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In this article, a damage location in beam like-structure is 

determined using static and dynamic data obtained applying 

the finite volume method. The modification of static and 

dynamic displacement due to damage is applied to establish 

an indicator for determining the damage location. In order to 

assess the robustness of the proposed method for structural 

damage detection, three test examples including static 

analysis, free vibration analysis and buckling analysis for a 

simply supported beam having a number of damage 

scenarios are taken into account. The acquired results 

demonstrate that the method can accurately locate the single 

and multiple structural damages in considering the 

measurement noise. Finite volume method results provided 

in this study for finding the damage location is compared 

with the same indicator derived via finite element method in 

order to evaluate the efficiency of FVM. The acquired results 

are indicated a good match between both the Finite Volume 

method and Finite Element method, and there are rational 

correlations between them. 
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1. Introduction 

Local damage may occur during the lifetime 

of structural systems. On that account, a 

rehabilitation process is essential to increase 

the lifetime of the damaged system. Hence, 

finding the damage location is the main 

object before doing any rehabilitation 

process. Health monitoring is a process 

which leads to finding the local damage in 

the damaged structural system. It is normal 

for most structural systems to experience 

local damages during their existence. If the 

local damage is not identified timely, it may 

lead to a terrible outcome. Therefore, 

structural damage detection is of great 

importance, because early detection and 

repair of damage in a structure can increase 

its life and prevent from an overall failure. 

During the last years, many approaches have 
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been introduced to determine the location 

and extent of eventual damage in the 

structural systems. In recent years many 

efforts have been performed to introduce new 

techniques for finding damage locations in 

structural systems. One of these techniques is 

based on the changes in vibration 

characteristics of the damaged system like 

modifications in natural frequencies which 

can be found in [1-2]. Many structural 

systems may experience some local damage 

during their existence. If the local damage is 

not identified timely, it may cause an 

unwanted outcome. Consequently, damage 

identification is an essential issue for 

structural engineering, and it has received 

considerable attention during the last years 

[3-4]. Structural damage detection consists of 

four different levels [5]. The first level 

determines the presence of damage in the 

structure. The second level includes locating 

the damage, while the third level quantifies 

the severity of the damage. The final level 

applies the information from the first three 

steps to estimate the remaining service life of 

the damaged structure. After discovering the 

damage occurrence, damage localization is 

more important than damage quantification. 

Attributed to a great number of elements in a 

structural system, properly finding the 

damage location has been the main concern 

of many studies. In the last years, numerous 

methods have been proposed for accurately 

locating structural damage. Structural 

damage detection by a hybrid technique 

consisting of a grey relation analysis for 

damage localization and an optimization 

algorithm for damage quantification has been 

proposed by He and Hwang [6]. Yang et al. 

applied an improved Direct Stiffness 

Calculation (DSC) technique for damage 

detection of the beam in beam structures. In 

their research, a new damage index, namely 

Stiffness Variation Index (SVI) was proposed 

based on the modal curvature and bending 

moments using modal displacements and 

frequencies extracted from a dynamic test, 

and it was indicated that this damage index is 

more accurate in comparison to most other 

indexes [7]. Damage identification methods 

based on applying the modal flexibility of a 

structure were utilized by [8-11]. Techniques 

based on frequency response functions 

(FRFs) of a system were adopted by [12-14]. 

Damage identification based on Peak Picking 

Method and Wavelet Packet Transform for 

Structural Equation has been used by 

Naderpour and Fakharian [14]. In this paper, 

a two-step algorithm has been proposed for 

the identification of damage based on modal 

parameters. Results indicate that this 

preprocessing step causes noise reduction 

and lead to more accurate estimation. 

Moreover, investigating the effect of noise on 

the proposed method revealed that noise has 

no great effect on results. Moreover, for 

estimation damage locations and also the 

severity of the damage, two separate 

optimization procedures have been used [15]. 

