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In this paper, the capabilities of displacement curvature 
derived from static response data for finding the location and 
severity of damage in Euler-Bernoulli beams are assessed. 
Static response of a beam is obtained using the finite element 
modeling. In order to reduce the number of measured nodal 
displacements, the beam deflection is fitted through a 
polynomial function using a limited number of nodal 
displacements. An indicator based on displacement curvature 
obtained for healthy and damaged structure is utilized to 
identify the damage. The influence of many parameters may 
affect the efficiency of the method such as the number of 
elements, the value and location of applied load as well as 
noise effect is investigated. Two test examples including a 
simply supported and a cantilever beam are considered. 
Numerical results show that using the method, the locations 
of single and multiple damage cases having different 
characteristics can be well determined. 
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1. Introduction 

Structural damage detection is of great 
importance, because early detection and repair 
of damage in a structure can increase its life 
and prevent from an overall failure. During the 
last years, a considerable attention has been 
dedicated to identify damage in structures and 
therefore many damage detection methods 
have been introduced. The main aim of a 
damage detection method is to identify the 
occurrence, location and severity of damage. 

For this, the responses of a structure perform a 
vital role. Structural responses are divided into 
two main group including static and dynamic 
responses. Several studies related to using 
dynamic responses such as the natural 
frequencies and mode shapes of a structure can 
be found in the literature [1-10]. Also, damage 
detection methods based on employing static 
data has attracted much attention. Since static 
methods only depend on the stiffness matrix, 
therefore relations are easier with less 
complexity. In addition, static techniques have 
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more accurate data, more inexpensive tools of 
measurement and also the speed of access to 
the right data in comparison with dynamic 
ones. Meanwhile, the results of applying the 
methods are more reliable on some civil 
structures. Data from static measurements has 
been frequently used for damage detection by 
many researchers. A static method of 
parameter identification using a finite element 
model for orthotropic labs was proposed by 
Sanayei and Scampoli [11]. Banan et al. [12, 
13] proposed an algorithm for estimating 
member constitutive properties of the finite 
element model from measured displacements 
under a known static loading. The algorithm 
was based on the concept of minimizing an 
index of discrepancy between the model data 
and measurement data using the constrained 
least-square minimization. A two-stage 
damage detection method based on a grey 
system theory for damage localization and an 
optimization technique for  damage 
quantification using the measured static 
displacement of a cantilever beam was 
proposed by Chen et al. [14]. They showed 
that the grey relation analysis based method 
can localize the slight to moderate damage and 
the optimization can identify the damage 
magnitude with a high accuracy. 
Unfortunately, they did not mention the 
sensitivity of damage to number of load cases, 
intensity of loading, limited measured static 
data, and the application of the approach on 
large-scale and complex structures. Abdo [15] 
has made a parametric study using static 
response based displacement curvature for 
structural damage detection. The results 
showed that changes in displacement curvature 
can be used as a good damage indicator even 
for a small amount of damage.  Seyedpoor and 
Yazdanpanah [16] have proposed an efficient 
indicator for structural damage localization 
using the change of strain energy based on 
static noisy data. The acquired results clearly 
showed that the proposed indicator can 
precisely locate the damaged elements.  

The main purpose of this study is to assess the 
efficiency of displacement curvature based on 

a limited static data for determining the 
location and severity of damage in beams. The 
influence of many parameters affecting the 
efficiency of the method such as the number of 
finite elements, the value and location of 
applied load as well as noise effect is 
investigated here. Numerical results 
demonstrate that the method can well 
determine the locations of single and multiple 
damage cases having different characteristics. 

2. Theory 

In solid mechanics [17], the curvature =  1


(  is the radius of curvature) and deflection y
can be related by Eq. (1): 
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where M is the bending moment, E is the 
modulus of elasticity and I is the moment of 
inertia of the cross section. Neglecting the 
second order of slope, the curvature can be 
approximated by Eq. (2): 
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Then, the relationship between curvature, 
bending moment and stiffness can be as 
follows: 
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Eq. (3) shows that the curvature is a function 
of stiffness. Any change in stiffness due to any 
damage at a section should be evidenced by a 
change in curvature at that location. 

