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This paper presents a new model for predicting the 

compressive strength of steel-confined concrete on circular 

concrete filled steel tube (CCFST) stub columns under axial 

loading condition based on Artificial Neural Networks 

(ANNs) using a wide range of experimental investigations. 

Based on the previous theoretical and experimental studies 

the input variables considered in developing the ANNs 

model are outer diameter of column, compressive strength of 

unconfined concrete, length of column, wall thickness and 

tensile yield stress of steel tube. After the learning step, the 

neural network can be extracted the relationships between 

the input variables and output parameter. The criteria for 

stopping the training of the networks are Regression values 

and Mean Square Error. After constructing networks with 

constant input neurons but with different number of hidden-

layer neurons, the best network was selected. The neural 

network results are compared with the existing models which 

showed the results are in good agreement with experiments. 
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1. Introduction  

The two main types of composite column (Fig. 

1) are the concrete filled steel tube column 

(CFST), where the steel is a rolled or built-up 

hollow section filled with concrete, and the 

steel reinforcement concrete (SRC) column, 

where the steel section is embedded or encased 

by the concrete [1]. Concrete-filled steel tube 

columns provide excellent structural benefits 

for seismic resistance such as high ductility 

and large energy absorption capacity [2]. In 

recent decades, there were a large number of 

studies carried out on circular concrete-filled 

steel tube (CCFST) columns [3-5]. Concrete 

filled steel tubes are an economical column 

type, as the majority of the axial load is 

resisted by the concrete, which is less 

expensive than steel. Constructions costs may 

be reduced due to the fast erection and an 

optimal design. Because of its higher strength, 

a composite column is lighter than a typical 

RC column with a similar strength, which 

reduces the loads on and cost of the 

foundation, the cost and amount of 

reinforcement bars, and thus the cost of 

construction. Due to steel tube location at the 

periphery of the cross section, the steel in 

CCFST has an optimal distribution that 

increases the strength and stiffness of the 
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member. The steel column section adds 

confinement to the concrete core, which 

induces an increment in strength and ductility 

in the concrete. This confinement is also 

influenced by the diameter-to-thickness ratio 

of the tubes. 

  

 
Fig. 1. Cross section configuration in composite 

members [1]. 

2. Artificial Neural Network 

An artificial neural network (ANNs) is an 

information processing tool that is inspired by 

the way biological nervous systems, process 

the information. The key element of this tool is 

the novel structure of the information 

processing system. An ANNs is configured for 

a specific application, such as pattern 

recognition or data classification, through a 

learning process. Learning in biological 

systems involves adjustments to the synaptic 

connections that exist between the neurons; the 

same process happens in ANNs. A biological 

neuron has major parts which are of particular 

interest in understanding an artificial neuron 

and include: dendrites, cell body, axon, and 

synapse (Fig. 2). A neuron is an electrically 

excitable cell that processes and transmits 

information by electrical and chemical 

signaling. Chemical signaling occurs via 

synapses, specialized connections with other 

cells. Neurons connect to each other in order 

to form neural networks. A neuron with a 

single R-element input vector is shown in Fig. 

3. In this figure the individual element inputs 

(p1, p2... pR) are multiplied by weights (w1, 1, 

w1, 2, ... w1, R) and the weighted values are fed 

to the summing junction. The neuron has a 

bias b, which is summed with the weighted 

inputs to form the net input n. This sum, n (Eq. 

(1)), is the argument of the transfer function f. 

𝑛=𝑤1,1𝑝1+𝑤1,2𝑝2+⋯+𝑤1,𝑅𝑝𝑅+

𝑏  
(1) 

 
Fig. 2. Schematic of a biological neuron [6] 

 
Fig. 3. Schematic of a neuron model [7]. 
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3. Proposed ANN model for the 

prediction of compressive strength of 

confined concrete 

As the first step for providing sufficient 

information for training, verifying and testing 

of neural networks, a comprehensive set of test 

results on the axial compressive strength of 

circular concrete filled steel tube specimens 

was collected [8-30]. All together, the selected 

database contains more than 150 test results 

including significant test programs of four 

recent decades. 

Under axial compressive loads, composite 

interaction in CCFST columns, inducing hoop 

stresses in the steel tube and confining 

pressure in the concrete core (Fig. 4). Even in 

uniaxial loading, the concrete core is under a 

three-dimensional state of stress while the steel 

tube is under two-dimensional state of stress. 

