate analysis. The effect of mesh 

refinement was also investigated in that 

work. Also, FVM based on cell-centered and 

cell-vertex schemes for plate bending 

analysis has been utilized by Fallah [22]. In 

that work some test cases have been 

examined for beams and square plates. The 

accuracy of the results has been compared 

with the conventional FEM to show the 

efficiency of FVM. He also arrived to the 

same conclusions that shear locking does not 

happen in the analysis of thin beams and thin 

plates. More studies of utilizing finite volume 

method in solid mechanics problems can be 

find in [23] (about dynamic solid mechanics 

problems), [24] (about large strain problems), 

[25] (about dynamic fracture problems) and 

[26-28]. 

In this study, an efficient method using finite 

volume theory is introduced to estimate the 

damage locations in a structural system. The 

change of static and dynamic displacement 

between healthy and damaged structure has 

been used to form an index for damage 

localizations. Various test examples are 

selected to assess the efficiency of the index 

for accurately locating the damage. 

Numerical results showed that the method 

based on finite volume analysis can also 

identify the defective elements in a damaged 

structure rapidly and precisely compared 

with those of a finite element method (FEM). 

2. The finite volume (FV) procedure  

In this section the governing equation of a 

beam is obtained based on a FV procedure. It 

should be mentioned that all of the below 

formulations are based on the works reported 

in [19] and [20]. 

2.1. Static Analysis 

Fig. 1 shows a part of a beam meshed into 2-

node elements along the centerline of the 

beam which are considered as the control 

volumes (CVs) or cells. Centers of the CVs 

are considered as the computational points 
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where the unknown variables will be 

computed at these points. So a cell-centered 

scheme is utilized in analysis. For each cell, 

the acting resultant bending moments and 

shear forces are evaluated at gauss-points 

located on cell faces, see Fig. 1. to obtain the 

beam governing equations, Timoshenko 

beam theory and small displacements 

assumption are utilized, so shear 

deformations are included in the formulation 

derivation (as shown in the Fig. 2).  is the 

transverse displacement and  is the rotation 

of the CVs. 

 

Fig.1. A beam meshed into CVs. 

 

Fig.2. Deformation of a Timoshenko beam (blue) compared 
with that of an Euler-Bernoulli beam (red). 

 

The finite volume formulations are based on 

the conservation of the forces in each CV. So 

the equilibrium equation for cell P under 

uniform load (q ) and concentrated loads ( kF

) can be written by computing the forces at 

the right ( R ) and left ( L ) side of the control 

volume, as shown in the Fig. 3.   

 

Fig.3. Resultant forces of a CV under external forces. 
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The first equation is the equilibrium of 

moments about the center of the CV and the 

second one is the equilibrium of forces in z  

direction. iM and iQ are the bending 

moments and shear forces at the i th  face 

of the CV respectively, px is the distance of 

the center of the control volume from the 

origin, kx denotes the location of the 

concentrated applied load kF  and in is the 

cosine direction of outward normal of the 

face.  

When ,i L cos(180 ) 1in   and when

,i R cos(0 ) 1in  . The bending 

moments and shear forces at the i th  face 

can be related to transverse displacements 

and rotations as follows: 

( ) , . . ( )i i i s i

d dw
M EI Q k A G

dx dx


  

  
(3) 

EI is the flexural rigidity of the beam 

section, sk is the correction shear factor 

which is equal to 5 / 6  for a rectangular 

section, A is the area of the section and G is 

the shear modulus. Bending moment and 

shear forces are calculated based on the 

transverse displacements and rotations of the 

gauss-points. In cell-centered approach the 

unknown variables of the CVs are located at 

the centers of the CVs. So it is necessary to 
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make a relation between the unknown 

variables of the gauss-points and the 

corresponding unknown variables of the cell 

centers. For this purpose a temporary 2-node 

isoparametric line element is utilized. The 

temporary element nodes are located at the 

two adjacent cell centers as shown in the Fig. 

4.  