3. Damage Identification Method 

In this paper, damage detection of a prismatic 
beam with a specified length is studied. First, 
the beam is divided into a number of finite 
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elements. Then, nodal displacements of the 
beam in measurement points are evaluated 
using the finite element method. Deformation 
equation (y) can be obtained by fitting a 
polynomial curve via specified nodal 
displacements. By having the deformation 

equation, the equation of the slope ( dxdy
) can be achieved. The displacement curvature 
equation of healthy beam can now be 
determined with differentiating the slope 
equation. By having the mathematical 
relationship of displacement curvature, the 
curvature of the beam can be evaluated at any 
arbitrary point. This process can also be 
repeated for damaged beam. It should be noted 

in this paper, it is assumed that the damage 
decreases the stiffness and therefore can be 
simulated by a reduction in the modulus of 
elasticity (E) at location of damage (element). 
Finally, using the displacement curvature 
obtained for two states the index introduced in 
[18] can be utilized to identify the damage. 
The step by step of damage detection method 
can be described as follows: 

1) Divided the beam subjected to an arbitrary 
concentrated load into n elements as shown in 
Fig. 1. 

2) Analyze the beam using the finite element 
method for determining the displacements of 
measurement points shown in Fig. 2. 

 

         
Fig. 1. (a) The geometry of the simply supported intact beam                 (b) Cross-section of the beam  

 

 
Fig. 2. Displacements of the simply supported intact beam under a concentrated load 

 

3) Consider the nodal coordinates and displacements obtained as follows: 

   h 1 h1 2 h2 3 h3 i hi n+1 h n+1, = ( , ),( , ),( , ), ... ,( , ), ... ,( , )x y x y x y x y x y x y 
 

 

Now the goal is to obtain the best curve which 
passes through the determined points. A 

polynomial curve that passes through above 
points can be defined as follows: 
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where  1 2 3 m+1a ,a ,a ,...,a are the polynomial 

coefficients and m is polynomial degree. 

4) Determine the slope () equation with 
differentiating from Eq. (4). 
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5) Determine the displacement curvature of healthy beam with differentiating from Eq. (5). 
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The curvature of the beam can now be 
evaluated at any arbitrary point. 

6) Induced a hypothetical damage in an 
arbitrary element as shown in Fig. 3, and 

analyze the beam for determining the nodal 
displacements in measurement points. 

7) Consider the nodal coordinates and 
displacements of damaged beam as follows: 

 

 
Fig. 3. Displacement of the simply supported damaged beam under a concentrated load  

  

   d 1 d1 2 d2 3 d3 i di n+1 d n+1, = ( , ),( , ),( , ), ... ,( , ), ... ,( , )x y x y x y x y x y x y 
   

The displacement curve of damaged beam can be fitted as 
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8) Determine the slope () equation withdifferentiating from Eq. (7). 
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9) Determine the displacement curvature ofdamaged beam with differentiating from Eq. (8).
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The curvature of the damaged beam can now 
be evaluated at any arbitrary point. 

10) Use the index bellow [18] for damage 
localization.  
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    2 1 1 1=max 0, -mean /stdIndex Index Index Index                                                                       (10) 

where Index1is defined by Eq.(11). Also, mean 
(Index1) and std (Index1) represent the mean 
and standard deviation of Index1, respectively. 

hdIndex  1                                       (11) 

4. Numerical Examples 

In order to assess the efficiency of the 
proposed method, two test examples including 
a simply supported beam and a cantilever 
beam are considered. Various parameters that 
may affect the performance of the method are 
studied.  