A two-stage method for determining 

structural damage sites and extent applying a 

modal strain energy-based index (MSEBI) 

and particle swarm optimization (PSO) has 

been proposed by Seyedpoor [16]. An 

efficient method for structural damage 

localization based on the concepts of 

flexibility matrix and strain energy of a 

structure has been suggested by Nobahari 

and Seyedpoor [17]. An efficient indicator 

for structural damage localization applying 

the change of strain energy-based on static 

noisy data (SSEBI) has been proposed by 

Seyedpoor and Yazdanpanah [18]. The 

acquired results clearly illustrate that the 

proposed indicator can precisely locate the 

damaged elements. Most of the methods 
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developed for structural damage detection 

have been founded on using dynamic 

information of a structure that can be 

obtained slowly and expensively. However, 

the methods of structural damage detection 

employing static data are comparatively 

fewer, while static information can be 

obtained more quickly and cheaply. Finite 

volume method (FVM) is a popular method 

in fluid mechanics problems analysis, and it 

is rarely used in solid mechanics problems 

analysis. There is not any investigation on 

damage detection of structures applying 

finite volume method, yet some works have 

been done to indicate the efficiency of the 

method in the analysis of structures. The 

accuracy of the finite volume method in 

bending analysis of Timoshenko beams under 

external loads was investigated in [19]. In 

this paper, the accuracy of the finite volume 

method was examined in some benchmark 

tests. It was illustrated that shear locking 

would not happen in thin beams while this 

happens in bending analysis of thin beams 

applying the finite element method. This is a 

drawback of the finite element method which 

can be eliminated using some techniques like 

reduced integration. The application of finite 

volume method in calculation of buckling 

load and natural frequencies of beams is 

found in [20]. The method has been utilized 

in the analysis of very thin and thick beams 

in some benchmark tests to indicate the 

robustness of the finite volume method. All 

the results were in good agreement with 

respect to the analytical solution, and again, 

shear locking was not observed in very thin 

beams. THE FVM has been applied by 

Wheel [21] for plate bending problems based 

on Mindlin plate theory. In that work, the 

results have been obtained for thick and thin 

square and circular plates, which revealed 

that shear locking does not appear in the thin 

plate analysis. The effect of mesh refinement 

was investigated in that work as 

well.Simultaneously, FVM based on cell-

centered and cell-vertex schemes for plate 

bending analysis has been utilized by Fallah 

[22]. In that work, some test cases have been 

examined for beams and square plates. The 

accuracy of the results has been compared 

with the conventional FEM to show the 

efficiency of FVM. He also presented the 

same conclusions about shear locking not 

happening in the analysis of thin beams and 

thin plates. More studies of utilizing finite 

volume method in solid mechanic problems 

can be found in [23] (about dynamic solid 

mechanics problems), [24] (about large strain 

problems), [25] (about dynamic fracture 

problems) and [26-28]. 

In this study, an efficient method applying 

finite-volume theory is introduced to estimate 

the damage locations in a structural system. 

The change of static and dynamic 

displacement between healthy and damaged 

structure has been used to form an index for 

damage localization. Various test examples 

are selected to assess the efficiency of the 

index for accurately locating the damage. 

Numerical results indicated that the method 

based on finite volume analysis could also 

identify the defective elements in a damaged 

structure rapidly and precisely compared 

with those of a finite element method (FEM). 

2. The Finite Volume (FV) 

Procedure  

In this section, the governing equation of a 

beam is obtained based on an FV procedure. 

It should be mentioned that all of the below 

formulations are based on the works reported 

in [19] and [20]. 
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2.1. Static Analysis 

Fig. 1 presents a part of a beam meshed into 

2-node elements accompanying the 

centerline of the beam, which is considered 

as the control volumes (CVs) or cells. 

Centers of the CVs are taken into account as 

the computational points where the unknown 

variables will be computed at these points. 