 

Fig.4. Temporary element in (a) global coordinate 

system (b) natural coordinate system. 
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Using the shape functions defined by the use 

of the temporary element the transverse 

displacements and rotations of the gauss-

points can be related to the corresponding 
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1N  and 2N  are the shape functions at node 1 

and 2 of the temporary elements in natural 

coordinate system. Derivatives of the 

unknown variables can be calculated using 

the chain rule law as below: 
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The same procedure is done for w. So: 

2 1
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Therefore the unknown variables and their 

derivatives for the right and left side gauss-

points with neighboring CVs 1,P P and 

1P   can be written as below: 
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2.1.1 Applying Boundary Condition 

Applying boundary conditions is done by 

considering point cells located at boundaries 

and writing the equation expressing the 

relevant boundary conditions, see Fig. 5. 

Depending on the type of the supports, three 

kinds of boundary conditions can be 

assumed: 

a. Displacement boundary conditions 

b. Force boundary conditions 

c. Mixed boundary conditions 
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Fig.5. Point cells bc1 and bc2 used for applying 

boundary conditions. 

In case of displacement boundary condition 

the transverse displacements and rotations 

should be equal to the corresponding value at 

the boundaries.  
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Also in case of force boundary condition the 

bending moments and shear forces should be 

equal to the corresponding values at the 

boundaries.  
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And in case of mixed boundary conditions an 

appropriate selection of the above equations 

is used for applying boundary conditions.  

If ( , , , ) 0bciw M Q  , one can write: 

( , ) 0bciw  

                                             
(14)
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By assembling the equilibrium equations 

written for the CVs and equations expressing 

the boundary conditions obtained using point 

cells, the discretized governing equations of 

the beam can be expressed as follows: 

2( 2) 2( 2) 2( 2) 1 2( 2) 1n n n nK u F      

                 
(17) 

Where n  is the number of CVs, K is a matrix 

Containing the coefficients associated with 

the unknown variables, u is the displacement 

vector defined by Eq. 18 and F is a vector 

containing the load values acting on the cells 

and also the known values of the boundary 

conditions.  

(18)

 1 1 2 2 1 1 2 2. . .
T

n n bc bc bc bcu w w w w w      

Using the above equations and assuming l  

for the length of the elements, the sub-matrix 

iK for the i th  CV can be obtained as 

below: 
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The same procedure can be done to obtain 

the matrix 1bcK  and 2bcK . For a simply 

supported beam at both ends the sub-matrix 

1bcK  and 2bcK  are written as follows: 
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By solving the simultaneous linear equations 

appearing in Eq. 17, the unknown variables, 

w and  are obtained. 

 

2.2. Free vibration analysis 

By modifying the static equilibrium 

equations (1) and (2) and considering the 

effect of mass moment of inertia and mass of 

the CVs, dynamic equilibrium equation of a 

beam in the absence of external load can be 

written as follows: 
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pm  is the mass of the CV and pj  is the mass 

moment of inertia about the axis passing 

through the center of the CV and normal to 

the section of the beam. 

In the same manner as explained for static 

analysis the governing equation of the free 

vibration of the beam can be written in the 

form of Eq. 30. 

 

2( 2) 2( 2) 2( 2) 1 2( 2) 2( 2) 2( 2) 1 0n n n n n nM u K u          
 (30) 

u  is the acceleration vector which can be 

written as follows: 

1 1 2 2 1 1 2 2. . .
T

n n bc bc bc bcu w w w w w         (31) 

M is the mass matrix and for the i th  

internal CV the mass matrix, iM , is defined 

by Eq. 32. 
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pij  is the mass moment of inertia of the 

i th  CV,  is the density, A is the area of 

the section and il  is the length of the i th  

CV. 

As boundary cell points are utilized for 

applying boundary conditions and have no 

mass, so a small value should be considered 

at the diagonal elements of iM  for boundary 

point cells. So: 
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By assuming the displacement vector in the 

form of Eq. 34 in free vibration of the beam 

and substituting Eq. 34 in Eq. 30 the free 

vibration governing equation can be written 

as Eq. 35. 
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2ˆ ˆKu Mu                                    (35) 

 is the frequency vector. Eq. 35 is a 

standard eigenvalue equation. By solving this 

equation the frequencies and mode shapes of 

the beam can be obtained. 

