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In this paper, a new approach for nonlinear numerical 

modelling of the reinforced concrete shear walls with 

consideration of bar-concrete interaction and shear 

deformation is proposed. Bar and concrete stress-strain 

relations, the bar-concrete interaction, the shear stress-strain 

relation and, also, their cyclic behavior including the strength 

degradation and stiffness degradation are adopted as known 

specifications. In the modeling, shear wall is divided into 

two types of joint and reinforced concrete (RC) elements. In 

the RC element, the effect of shear deformation is considered 

based on Timoshenko beam theory. Separate degrees of 

freedom are used for the steel bars and concrete part. The 

effect of bar-concrete interaction has been considered in the 

formulation of the RC element. The reliability of the method 

has been assessed through the comparison of numerical and 

experimental results for a variety of tested specimens under 

cyclic and pushover loading. A good agreement between 

experimental and analytical results is obtained for both cases 

of strength and stiffness during the analysis. 
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1. Introduction 

Many analytical models have been devised 

for nonlinear analysis of reinforced concrete 

shear wall. One of the first methods is 

equivalent beam-column element. In this 

model, the wall is replaced by a column with 

equivalent cross section properties. The 

limitation of this approach is that assumes 

rotations occur around the central axis of the 

wall. Therefore, it ignores changes in neutral 

axis of the wall section and interactions. 

http://civiljournal.semnan.ac.ir/
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Also, due to neglecting the progressive 

opening of the cracks associated with shifting 

of the neutral axis, rotations and 

displacements in this method are less than 

reality. These limitations led to use multiple 

elements method of the vertical component 

[1]. This procedure expresses more 

accurately the tensile hardening of concrete, 

progressive opening and closing of the cracks 

and shear nonlinear behavior of concrete in 

addition to removing restrictions of the 

shifting neutral axis. In order to consider the 

flexure-shear interaction in the reinforced 

concrete structural walls, a new model was 

presented by Massone and Wallace [2]. This 

model is overestimated for the flexural 

deformations and low estimated for the shear 

deformations. The other macroscopic 

modeling approaches that can be mentioned 

as  two-component beam-column element, 

one-component beam-column element, 

multiple spring model, multiple-vertical-line-

element and multi-axial spring model [3]. 

One of the most promising models for the 

nonlinear analysis of reinforced concrete 

elements is, presently, fiber theory model. 

This model, basically, neglects the shear 

deformations and adopts the perfect bond 

assumption between the bars and surrounding 

concrete. This assumption causes a 

considerable difference between 

experimental and analytical responses [4]. 

Mullapudi et al. [5] have used Timoshenko 

beam theory in fiber theory formulation in 

order to evaluate the behaviour of shear- 

dominated thin-walled RC
1
 members with 

the restriction of perfect bond assumption 

between bars and concrete. Stramandinoli 

and La Rovere [6] have used the finite 

element model and studied the difference 

between Timoshenko-beam and Euler-

                                                 
1
 Reinforced Concrete 

Bernoulli beam theories in nonlinear analysis 

of reinforced concrete beams. Their research 

has concluded that in beams with dominant 

flexural behavior, Euler-Bernoulli theory in 

efficient and while the effects of inclined 

cracks caused by shear are important, 

Timoshenko beam model is appropriate to 

investigate element behavior. In the other 

hand, many studies have been done to date in 

the field of bar concrete interaction. Monti 

and Spacone [7] considered the bond slip 

effect of the bars in the fiber section theory. 

This model was used by Kotronis et al. [8] to 

simulate nonlinear behaviour of reinforced 

concrete walls subjected to earthquake 

ground motion. Belmouden and Lestuzzi [9] 

have used this model to predict nonlinear 

cyclic behaviour of reinforced concrete shear 

walls based on the tests conducted. Orakcal 

and Chowdhury [10] have studied bond slip 

effect in the reinforced concrete elements 

under cyclic loading by extension of multiple 

vertical line element model in accordance 

with fiber theory. Many of studies in this 

field acknowledge that bar-concrete 

interaction effect is significant and should be 

considered if an accurate model is expected 

[11]. 

Between the proposed numerical macro 

modelling methods for simulation of 

reinforced concrete shear walls, one or more 

limitations including linear shear 

deformation assumption, neglecting the shear 

deformation, complexity of the boundary 

conditions simulation, and ignoring the bond 

slip effect, show itself and is noteworthy. In 

this paper, a numerical model based on the 

fiber method is proposed for nonlinear 

analysis of reinforced concrete shear wall. 