So a cell-centered scheme is utilized in the 

analysis. For each cell, the acting resultant 

bending moments and shear forces are 

evaluated at gauss-points located on cell 

faces, see Fig. 1. to obtain the beam 

governing equations, Timoshenko beam 

theory and small displacements assumption 

are applied , so shear deformations are 

included in the formulation derivation (as 

shown in the Fig. 2). is the transverse 

displacement and is the rotation of the CVs. 

 
Fig. 1. A beam meshed into CVs. 

 
Fig. 2. Deformation of a Timoshenko beam 

(blue) compared with that of a Euler-Bernoulli 

beam (red). 

The finite volume formulations are based on 

the conservation of the forces in each CV. 

Consequently, the equilibrium equation for 

cell P under uniform load (q ) and 

concentrated loads ( kF ) can be written by 

computing the forces at the right ( R ) and left 

( L ) side of the control volume, as indicated 

in the Fig. 3.  

 
Fig. 3. Resultant forces of a CV under external 

forces. 
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The first equation is the equilibrium of 

moments about the center of the CV, and the 

second one is the equilibrium of forces in z  

direction. iM and iQ are the bending 

moments and shear forces at the i th  face 

of the CV respectively, px is the distance of 

the center of the control volume from the 

origin, kx denotes the location of the 

concentrated applied load kF  and in is the 

cosine direction of outward normal of the 

face.  

When ,i L cos(180 ) 1in     and when

,i R cos(0 ) 1in   . The bending 

moments and shear forces at the i th  face 

can be related to transverse displacements 

and rotations as follows: 

( ) , . . ( )i i i s i

d dw
M EI Q k A G

dx dx


  

  
(3) 

EI is the flexural rigidity of the beam 

section, sk is the correction shear factor 
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which is equal to 5 / 6  for a rectangular 

section, A is the area of the section and G is 

the shear modulus. Bending moment and 

shear forces are calculated based on the 

transverse displacements and rotations of the 

gauss-points. In the cell-centered approach, 

the unknown variables of the CVs are located 

at the centers of the CVs. So it is essential to 

make a relation between the unknown 

variables of the gauss-points and the 

corresponding unknown variables of the cell 

centers. For this purpose, a temporary 2-node 

isoparametric line element is applied . The 

temporary element nodes are located at the 

two adjacent cell centers as depicted in Fig. 

4.  

 

Fig.4. Temporary element in (a) global 

coordinate system, (b) natural coordinate system. 
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Using the shape functions defined by the 

application of the temporary element, the 

transverse displacements and rotations of the 

gauss-points can be related to the 

corresponding values at the centers of the 

CVs. 
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1N  and 2N  are the shape functions at node 1 

and 2 of the temporary elements in the 

natural coordinate system. Derivatives of the 

unknown variables can be calculated 

applying the chain rule law as below: 
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The same procedure is done for w. So: 

2 1

12

w wdw
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
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(9)

 

Accordingly, the unknown variables and their 

derivatives for the right and left side gauss-

points with neighboring CVs 1,P P and 

1P   can be written as below: 
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2.1.1. Applying Boundary Condition 

Applying boundary conditions is done by 

considering point cells located at boundaries 

and writing the equation expressing the 

relevant boundary conditions, see Fig. 5. 

Depending on the type of supports, three 
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kinds of boundary conditions can be 

presumed : 

a. Displacement boundary conditions 

b. Force boundary conditions 

c. Mixed boundary conditions 

 
Fig.5. Point cells bc1 and bc2 used for applying 

boundary conditions. 

In case of displacement boundary condition, 

the transverse displacements and rotations 

should be equal to the corresponding value at 

the boundaries.  
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 Moreover, in the case of force boundary 

condition, the bending moments and shear 

forces should be equal to the corresponding 

values at the boundaries.  

* *

1 1 1

* *

2 2 2

( , ) ( , ) ,

( , ) ( , )

bc bc bc

bc bc bc

M Q M Q

M Q M Q



                          
(13) 

And in case of mixed boundary conditions, 

an appropriate selection of the above 

equations is utilized for applying boundary 

conditions.  