4.1. Example 1: a simply supported beam 

A simply supported beam with span L=1 (m) 
shown in Fig. 4 is selected as the first 
example. The beam has a square cross-section 
with dimensions of 0.05×0.05 m. Modulus of 

elasticity is
27 mt101.2 E . As shown in 

Fig. 5, for assessment of the method, ten 
different damage scenarios are considered. The 
first six scenarios (case 1-6), consist of a 
single damage. Seventh and eighth scenarios 
(case 7-8), include multiple damage cases with 
different intensity and finally the ninth and 
tenth scenarios (case 9-10) are introduced for 
considering the measurement noise effect.  

One of the important parameter for accurately 
identifying damage is the number of 
measurement points for displacement 

curvature. In order to consider this effect, two 
different finite element meshes are used for the 
beam in scenarios 1 to 6. The first mesh is 
consists of 10 elements for the beam (damage 
scenarios 1-4, the length of each element is 
equal 0.1 L). The second mesh models the 
beam with 20 elements (damage scenarios 5-6, 
the length of each element is equal 0.05 L). 
The influence of position and value of load is 
also considered here. In scenario 1, the 
concentrated load is applied at midpoint while 
the scenario 3 is considered to study the effect 
of load position. The forth case (scenario 4) is 
similar to the first case, but, the load value is 
two times. In fact, this case is considered for 
investigating the effect of load value on 
damage detection. Measurement noise can not 
be avoided. Hence, the effect of noise is 
considered to perturb the responses of 
damaged structure. In this example, 3% noise 
is assumed. 

For evaluating the index given by Eq. (10), the 
deflection equation of the beam before and 
after damage is needed to be determined. The 
curve fitting toolbox of MATLAB [19] is 
employed here for this purpose. For example, 
the deformed shape and corresponding 
equations obtained for the intact beam and 
damaged beam of case 2 are shown in Figs. 6-
7, respectively. 

 

 

       
Fig. 4. (a) Geometry of the simply supported beam                         (b) Cross-section of the beam 
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Case-1   Reduction in E4=10%                       Case-2   Reduction in E6=20% 

 
Case-3   Reduction in E4=10%                            Case-4   Reduction in E4=10% 

 
Case-5   Reduction in E8=10%                             Case-6   Reduction in E12=20% 

 
Case-7   Reduction in E4 & E7=10%               Case-8   Reduction in E4=10% & E7=20% 

 
Case-9   Reduction in E4=10% – noise=3%          Case-10   Reduction in E6=20% – noise=3% 

Fig. 5. Ten different damage scenarios for the simply supported beam 

 
Fig. 6. Deformed shape and deflection equation of the simply supported intact beam 
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Fig. 7. Deformed shape and deflection equation of the simply supported damaged beam 

 

Damage identification charts of simply 
supported beam for cases 1-10 are shown in 
Fig. 8. As shown in the figure, the value of 
Index2 is further in vicinity of some elements 
that this indicates there is damage in these 
elements. The Index2 is shown for damage 
scenarios 1 and 2 (with 10 elements) and 5 and 
6 (with 20 elements) in Figs. 8 (a)-(b) and 8 
(e)-(f), respectively. The results show that the 
values of Index2 almost are identical in both 
cases. This means that the number of 
measurements is not very important, however, 
the most important factor in determining the 
damage location is data and the accuracy of 
measurement.  

For investigating the effect of changing the 
position of the load on the method, the results 
of scenario1 (concentrated load at node 6) and 
scenario 3 (concentrated load at node 4) are 
compared. The results are plotted in Figs 8 (a) 
and (c), respectively. The results show that the 
damage index in the beam does not depend on 
the position of load between two supports. The 
values of Index2 for damage scenarios 7 and 8 
(multiple damage) are shown in Figs. 8 (g) and 
(h), respectively. It is reveal that the method 
can also locate the multiple damage cases 
properly.  