The theory of the method is similar to fiber 

method but the perfect bond assumption 

between the reinforcing bars and surrounded 

concrete is removed. Separate degrees of 
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freedom are used for the steel and concrete 

parts in nonlinear modelling of the reinforced 

concrete elements. Also the nonlinear shear 

deformation is considered in the formulations 

based on Timoshenko beam theory in 

combination with fiber theory [12].  

2. Nonlinear modelling of RC shear 

wall with bar-concrete interaction 

In the fiber theory, each member is divided 

longitudinally into several segments, and 

each segment is combined of parallel layers. 

Some layers would represent the concrete 

material and other layers would represent the 

steel material. Behaviour of concrete and 

steel are separately defined without 

consideration of interaction between them. In 

this research, in order to numerical modeling 

of shear walls, two types of element have 

been used as Figure1. One of them is the 

element basically used for modeling the body 

of shear wall and the other one is connection 

element applied for footing. In the method 

used on the basis of layered model, the 

perfect bond assumption between concrete 

and bars is removed and the possible effects 

of slip have been considered. In the joint 

element the effect of pull-out can be 

considered as the relative displacement 

between the steel bar and surrounding 

concrete and bond stress is referred to as the 

shear stress acting parallel to an embedded 

steel bar on the contact surface between the 

reinforcing bar and concrete. The number of 

degrees of freedom in the side of the joint 

element is compatible with the degrees of 

freedom at the ends of the wall element 

adjacent to the joint element. Although it is 

feasible to model the pull-out effects, the 

embedded length of steel bars has been 

considered sufficiently large to prevent 

interference of bar’s pull-out from the 

foundation in the results of this research [13]. 

 

Figure 1. Numerical modeling of the reinforced 

concrete shear wall 

Based on research carried out by Limkatanyu 

and Spacone [14] and Hashemi and Vaghefi 

[12], and by removing Euler-Bernoulli beam 

theory and replacing it with Timoshenko 

beam theory, the formulations has been 

rewritten. The slip effect between bars and 

surrounding concrete is considered without 

ignoring the compatibility of the strain 

between the concrete and bars. Timoshenko 

beam theory, assumes that the cross section 

remains plane and is not necessarily 

perpendicular to the longitudinal axis after 

deformation, but Euler-Bernoulli beam 

theory neglects shear deformations by 

assuming that, plane sections remain plane 

and perpendicular to the longitudinal axis 

during bending. In Figure2 the comparison 

between Euler-Bernoulli and Timoshenko 

beam theory is presented [15]. 
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Figure 2. Comparison between (a) Timoshenko beam 

theory and (b) Euler-Bernoulli beam theory 

In uniaxial bending conditions, stress values 

at any position of the cross section related to 

x position along the element can be 

calculated as Equations (1) and (2). 
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According to the Timoshenko beam theory 

Equation (2) can be rewritten as: 
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In the recent Equations, ( )z x  is rotational 

deformation and )(
2

xuB  is transversal 

displacement of the concrete element. 
xx , 

xy are defined as longitudinal and shear 

stresses in the section. E , G , 
xu , 

yu  are 

defined as modulus of elasticity, shear 

modulus, longitudinal displacement, and 

transversal displacement, respectively. 

Bending moment about the z axis and shear 

force in y direction can be written as 

Equations (4) and (5), respectively.  
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In the Equations (4) and (5), 
y and zI are 

shear correction factor and moment of inertia 

of the section, respectively.  

According to the relation yxy G  that 

shows shear stress-strain relation in y 

direction, from Equation (5) it can be 

concluded that: 

dx
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Therefore, the difference between
dx

xdu B )(2   

and )(xz values in the section, will result 
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the shear strain in the y direction which is 

neglected in the Euler-Bernoulli beam theory. 

More details about employed shear 

correction factor is presented in [16]. 

A length segment of an RC element is 

considered as a combination of a length 

segment of a 2-node concrete element and n 

number of steel bar elements (Figure3). 2-

node concrete element follows the 

Timoshenko beam theory in order to consider 

both cases of shear and flexural 

deformations. 2-node bar elements are in fact 

truss elements with axial degrees of freedom. 

The effect of bond force between the 

concrete and each longitudinal bar is taken 

into account [11, 12]. 

Bar's slippage is allowed to occur, because 

the nodal degrees of freedom of the concrete 

element and that of the bars are different. 

Based on small deformation assumptions, all 

equilibrium conditions are considered. 

Considering axial equilibrium in the concrete 

element and steel bars, as well as the 

transversal and moment equilibriums in the 

segment dx, leads to a matrix form of 

equations given by Equation (7). 