If ( , , , ) 0bciw M Q   one can write: 

( , ) 0bciw  

                                             
(14)
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By assembling the equilibrium equations 

written for the CVs and equations expressing 

the boundary conditions obtained by 

applying point cells, the discretized 

governing equations of the beam can be 

expressed as follows: 

2( 2) 2( 2) 2( 2) 1 2( 2) 1n n n nK u F      

                 
(17) 

Where n  is the number of CVs, K is a matrix 

Containing the coefficients associated with 

the unknown variables, u is the displacement 

vector defined by Eq. 18 and F is a vector 

containing the load values acting on the cells 

and also the known values of the boundary 

conditions.  

(18)

 1 1 2 2 1 1 2 2. . .
T

n n bc bc bc bcu w w w w w      

Applying the above equations and assuming 

l  for the length of the elements, the sub-

matrix iK for the i th  CV can be obtained 

as below: 
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The same procedure can be done to calculate 

the matrix 1bcK  and 2bcK . For a simply 

supported beam at both ends the sub-matrix 

1bcK  and 2bcK  are written as follows: 
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By solving the simultaneous linear equations 

appearing in Eq. 17, the unknown variables, 

w and   are obtained. 
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2.2. Free Vibration Analysis 

By modifying the static equilibrium 

equations (1) and (2) and taking into account 

the effect of mass moment of inertia and 

mass of the CVs, dynamic equilibrium 

equation of a beam in the absence of external 

load can be written as follows: 
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(29) 

pm  is the mass of the CV and pj  is the mass 

moment of inertia about the axis passing 

through the center of the CV and normal to 

the section of the beam. 

In the same manner, as explained for static 

analysis, the governing equation of the free 

vibration of the beam can be written in the 

form of Eq. 30. 
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u  is the acceleration vector which can be 

written as blew: 
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n n bc bc bc bcu w w w w w           (31) 

M is the mass matrix and for the i th  

internal CV the mass matrix, iM , is defined 

by Eq. 32. 

 

0

0 . .

pi

i

i

j
M

A l

 
  

                   
(32) 

pij  is the mass moment of inertia of the 

i th  CV,   is the density, A is the area of 

the section and il  is the length of the i th  

CV. 

As boundary cell points are utilized for 

applying boundary conditions and have no 

mass, so a small value should be taken into 

account at the diagonal elements of iM  for 

boundary point cells. So: 

 

1, 2

0

0
bc bc

a small value
M

a small value

 
  
    

(33) 

By assuming the displacement vector in the 

form of Eq. 34 in free vibration of the beam 

and substituting Eq. 34 in Eq. 30 the free 

vibration governing equation can be written 

as Eq. 35. 

 

 
ˆ cosu u t                                         (34) 

2ˆ ˆKu Mu                                    (35) 

  is the frequency vector. Eq. 35 is a 

standard eigenvalue equation. By solving this 

equation, the frequencies and mode shapes of 

the beam can be obtained. 

 

2.3. Buckling Load Analysis 

In the presence of axial forces, N , the 

modified form of the Eqs. 1 and 2 can be 

written as follows: 

 

,

. .

1

0 [ ( )]

( ) 0

p i i i i i p

i L R

n o f

k k P

k

M M n Q n x x

F x x





    

 

 



(36) 

,

. .

1

0 [ cos ( ) sin ]

0

z i i i i i p i i

i L R

n o f

k

k

F Q n qn x x Nn

F

 




     



 



(37) 
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By postulating that small deformation 

assumption and with respect to Fig. 6, the 

following equations can be written. 

 

 
Fig 6. Control volume P deformation due to axial 

loading. 

 

cos 1 , sin ( )i i i

dw

dx
  

         
(38) 

By assembling the iK  matrix and iF  vector 

of each element, and applying the boundary 

conditions using point cells, the governing 

equation of the system is acquired. 