The confinement pressure serves to increase 

both the strength and ductility of the concrete 

core. 

Where fl is the confining pressure in the 

concrete core, D is the outside diameter of the 

steel tube, t is the thickness of the steel tube, 

and σθ is the hoop stress in the steel tube. In 

this study, the vertical compressive as 0.89 of 

yield stress of steel tubes [27]. 

In this study, a multi-layered feed-forward is 

used and trained with the error back 

propagation for the prediction of compressive 

strength of confined concrete. Back-

propagation is the generalization of the 

Widrow-Hoff learning rule to multiple-layer 

networks and nonlinear differentiable transfer 

functions. A network includes biases, two 

sigmoid layers, and a linear output layer which 

is capable of approximating any function with 

a finite number of discontinuities. The term 

back-propagation refers to the manner in 

which the gradient is computed for nonlinear 

multilayer networks. 

 
Fig. 4. Idealized Free Body Diagram of a CCFT 

Section [31]. 

The network which is used in this study is 

composed of two layers with Log-Sigmoid 

transfer function in the hidden layer and pure 

liner transfer function in the output layer. Also 

Levenberg-Marquardt algorithm used for 

training. One iteration of back-propagation 

algorithm is given by Eq. (2), 

𝑋𝑘+1=𝑋𝑘−𝑎𝑘𝑔𝑘 (2) 

Where𝑋𝑘, is a vector of current weights and 

biases, 𝑔𝑘, is the current gradient, and 𝛼𝑘, is 

the learning rate. 

Mean square error (MSE) was used for the 

initial criterion for stopping the training 

process of the networks. MSE is average of 

squared errors between target and estimated 

values and computed from following equations 

in which best value is zero. 

 (3) 

 (4) 

Where, t, 𝐸𝑠𝑡, ∆ and k are target data, 

estimated values, error and number of output 

of network respectively. Other criterion is 

regression values that measured the correlation 

between targets and network outputs in the 

network, in which regression value of 1 means 

a close relationship and zero means a random 

relationship. To obtain well network both 

criterions were utilize. 
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Input data for network training include of:  

¶ Compressive strength of unconfined 

concrete (𝑓�́�), 

¶ Length of column (L), 

¶ Outer diameter of column (D), 

¶ Wall thickness of steel tube (t),  

¶ Tensile yield stress of steel tube (Fy). 

Network output is steel-confined compressive 

strength of concrete (𝑓𝑐�́�). The number of 

hidden nodes was set to start the training of the 

ANNs networks. It was suggested by Berke 

and Hajela (1991) that the number of hidden 

nodes should be the average and the sum of 

the nodes on the input and output layers.  In 

addition, Rogers and Ramarsh (1992) 

suggested that the good initial guess for hidden 

nodes was to take the sum of nodes on the 

input and output layers.  

Lastly, Soemardi (1996) suggested that it 

should be 75% of the input nodes.  Through 

the previously mentioned suggestions, the 

number of hidden nodes in this paper was set 

from 3 to 12 hidden nodes.  In each network, 

input vectors and targets randomly are divided 

into three sets and are: 

¶ 60% used for training, 

¶ 20% used to validate the network, 

¶ 20% used as an independent test of 

network. 

The regression values and maximum squared 

error of the networks with different number of 

hidden nodes are presented in Figs. 5 and 6. 

After the pre-acceptance of desirable 

networks, the best network is Net-6-2.  In best 

network number of hidden neurons is six.  The 

results for regression, training state and 

performance of Net-6-2 are presented in Figs. 

7-9. The simulated compressive strengths of 

the steel-confined concrete from idealized 

neural network (Net-6-2) are compared against 

the experimental data (Fig. 10), which showed 

a good and reasonable agreement. The average 

error for the ANN model for predicting the 

experimental results is equal to 10.02%. If 

there is perfect agreement between the model 

and experimental results, all the points will lie 

along the 45o line. 

 

 
Fig. 5. Correlation coefficient of different networks. 
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Fig. 6. Maximum Squared Error versus number of hidden layer neurons. 

 

 
Fig. 7. Regression values of Net-6-2. 

 
Fig. 8. Training State of Net-6-2 
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Fig. 9. Performance of Net-6-2. 

 
Fig. 10. Comparison of various predicted values of confined compressive strength versus experimental data. 

4. Conclusion 
A large collection of studies carried out on 

circular concrete-filled steel tube columns 

was gathered in order to predict the behavior 

of the confined concrete using an intelligent 

system applying artificial neural networks.   