0)()()(   xxx b
T
bB

T
B pDD                    (7)  

Where:  )(:)()( xx
T

B x DDD   is the vector of 

RC element section forces. 

 )()()()( xMxVxN yy
T

x D  is the vector of 

concrete element section forces. 

 )(...)(1)( xNxN n
Tx D  is the vector of bar 

axial forces. This vector has n rows. 

 )(...)(1b )( xDxD bnb
Tx D  is the vector of 

section bond forces. 

 0...000)( p y
T

x P  is the vector RC 

element force vector. n is the number of 

longitudinal bars in the cross section. py is 

the value of external load. B  , b  are 

differential operators and given in Equation 

(8). 
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Figure 3. Free body diagram of infinitesimal segment 

of RC element 

yn  is the distance of bar n from the section 

reference axis (Figure3). The RC element 

section deformation vector conjugate of 
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)(xBD  is  )(:)()( xx
T

B x ddd  . In which 

 )()()()( xxx ByB
T

x d contains concrete 

element section deformations and 

 )(...)(1)( xx n
Tx d contains the axial 

strain of the bars. The displacement vector in 

the cross section of RC element is defined as 

 )(:)()( xx
T

x uuu  , in which 

 )()()( 21)( xxuxu zBB

T
x u contains concrete 

element axial, transversal and rotational 

displacements, respectively. 

 )(...)(1)( xuxu n
Tx u contains the axial 

displacements of the bars. From the small 

deformation assumption, the element 

deformations are related to the element 

displacements through the Equation (9). 

)()( xx BB ud                                            (9) 

The slip values of the bars in the section of 

RC element are determined by the following 

relation between the bar and concrete 

element displacements: 

)()()()( 1 xyxxvxu zi
B

ibi u                (10) 

Where,
 

)(xvi  is the bar axial displacement 

and )(1 xu
B  is the longitudinal displacement of 

concrete element. By introducing the bond 

deformation vector as

 )(...)(1)( xuxu bnb
T

b x d , Equation (10) can 

be written in the following matrix form: 

)()( xx bb ud                                           (11) 

The weak form of displacement based finite 

element formulation is determined through 

the principle of stationary potential energy. 

The RC element nodal displacement (U), 

which is shown in Figure 4, serves as 

primary element unknowns and the section 

displacement u(x) are related to it through 

the displacement shape function matrix 

(N(x)). The relation between nodal 

displacements and internal deformations can 

be written through the transformation matrix 

as Equation (12). 
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The nonlinear behaviour of RC element is 

derived from the nonlinear relation between 

the section forces ( )(xBD , )(xbD ) and the 

section deformations ( )(xBd , )(xbd ) through 

section and bond stiffness matrices ( )(xBK ,

)(xbK ). The section stiffness matrix included 

the axial, shear and bending stiffness of 

concrete element (EA(x), GA(x) and EI(x)) 

and also the axial stiffness of the bars (

)(xAE nn ). The bond stiffness matrix is 

diagonal and included the slope of the bond 

force-slip relationship of each bar ( )(xkbn ). 

By using the fiber section method, the 

section stiffness matrix is derived. In this 

method, the stress-strain relationships of steel 

and concrete are needed. The bond stiffness 

matrix is derived through the bond stress-slip 

relation and perimeter of each bar. From 

finite element formulation, the stiffness 

matrix of RC element with the effect of 

bond-slip can be derived through the 

summation of two stiffness matrices and can 

be written in the form of Equation (13). 
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The relationship between the external load 

vector, the internal resisting force vector and 

the nodal displacement vector in the 

nonlinear analysis algorithm can be written 

as Equation (14). 
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Where K is the RC element stiffness matrix, 

Q is the resisting force vector of the element, 

K B  and Kb  are the element and bond 

contributions to the stiffness matrix, 

respectively. Also, QB and Qb  are the 

element and bond contributions to the 

resisting force vector, respectively. At each 

load step of the nonlinear analysis, the 

resisting force vector of the section is driven 

according to existing deformations in each 

section of the element. Thereby, the resisting 

force vector of the element is derived by 

using numerical integration methods. The 

result of P-Q is the residual force vector and 

converges to a zero vector after some 

iteration at each load step. 

A joint element is used as the footing 

connection of the RC shear wall. In this 

element the effect of pull-out is considered as 

the relative displacement between the steel 

bar and surrounding concrete and bond stress 

is referred to as the shear stress acting 

parallel to an embedded steel bar on the 

contact surface between reinforcing bar and 

concrete. Referring to Figure5, the slippage 

of the bars can be defined in the form of 

Equation (15), if the nodal displacement 

vector related to pull-out behaviour is 

defined as  11
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In this equation, yn  is the distance of the n
th

 

bar from the reference line. The relationship 

between the pull-out force and the slip of 

embedded bars derives from the bond stress-

slip relationship, embedded length of the bar, 

conditions at the end of the bar and perimeter 

of the bar cross section. A computer program 

created in MATLAB software was used by 

the authors [17]. 