For examining the effect of load value on 
damage detection method, the results of 

scenario1 (concentrated load of 1 ton) and 
scenario 4 (concentrated load of 2 ton), are 
compared. The identification charts are shown 
in Figs. 8 (a) and (d), respectively. As can be 
observed, the values of Index2 are identical in 
both cases. In fact, the difference in 
displacement curvature for all measurements 
(nodes) in scenario 4 is twice values that are 
obtained from scenario1. This leads to 
doubling of the values of numerator and 
denominator of Index2. It can be concluded 
that the use of Index2 as a method for 
determining the damage sites does not depend 
on load value.  

Figs. 8 (i) and (j) show damage charts for the 
damage scenarios 9 and 10 considering 3% 
noise, respectively. When comparing them 
with those shown in Figs 8 (a) and (b) for 
scenarios 1 and 2 (states without noise), it can 
be indicated that there is a good compatibility 
between these values. In other words, the 
measured noise has a negligible effect on 
Index2. All of the results prove that the use of 
the static response (displacement curvature) 
can be useful for identifying the damage of the 
beam. It seems to be better than a vibration 
based method that needs more expensive 
sensors and in case of ambient vibration, will 
have a lot of noise [15]. 
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(a)  Case-1 (damaged element=4, reduction in E=10%)     (b) Case-2 (damaged element=6, reduction in E=20%) 

 
          (c) Case-3 (damaged element=4, reduction in E=10%)     (d) Case-4 (damaged element=4, reduction in E=10%, P=2.0 ton) 

 
(e) Case-5 (damaged element=8, reduction in E=10%)   (f) Case-6 (damaged element=12, reduction in E=20%) 

 
                 (g) Case-7 (damaged element=4 &7, reduction in E=10%) (h)     Case-8 (damaged element=4&7, reduction in E4=10% & E7= =20%) 

 
(i) Case-9 (damaged element=4, reduction in E=10%, noise=3%)      (j) Case-10 (damaged element=6, reduction in E=20%, noise=3%) 

Fig. 8. Damage identification of simply supported beam for cases 1-10 
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4.2. Example 2: A cantilever beam 

A cantilever beam with span L=1 m shown in 
Fig. 9 is selected as second example. The 
beam has a square cross-section with 
dimensions of 0.05×0.05 m. Modulus of 

elasticity is
27 mt101.2 E . As shown in the 

first example, damage index used could locate 
damage correctly. However, in the cantilever 
beam for accurately locating damage, the 
index is modified as: 

    3 1 1 1max 0,  mean / stdIndex Index Index Index                                                                  (12) 

As shown in Fig. 10, ten different damage 
scenarios are considered for the beam. The 
first six scenarios (case 1-6), include single 
damage case. Seventh and eighth scenarios 
(case 7-8), represent multiple damage cases 
and finally in ninth and tenth scenarios (case 
9-10) noise effect is also considered. For 
studying the number of measurement point 
effect on the efficiency of damage detection 
method, two different finite element meshes 
are taken in scenarios 1-6. The first mesh 
consists of 10 elements (damage scenarios 1-4, 
the length of each element is equal 0.1L) and 
the second one includes 20 elements (damage 
scenarios 5-6, the length of each element is 
equal 0.05 L). The influence of position and 
amount of load is also considered. In scenario 
1, the beam is subjected to a concentrated load 
applying at the beam end while in scenario 3, 
the load is applied to another point. The 
scenario 4 is similar to scenario 1 excluding 
the value of the load has been two times. In 
this example, the 3% and 5% noise are 
considered in ninth and tenth scenarios, 
respectively. 

 

The values of Index3 for damage scenarios 1 
and 2 (with 10 elements) and 5 and 6 (with 20 
elements) are shown in Figs. 11 (a)-(b) and 11 
(e)-(f), respectively. The results show that the 
Index3 are approximately identical in both 
cases. This means that the number of 
measurement points cannot affect the results 
considerably, while the most important factor 
for determining the damage location is the 
accuracy of the measurement data. As shown 
in Fig. 11, the Index3 in the vicinity of some 
elements is more than other ones and it 
indicates that there is damage in the elements.  