Having parameters used as input nodes in 

ANN modeling such as outer diameter of 

column, compressive strength of unconfined 

concrete, length of column, wall thickness 

and tensile yield stress of steel tube.  After 

training the 10 neural networks with different 

number of hidden neurons, by considering the 

regression values and mean squared error of 

the networks, one of the networks was 

selected for simulation which showed 

effective performance through training, 

testing, and validation.  The average error for 
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the ANN model for predicting the 

experimental results is equal to 10.02%. The 

predicted behavior of the steel-confined 

columns was showed good agreement with 

the results of experimental data which 

indicated that the Net-6-2 network has learned 

to generalize the information well. 

 

REFERENCES 

 
[1] Kheyroddin, A., Naderpour, H., Ahmadi, M. 

(2013). “Performance of circular concrete 

filled steel tube members subjected to axial 

loading”. Proceedings of the Fourth 

International Conference on Concrete & 

Development, Tehran, Iran. 

[2] Ding, F.X., Yu, Z.W., Gong, Y.Z. (2011). 

“Elasto-plastic analysis of circular 

concrete-filled stub columns”. Journal of 

Constructional Steel Research, Vol. 67, pp. 

1567-77.  

[3] Hatzigeorgiou, G.D. (2008). “Numerical 

model for the behavior and capacity of 

circular CFT columns, Part II: Verification 

and extension”. Journal of Engineering 

Structures, Vol. 30, pp. 1579-89. 

[4] Susantha, K., Hanbin, G., Usami, T. (2001). 

“Uniaxial stress-strain relationship of 

concrete confined by various shaped steel”. 

Journal of Engineering Structures, Vol. 23, 

pp. 1331-47. 

[5] Hu, H., Huang, C., Wu, M., Wu, Y. (2003). 

“Nonlinear analysis of axially loaded 

concrete-filled tube columns with 

confinement effect”. Journal of Structural 

Engineering, Vol. 129, pp. 1322-1329. 

[6] Hu, Y.H., Hwang, J. (2001). “Handbook of 

neural network signal processing”. CRC 

Press, USA. 

[7] Demuth, H. Beale, M., Hagan, M. (2009). 

“Neural network toolbox 6: User’s Guide”. 

Version 6.0.2. Mathworks, Inc. 

[8] Gardner, N.J., Jacobson, E.R. (1967). 

“Structural behavior of concrete filled steel 

tubes”. Journal of the American Concrete 

Institute, Vol. 64, pp. 404-413. 

[9] Gardner, N.J. (1968). “Use of spiral welded 

steel tubes in pipe columns”. Journal of 

American Concrete Institute, Vol. 65, pp. 

937-942. 

[10] Knowles, R.B., Park, R. (1969). “Strength of 

concrete filled steel tubular columns”. 

Journal of Structural Division, Vol. 95, pp. 

2565-2587. 

[11] Zhanshuan, C.S.J. (1984). “Behavior and 

ultimate strength of short concrete-filled 

steel tubular columns”. Journal of Building 

Structures, China Academy of Building 

Research. 

[12] Kitada, T., Yoshida, Y., Nakai, H. (1987). 

“Fundamental study on elastoplastic 

behavior of concrete encased steel short 

tubular columns”. Memoirs of the Faculty 

of Engineering, Osaka City University, 

Osaka, Japan, Vol. 28, pp. 237-253. 

[13] Tomii, M., Xiao, Y., Sakino, K. (1988). 

“Experimental study on the properties of 

concrete confined in circular steel tube”. 

Proceedings of the International Specialty 

Conference on Concrete Filled Steel 

Tubular Structures, Harbin, China, pp. 24-

30. 

[14] Tsuji, B., Nakashima, M., Morita, S. (1991). 

“Axial compression behavior of concrete 

filled circular steel tubes”. Proceedings of 

the Third International Conference on 

Steel-Concrete Composite Structures, 

Wakabayashi, M (ed.), Fukuoka, Japan, 

Association for International Cooperation 

and Research in Steel-Concrete Composite 

Structures, pp. 19-24. 

[15] Luksha, L.K., Nesterovich, A.P. (1991). 

“Strength testing of large-diameter concrete 

filled steel tubular members”. Proceedings 

of the Third International Conference on 

Steel-Concrete Composite Structures, 

Wakabayashi, M. (ed.), Fukuoka, Japan, 

Association for International Cooperation 

and Research in Steel-Concrete Composite 

Structures, pp. 67-72. 