 

Figure 4. Reinforced concrete element 

 

 

Figure 5. Numerical modelling of the joint element 

 

3. Material behaviours 
3.1. Concrete cyclic stress-strain relation 

The monotonic envelope curve for confined 

concrete, introduced by Park et al. [18] and 

later extended by Scott et al. [19], is adopted 

for the compression region because of its 
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simplicity and computational efficiency 

(Figure6). Also, it is assumed that concrete 

behaviour is linearly elastic in the tension 

region before the tensile strength and, beyond 

that, the tensile stress decreases linearly with 

increasing tensile strain. Ultimate state of 

tension behaviour is assumed to occur when 

tensile strain exceeds the value given in 

Equation (16). 

 

 
Figure 6. Concrete compressive stress-strain curve 
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Where L denotes the element length in mm 

and G f  is the fracture energy that is 

dissipated in the formation of cracks of unit 

length per unit thickness, and is considered 

as a material property. f t is concrete tensile 

strength. For normal strength concrete, the 

value of fG tf /  is in the range of 0.005-0.01 

[20]. In this research, the average value of 

0.0075 is assumed for fG tf / . The rules 

suggested by Karsan and Jirsa [21] are 

adopted for the hysteresis behavior of the 

concrete stress-strain relation in the 

compression region. In addition, the 

unloading-reloading branches that always 

pass the origin, regardless of the loading 

history, are assumed in the tension region 

[22]. 

 

3.2. Cyclic stress-strain relation of steel 

bars 

The Giuffre-Menegoto-Pinto model is 

adopted to represent the stress-strain 

relationship of steel bars. This model was 

initially proposed by Giuffre and Pinto [23] 

and later used by Menegoto and Pinto [24]. 

This model is modified by Filippou et al [25] 

to include isotropic strain hardening 

(Figure7). The model agrees very well with 

experimental results from cyclic tests of 

reinforcing steel bars [26].  
 

 
Figure 7. Cyclic stress-strain relation of steel bars 

 

3.3. Cyclic bond stress- slip relation 

Bond stress is referred to as the shear stress 

acting parallel to an embedded steel bar on 

the contact surface between the reinforcing 

bar and the concrete. Bond slip is defined as 

the relative displacement between the steel 

bar and the concrete. The adopted model to 

represent the bond slip effect between bars 

and concrete is proposed by Eligehausen et 

al. [27] shown in Figure 8. In this model, the 

effect of many variables, such as the spacing 

and height of the lugs on the steel bar, the 

compressive strength of the concrete, the 

thickness of the concrete cover, the steel bar 

diameter, and the end bar hooks, are 

considered. More details about unloading and 

reloading branches and bond strength 
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degradation related to this model are given in 

[28]. 

 
Figure 8. Cyclic bond stress-slip relation 

 

3.4. Cyclic shear stress-strain relation 

The adopted model to represent the shear 

stress-strain is that proposed by Anderson et 

al. [29]. This model replicates cyclic 

degradation in shear strength and stiffness 

(modulus) and energy dissipation for 

unloading and reloading state of behavior 

(Figure9). 

 
Figure 9. Cyclic shear stress- strain relation 

 

 

4. Numerical investigation 

4.1. Cyclic analysis 

In order to analyze RC shear walls based on 

the proposed method, a computer program 

has been developed. The solution of 

equilibrium equations is typically 

accomplished by an iterative method through 

a convergence check. In this research the 

Newton-Raphson method is used as 

nonlinear solution algorithms. Also the 

Gauss-Lobatto method is used for numerical 

integration in which the number of 

integration points is equal to five. 

For a reinforced concrete shear wall with 

geometric specifications according to 

Figure10 and details provided in the Table 1, 

numerical validation has been done. This 

specimen is a shear wall under uniaxial 

bending and constant axial load with 

magnitude of 630 kN. Lateral cyclic 

displacement was imposed at the free end. It 

was tested by Dazio et al. [30].  

 
Figure 10. Geometry of Specimen1 (all dimensions in 

mm) [30] 

 

The cross section of the specimen has 2 m 

length and 0.15 m width. Location of 

applying lateral load is 4.56 m above the 

foundation. The cross section of Specimen1 

is shown in Figure11. 