 

2.3. Buckling load analysis 

In the presence of axial forces, N , the 

modified form of the Eqs. 1 and 2 can be 

written as follows: 
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(37) 

By assuming that small deformation 

assumption and with respect to Fig. 6 the 

following equations can be written. 
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Fig 6. Control volume P deformation due to axial loading. 
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By assembling the iK  matrix and iF  vector 

of each element and applying the boundary 

conditions using point cells the governing 

equation of the system is obtained. 
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By solving the above equation the unknown 

displacement vector can be obtained. 

2.3.1 Calculation of buckling load 

Eq. 39 can be written in the form of Eq. 40. 
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Using the first equation of Eq. 40 one can 

write: 
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12K  can be written as sum of the two matrix 

K  and K . 
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Using Eqs. 41 and 42 one can write: 
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The above equation can be substituted in the 

second equation of Eq. 40 to obtain Eq. 44. 
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Eq. 44 can be represented as follows: 
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            (45) 

To calculate the buckling load, the 

determinant of the above equation should be 

equal to zero. By doing so the below 

equation is obtained. 

 

1 1

22 21 11 21 11( ) ( ) 0K K K K N K K K   
   (46) 

Eq. 46 can be simplified in the form of Eq. 

47. 

0C NC 
                                            (47) 

By solving the above eigenvalue problem the 

buckling load of the beam can be obtained. 

3. Damage detection indicator 

In this paper, damage detection of a prismatic 

beam with a specified length is studied. First, 

the beam is divided into a number of CVs. 

Then, mode shapes of the healthy beam in 

measurement points are evaluated using the 

finite volume method. As mentioned before, 

in cell-centered scheme computational points 
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are located at the centers of the CVs. In order 

to make a comparison with the finite element 

results, the deflections are interpolated at the 

element faces (element nodes) to obtain the 

corresponding values. A MATLAB (R2014b) 

code is prepared here for this purpose. 

Henceforward, consider the nodal 

coordinates (
1 ..., ,2 ,1 ,  nqxq ) and ith 

mode shape (
1 ..., ,2 ,1 ,),(  nqiqh ) 

obtained for the healthy beam as follows:   

( , ) 1 (1, ) 2 (2, ) 1 ( 1, ), ( , ),  ( , ),  . . .,  ( , )q h q i h i h i n h n ix x x x  
              

(48) 

This process can also be repeated for 

damaged beam. It should be noted, it is 

assumed that the damage decreases the 

stiffness and therefore can be simulated by a 

reduction in the modulus of elasticity (E) at 

the location of damage. In this paper, it is 

supposed the damage occurs in the center of 

an element. So, consider the nodal 

coordinates and i-th mode shape (

1 ..., ,2 ,1 ,),(  nqiqd  ) obtained for the 

damaged beam as follows: 

 

  ),( ., . . ),,( ),,(, ),1(1),2(2),1(1),( indnididiqdq xxxx  
  

(49) 

Finally, using the dynamic responses (mode 

shapes displacement) obtained for two above 

states, an indicator introduced in the 

literature is used here as [28-29]: 

( , ) ( , )

1

( )
nm

q i q i

i

h

q

d

MSBI
nm



 




               
(50) 

Where nm is the number of mode shapes 

considered. 

For static data the Eq. 50 can be expressed as 

( ) ( )q qd qhyDBI y 

                      (51) 

Assuming that the set of the MSBI of all 

points ( q  ,  1,2,..., 1MSBI q n  ) represents a 

sample population of a normally distributed 

variable, a normalized form of MSBI can be 

defined as follows: 

 

mean( )
max  0 ,    , 

std( )

 1,2,..., 1

q q

q

q

MSBI MSBI
nMSBI

MSBI

q n

  
   

    

   

(52) 

where MSBIq is defined by Eq. 49. Also, 

mean (MSBI) and std (MSBI) represent the 

mean and standard deviation of (

1,...,2,1 , q  nqMSDBI ), respectively. 

mean( )
max  0 ,    , 

std( )

 1,2,..., 1

q q

q

q

DBI DBI
nDBI

DBI

q n

  
   

 
   

 

(53) 

In this paper, the results of FVM based 

indicator given by Eqs. 52 and 53 are 

compared with obtained results of FEM. 