[16] Sakino, K., Hayashi, H. (1991). “Behavior of 

concrete filled steel tubular stub columns 

under concentric loading”. Proceedings of 

the Third International Conference on 

Steel-Concrete Composite Structures, 

Wakabayashi, M. (ed.), Fukuoka, Japan, 

Association for International Cooperation 



 A. Kheyroddin et al./ Journal of Rehabilitation in Civil Engineering 2-1 (2014) 106-113 113 

and Research in Steel- Concrete Composite 

Structures, pp. 25-30. 

[17] O’Shea, M.D., Bridge, R.Q. (2000). “Design 

of circular thin-walled concrete-filled steel 

tubes”. Journal of Structural Engineering, 

Vol. 126, pp. 1295-1303. 

[18] Kang, H.S., Lim, S.H., Moon, T.S. (2002). 

“Behavior of CFT stub columns filled with 

PCC on concentrically compressive load”. 

Journal of the Architectural Institute of 

Korea, Vol. 18, pp. 21-28. 

[19] Giakoumelis, G., Lam, D. (2004). “Axial 

capacity of circular concrete-filled tube 

columns”. Journal of Constructional Steel 

Research, Vol. 60, pp. 1049-1068. 

[20] Han, L.H., Yao, G.H. (2003). “Behavior of 

concrete-filled hollow structural steel 

(HSS) columns with pre-load on the steel 

tubes”. Journal of Constructional Steel 

Research, Vol. 59, pp. 1455-1475. 

[21] Han, L.H., Yao, G.H. (2003). “Influence of 

concrete compaction on the strength of 

concrete-filled steel RHS columns”. Journal 

of Constructional Steel Research, Vol. 59, 

No. 6, pp. 751-767. 

[22] Naderpour, H., Kheyroddin A., Ghodrati 

Amiri, G. (2010). Prediction of FRP-

Confined Compressive Strength of 

Concrete Using Artificial Neural Networks, 

Composite Structures (Elsevier), Vol. 92, 

pp. 2817–2829. 

[23] Kheyroddin, A., Naderpour, H., (2008). 

“Nonlinear finite element analysis of 

composite RC shear walls”. Iranian Journal 

of Science & Technology, Volume 32, No. 

B2, pp. 79-89. 

[24] Kheyroddin, A., Hoseini Vaez, S.R., and 

Naderpour, H. (2008). “Numerical Analysis 

of Slab-Column Connections Strengthened 

with Carbon Fiber Reinforced Polymers”, 

Journal of Applied Sciences, Volume 8, No 

2, pp. 420-431. 

[25] Kheyroddin, A., Naderpour, H. (2007). 

“Plastic Hinge Rotation Capacity of 

Reinforced Concrete Beams”, International 

Journal of Civil Engineering (IJCE), 

Volume 5, No.1. 

[26] Naderpour, H., Kheyroddin A., Ghodrati 

Amiri, G. (2010). “Prediction of FRP-

Confined Compressive Strength of 

Concrete Using Artificial Neural 

Networks”, Composite Structures 

(Elsevier), Vol. 92, pp. 2817–2829. 

[27] Sakino, K., Nakahara, H., Morino, S., 

Nishiyama, I. (2004). “Behavior of 

centrally loaded concrete-filled steel-tube 

short columns”. Journal of Structural 

Engineering, Vol. 130, pp. 180-188. 

[28] Zeghiche, J., Chaoui, K. (2005). “An 

experimental behavior of concrete-filled 

steel tubular columns”. Journal of 

Constructional Steel Research, Vol. 61, No. 

1, pp. 53-66. 

[29] Oliveira, W.L.A. (2008). “Theoretical-

experimental analysis of circular concrete 

filled steel columns”. Doctoral thesis. São 

Carlos School of Engineering, University of 

São Paulo. 

[30] Uy, B., Tao, Z., Han, L.H. (2011). “Behavior 

of short and slender concrete-filled stainless 

steel tubular columns”. Journal of 

Constructional Steel Research, Vol. 67, pp. 

360-378. 

[31] Denavit, M.D., Hajjar, J.F. (2010). 

“Nonlinear seismic analysis of circular 

concrete-filled steel tube members and 

frames”. Report No. NSEL-023, Newmark 

Structural Laboratory Report Series (ISSN 

1940-9826), Department of Civil and 

Environmental Engineering, University of 

Illinois at Urbana-Champaign, Urbana, 

Illinois, March. 

 