 
Figure 11. Reinforcement and section geometry of the 

Specimen1 (all dimensions in mm) [30] 
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Table1. Details of Specimen 1 [30] 

12Φ12mm & 

22Φ8mm 
Vertical Bars 

Φ6@150mm Horizontal Bars 

576 for Φ12 & 583.7 

for Φ8 
f y of Vertical Bars (MPa) 

518.9 f y of Horizontal Bars (MPa) 

518.9 for Φ6 & 562.2 

for Φ4.2 

f y of closed ties and S- shaped 

ties (MPa) 

40.9 f c (MPa) 

30 Concrete cover (mm) 

 

In numerical modeling, the wall is 

subdivided into enough number of shorter 

elements. Because the formulation is 

displacement based and the response is 

depend on element size and it is needed the 

length of elements be enough short. As a 

simple suggestion, the length of the RC 

elements can be selected smaller than or 

equal to the average crack spacing in the wall 

[12]. In these cases, convergence of the 

calculated responses will be achieved in the 

numerical process. The minimum required 

embedded length is satisfied in Specimen1 in 

order to prevent pull-out of the bars from the 

footing connection and affect the results. In 

Figure12, numerical load-displacement 

response of the Specimen1 achieved from the 

Euler-Bernoulli and Timoshenko beam 

theories is presented and compared with 

experimental one. Numerical response using 

the Timoshenko theory, due to consideration 

of the shear deformation has been better 

matched with the experimental result. Results 

show, applying the Euler-Bernoulli theory, 

due to neglecting the shear deformation, 

leads to more stiffness and less deformation 

during the unloading and reloading paths. 

Shear stress-strain cyclic behavior at the 

position with zero distance from the footing 

is calculated based on the employed theory 

and shown in Figure13. Shear strength and 

stiffness degradation effect is visible in cyclic 

behavior. 

 
Figure 12. Experimental and numerical cyclic load- 

displacement responses for Specimen1 

 
Figure 13. Cyclic shear stress-strain behavior at the 

position with zero distance from the footing of the 

Specimen1 

 

4.2. Pushover analysis 

Dimensions of tested Specimens 2 and 3, 

also arrangements of vertical and horizontal 

reinforcements are shown in Figures 14 and 

15, respectively. The vertical and horizontal 

reinforcement's diameters are 8 and 6.25 mm, 

respectively. The yield strength of vertical 

and horizontal reinforcements are 470 MPa 

and 520 MPa, respectively. These shear wall 

specimens was tested by Leafs et al. [31]. 

Material properties and loading conditions of 

Specimens 2 and 3 is shown in Table2. 
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Figure 14. Geometry of Specimen2 (all dimensions in 

mm) [31] 

 
Table 2. Material properties and loading conditions of 

the Specimens 2 and 3 [31] 

)(MPa

Ec  

)(MPa

ft  
)(

/

MPa

fc  Axial 

load(KN) 
 

29362 1.94 34.5 355 Specimn 2 

32824 2.16 43 182 Specimn 3 

 

In Figures 16 and 17, experimental results 

are compared with analytical ones in a 

pushover analysis for the Specimens 2 and 3. 

The results for both specimens show that the 

analytical ultimate capacity is in high 

conformity with the experimental response. 

Load-displacement response analysis of 

Specimen3 by using the Euler-Bernoulli 

theory is also calculated and shown in 

Figure17. The Numerical curve obtained by 

Euler-Bernoulli theory in comparison with 

that obtained from Timoshenko beam theory 

has overestimated and unrealistic stiffness. 

 

 
Figure 15. Geometry of Specimen3 (all dimensions in 

mm) [31] 

 

 

 
Figure 16. Experimental and numerical load- 

displacement responses for Specimen2 
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Figure 17. Experimental and numerical load- 

displacement responses for Specimen3 

 

5. Conclusions 
Most available numerical nonlinear methods 

which have been developed based on fiber 

theory, ignore shear deformation and usually 

are based on the perfect bond assumptions 

between bars and surrounding concrete. In 

this research, a numerical model based on 

fiber model is introduced for nonlinear cyclic 

and pushover analysis of RC shear wall and 

the effects of bar-concrete interaction and 

also shear deformation have been considered 

in the formulation. Formulation is 

displacement based and shape functions are 

used in order to express the internal 

displacements in term of nodal displacement. 

Two types of joint element and RC element 

are used for modelling of shear walls. 

The reliability of the method is assessed 

through a variety of tested specimens under 

cyclic and pushover loading and good 

agreement between experimental and 

numerical results is obtained for both cases 

of strength and stiffness during analysis. 
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