4. Numerical examples 

In order to evaluate the accuracy of FVM for 

detecting the damage location of beams, the 

results of FVM are compared with those of 

FEM. For this purpose, three illustrative test 

examples including a static analysis, 

buckling analysis and free vibration analysis 

of FVM have been considered for a simply 

supported beam as shown in Fig. 7. 

 

 

Fig 7. Geometry and cross section of the simply supported 

beam. 
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4.1. First example: static analysis 

The simply supported beam with uniformly 

distributed load 1 /q kN m  shown in Fig. 7 

is selected as the first example. The beam is 

discretized by twenty 2D-beam elements 

leading to 44 DOFs. In order to assess the 

efficiency of the indicator given by Eq. 53, 

four different damage cases listed in Tables 1 

and 2 are considered. It should be noted that 

damage in the damaged element is simulated 

here by reducing the modulus elasticity (E) at 

the damaged location. 

Table 1. Four different damage cases induced in simply supported beam  

Case 1 Case 2 Case 3 Case 4 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

2 0.80 7 0.60 17 0.80 10 0.80 

- - - - - - 15 0.80 

*Damage ratio is d

h

E

E
 

 

Table 2. A damage case induced in simply supported beam having different (L/h)  

Case 4          Element number =10         Damage ratio=0.60 

                                      L/h* =2 

                                       L/h =5 

                                      L/h =10 

                                     L/h =100 

                                    L/h =1000 

*where L is the span length and h is the thickness of the beam 

 

4.1.1. Damage identification without 

considering noise 

Damage identification charts of the simply 

supported beam in static analysis for cases 1 

to 4 are shown in Figs. 8-12, respectively. As 

shown in the figures, the maximum value of 

the calculated indicator is located in vicinity 

of the damage elements. In addition, to verify 

the indicator given by Eq 53. , the result of 

FVM has been compared with that of FEM. 

As can be observed in the figures, the finite 

volume method is reasonably efficient as 

well as finite element method in determining 

the damage location of the damaged element. 

 
Fig 8. Damage identification chart of 20-element 

beam for damage case 1 including FVM and 

FEM damage based index  
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Fig 9. Damage identification chart of 20-element 

beam for damage case 2 including FVM and 

FEM damage based index  

 
Fig 10. Damage identification chart of 20-

element beam for damage case 3 including FVM 

and FEM damage based index 

 

Fig 11. Damage identification chart of 20-

element beam for damage case 4 including FVM 

and FEM damage based index 

 
Fig 12. Damage identification chart of 20-element beam for 

damage case 4 considering: (a) L/h =2, (b) L/h =5, (c) L/h 

=10, (d) L/h =100 and (e) L/h =1000 

 

4.2. Second example: free vibration analysis 

Second example is a simply supported beam 

with the same properties and geometry as 

shown in Fig. 7. The density of the beam is 

ρ=1000 kg/m
3
. The beam is discretized by 

forty 2D-beam elements leading to 84 DOFs. 

In order to assess the efficiency of the 

indicator given by Eq. 52, four different 

damage cases listed in Table 3 are 

considered. It should be noted that damage in 

the damaged element is simulated here by 

reducing the modulus elasticity (E) at the 

damaged location. 

 

Table 3. Four different damage cases induced in simply supported beam  

Case 1 Case 2 Case 3 Case 4 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

14 0.70 8 0.70 12 0.70 9 0.70 

- - 33 0.70 18 0.70 15 0.70 

- - - - 28 0.70 23 0.70 

- - - - - - 29 0.70 

- - - - - - 36 0.70 

*Damage ratio is d

h

E

E
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4.2.1. Damage identification without 

considering noise 

Damage identification charts of the simply 

supported beam in free vibration analysis for 

cases 1 to 4 are shown in Figs. 13-16, 

respectively. As shown in the figures, the 

value of FVM is further in vicinity of some 

elements that this indicates, damage occurs in 

these elements. In addition, for verifying the  

indicator given by Eq. 52, the result of FVM 

has been compared with that of FEM. As can 

be observed in the figures, the efficiency of 

the proposed method for damage localization 

is high when comparing with the damage 

indicator based FEM method. 
 