For investigating the effect of load position on 
the performance of the method, the results of 
scenario1 (concentrated load at node11) and 
scenario 3 (concentrated load at node 9) are 
compared. The results are shown in Figs.11 (a) 
and 11 (c), respectively. The results indicated 
that the method does not depend on the 
position of load. The identification charts of 
damage scenarios 7 and 8 (multiple damage 
cases) are shown in Figs. 11 (g) and11 (h), 
respectively. It is revealed the efficiency of the 
method for locating the multiple damages.  

 

     
Fig. 9. (a) Geometry of the cantilever beam              (b) Cross-section of the beam 
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Case-1   Reduction in E5=10%                              Case-2   Reduction in E9=20%                          

 
Case-3   Reduction in E5=10%                          Case-4   Reduction in E5=10% 

 
Case-5   Reduction in E10=10%                           Case-6   Reduction in E18=20% 

 
Case-7   Reduction in E5 & E7=10%                        Case-8   Reduction in E5=10 & E7=30% 

 
Case-9   Reduction in E5=10%, noise=5%                   Case-10   Reduction in E9=20%, noise=3% 

Fig. 10. Ten different damage scenarios for the cantilever beam 

 

In order to examine the effect of the amount of 
load on damage detection method, the results 
of scenario1 (concentrated load with amount 1 
ton) and scenario 4 (concentrated load with 
amount 2 ton) are compared in Figs. 11 (a) and 
(d), respectively. As can be observed, the 
Index3 is the same for both the cases. It can be 
concluded that the use of Index3 not depends 
on the value of load.  

Figs. 11 (i) and (j) show Index3 for the damage 
scenarios 9 and 10 considering 3% and 5% 
noise, respectively. Comparing these results 
with those shown in Figs 11 (a) and (b) for 
scenarios 1 and 2, it can be concluded that 
there is a good compatibility between them. In 
other words, considering the measurement 
noise has a negligible effect on damage 
detection method. 
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(a)  Case-1 (damaged element=5, reduction in E=10%)     (b) Case-2 (damaged element=9, reduction in E=20%) 

 
(c)  Case-3 (damaged element=5, reduction in E=10%)     (d) Case-4 (damaged element=5, reduction in E=10%, P=2.0 ton) 

 
(e)  Case-5 (damaged element=10, reduction in E=10%)     (f) Case-6 (damaged element=18, reduction in E=20%) 

 
(g) Case-7 (damaged element=5 &7, reduction in E=10%)      (h) Case-8(damaged element=5&7, reduction in E5=10% & E7 =30%) 

 
(i) Case-9 (damaged element=5, reduction in E=10%, noise=5%)         (j) Case-10 (damaged element=9, reduction in E=20%, noise=3%) 

Fig. 11. Damage localization in cantilevered beam for damage cases1-10 
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5. Conclusion 

In this paper, damage identification in beams 
using displacement curvature extracted from a 
static analysis has been investigated. The 
effects of many parameters may affect the 
efficiency of the method with considering a 
simply supported and a cantilever beam as test 
examples have been assessed. Based on the 
numerical studies, the following results can be 
concluded: 

 

1) Displacement curvature obtained from 
the static response is sensitive to the 
stiffness reduction (reduction of Young's 
modulus). In other words it has 
characteristics from damaged area and 
can be used as a good indicator for 
damage detection. It may fairly be better 
than a dynamical method that needs 
more expensive instruments. 

2) As achieved from the example results, 
the number of measurement points is not 
very important, however, the most 
important factor is the accuracy of 
measurement. 

3) The proposed method does not depend 
on the position and amount of the load 
and it can be effectively used for 
locating the single and multiple damage 
cases. 

4) Measurement noise has a negligible 
effect on the efficiency of the method for 
damage detection.  
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