 

2( 2) 2( 2) 2( 2) 1 2( 2) 1n n n nK u F      
                 (39) 

By solving the above equation, the unknown 

displacement vector can be obtained. 

2.3.1. Calculation of Buckling Load 

Eq. 39 can be written in the form of Eq. 40. 

11 12 1

21 22 2

K K F

K K Fw

    
    

                               
(40) 

Using the first equation of Eq. 40 one can 

write: 

 
1

11 12 1 11 1 12[ ]K K w F K F K w      
  (41) 

12K  can be written as a sum of the two 

matrices K  and K . 

 

 12K K NK 
                                      (42) 

Applying Eqs. 41 and 42 one can write: 

1

11 1[ ( ) ]K F K NK w   
                    (43) 

The above equation can be substituted in the 

second equation of Eq. 40 to postulate Eq. 

44. 

 

1

21 11 1

22 2

1

21 11

1

22 2 21 11 1

[ ( ) ]

 [ ( ) ]

K K F K NK w

K w F

K K K NK w

K w F K K F







  



   

 

               
(44) 

 

Eq. 44 can be represented as follows: 

1 1

22 21 11 21 11

1

2 21 11 1

[( ) ( )]K K K K N K K K w

F K K F

 



  


            (45) 

To calculate the buckling load, the 

determinant of the above equation should be 

equal to zero. By doing so, the below 

equation is. 

 

1 1

22 21 11 21 11( ) ( ) 0K K K K N K K K   
   (46) 

Eq. 46 can be simplified in the form of Eq. 

47. 

0C NC 
                                            (47) 

By solving the above eigenvalue problem, 

the buckling load of the beam can be 

acquired . 

3. Damage Detection Indicator 
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In this paper, damage detection of a prismatic 

beam with a specified length is studied. First, 

the beam is divided into a number of CVs. 

Then, mode shapes of the healthy beam in 

measurement points are evaluated applied the 

finite volume method. As mentioned before, 

in cell-centered scheme computational points 

are located at the centers of the CVs. 

Towards a comparison with the finite element 

results, the deflections are interpolated at the 

element faces (element nodes) to acquire the 

corresponding values. A MATLAB (R2014b) 

code is prepared here for this purpose. 

Henceforward, consider the nodal 

coordinates (
1 ..., ,2 ,1 ,  nqxq ) and ith 

mode shape (
1 ..., ,2 ,1 ,),(  nqiqh ) 

obtained for the healthy beam as follows:   

( , ) 1 (1, ) 2 (2, ) 1 ( 1, ), ( , ),  ( , ),  . . .,  ( , )q h q i h i h i n h n ix x x x  
               

(48) 

This process can be repeated for the damaged 

beam as well. It should be noted; it is 

assumed that the damage decreases the 

stiffness, and consequently, it can be 

simulated by a reduction in the modulus of 

elasticity (E) at the location of the damage. In 

this paper, it is supposed the damage occurs 

in the center of an element. So, consider the 

nodal coordinates and i-th mode shape (

1 ..., ,2 ,1 ,),(  nqiqd  ) obtained for the 

damaged beam as below: 

 

   ),( ., . . ),,( ),,(, ),1(1),2(2),1(1),( indnididiqdq xxxx  
  

(49) 

Finally, applying the dynamic responses 

(mode shapes displacement) obtained for two 

above states, an indicator introduced in the 

literature is used here as [28-29]: 

( , ) ( , )

1

( )
nm

q i q i

i

h

q

d

MSBI
nm



 




               
(50) 

Where nm is the number of mode shapes 

considered. 