 

Fig 13. Damage identification chart of 40-element 

beam for damage case 1 considering: five modes for 

FVM and one mode for FEM based index  

 

Fig 14. Damage identification chart of 40-element beam for 

damage case 2 considering: five modes for FVM and one 

mode for FEM based index  

 

Fig 15. Damage identification chart of 40-element beam for 

damage case 3 considering: nine modes for FVM and three 

mode for FEM based index  

 
Fig 16. Damage identification chart of 40-element beam for 

damage case 4 considering: twelve modes for FVM and 

eight mode for FEM based index  

4.2.2. The effect of measurement noise 

In this part the effect of measurement noise 

has been studied. For this example, 3% noise 

is assumed in scenario 4 of Table 3. As 

shown in Fig. 17, there is a good 

compatibility between both damage 

identification charts with and without noise. 

In other words, the noise has a negligible 

effect on the performance of FVM. 

 

Fig 17. Damage identification chart of 40-element beam for 

damage case 4 considering 3% noise (using 12 mode shapes) 
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4.3. Third example: buckling analysis 

The simply supported beam shown in Fig. 7 

is selected as the third example for buckling 

analysis. The beam is discretized by thirty-

five 2D-beam elements leading to 74 DOFs. 

In order to assess the efficiency of the 

indicator given by Eq. 52, four different 

damage cases listed in Table 4 are 

considered. It should be noted that damage in 

the damaged element is simulated here by 

reducing the modulus elasticity (E) at the 

damaged location. 

Table 4. Four different damage cases induced in simply supported beam  

Case 1 Case 2 Case 3 Case 4 
Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

15 0.50 18 0.50 10 0.50 8 0.50 

- - 24 0.50 17 0.50 14 0.50 

- - - - 26 0.50 21 0.50 

- - - - - - 29 0.50 

*Damage ratio is d

h

E

E
 

4.3.1. Damage identification without 

considering noise 

Damage identification charts of the simply 

supported beam in buckling analysis for 

cases 1 to 4 are shown in Figs. 18-21, 

respectively. As shown in the figures, the 

value of FVM is further in vicinity of some 

elements that this indicates, damage occurs in 

these elements. In addition, for verifying the 

indicator given by Eq. 52, the result of FVM 

has been compared with that of FEM. As can 

be observed in the figures, the efficiency of 

the proposed method for damage localization 

is high when comparing with the damage 

indicator based FEM method. 

 
Fig 18. Damage identification chart of 35-element beam for 

damage case 1: seven modes  

 
Fig 19. Damage identification chart of 35-element beam for 

damage case 2: seven modes  

 
Fig 20. Damage identification chart of 35-element beam for 

damage case 3: seven modes  
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Fig 21. Damage identification chart of 35-element beam for 

damage case 4: ten modes  

5. Conclusions  

In this paper, evaluating a damaged member 

in Timoshenko beam using finite volume 

method (FVM) has been investigated. 

Damage identification of beams using a 

mode shape (or displacement) based 

indicator (MSBI or DBI) has been studied. 

The efficiency of the FVM based damage 

indicator has been assessed with considering 

a simply supported beam having different 

characteristics for static, buckling and free 

vibration analysis. As can be observed in the 

numerical examples, comparing the acquired 

results by finite volume method with the 

same procedure extracted from finite element 

method show a good match between the two 

methods and there are reasonable correlations 

between ones. As a result, the finite volume 

method can be precisely used for damage 

localization in beam like structures. It was 

also shown that FVM can show the damaged 

element for both thin and thick beams 

without observing shear locking while shear 

locking is observed in analysis of thin beams 

using FEM. 
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