For static data, the Eq. 50 can be postulated 

as below 

( ) ( )q qd qhyDBI y 

                      (51) 

Presuming that the set of the MSBI of all 

points ( q  ,  1,2,..., 1MSBI q n   ) represents a 

sample population of a normally distributed 

variable, a normalized form of MSBI can be 

defined as follows: 

 

mean( )
max  0 ,    , 

std( )

 1,2,..., 1

q q

q

q

MSBI MSBI
nMSBI

MSBI

q n

  
   

    

   

(52) 

where MSBIq is defined by Eq. 49.Moreover, 

mean (MSBI) and std (MSBI) represent the 

mean and standard deviation of (

1,...,2,1 , q  nqMSDBI ), respectively. 

mean( )
max  0 ,    , 

std( )

 1,2,..., 1

q q

q

q

DBI DBI
nDBI

DBI

q n

  
   

 
   

 

(53) 

In this paper, the results of the FVM based 

indicator given by Eqs. 52 and 53 are 

compared with the obtained results of FEM. 

4. Numerical Examples 

In order to evaluate the accuracy of FVM for 

detecting the damage location of beams, the 

results of FVM are compared with those of 

FEM. For this purpose, three illustrative test 

examples, including static analysis, buckling 
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analysis, and free vibration analysis of FVM 

have been considered for a simply supported 

beam as presented in Fig. 7. 

 
Fig 7. Geometry and cross-section of the simply 

supported beam. 

4.1. First Example: Static Analysis 

The simply supported beam with uniformly 

distributed load 1 /q kN m   depicted in 

Fig. 7 is selected as the first example. The 

beam is discretized by twenty 2D-beam 

elements leading to 44 DOFs. In order to 

assess the efficiency of the indicator given by 

Eq. 53, four different damage cases listed in 

Tables 1 and 2 are taken into account. It 

should be noted that damage in the damaged 

element is simulated, hereby reducing the 

modulus elasticity (E) at the damaged 

location. 

Table 1. Four different damage cases induced in 

the simply supported beam  

Case 1 Case 2 Case 3 

Element 

number 

Damage 

ratio* 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

2 0.80 7 0.60 10 0.80 

- - - - 15 0.80 

*Damage ratio is d

h

E

E
  

 

Case 4 

Element number Damage ratio* 

17 0.80 

- - 

                 *Damage ratio is d

h

E

E
  

Table 2. A damaged case induced in a simply 

supported beam having different (L/h)  

Case 4          Element number =10         Damage ratio=0.60 

                                      L/h* =2 

                                       L/h =5 

                                      L/h =10 

                                     L/h =100 

                                    L/h =1000 

*where L is the span length and h is the thickness of 

the beam 

4.1.1. Damage Identification Without 

Considering Noise 

Damage identification charts of the simply 

supported beam in static analysis for cases 1 

to 4 are illustrated in Figs. 8-12, respectively. 

As shown in the figures, the maximum value 

of the calculated indicator is located in the 

vicinity of the damaged elements. In 

addition, to verify the indicator given by Eq. 

53., the result of FVM has been compared 

with that of FEM. As it’s depicted in the 

figures, the finite volume method is 

reasonably efficient as well as the finite 

element method in determining the damage 

location of the damaged element. 

 
Fig 8. Damage identification chart of the 20-

element beam for damage case 1 including FVM 

and FEM damage based index  
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Fig 9. Damage identification chart of the 20-

element beam for damage case 2 including FVM 

and FEM damage based index  

 
Fig 10. Damage identification chart of the 20-

element beam for damage case 3 including FVM 

and FEM damage based index 

 
Fig 11. Damage identification chart of the 20-

element beam for damage case 4 including FVM 

and FEM damage based index 

 

 
Fig 12. Damage identification chart of 20-

element beam for damage case 4 considering: (a) 

L/h =2, (b) L/h =5, (c) L/h =10, (d) L/h =100 and 

(e) L/h =1000 

4.2. Second Example: Free Vibration Analysis 

The second example is a simply supported 

beam with the same properties and geometry, 

as illustrated in Fig. 7. The density of the 

beam is ρ=1000 kg/m
3
. The beam is 

discretized by forty 2D-beam elements 

leading to 84 DOFs. In order to assess the 

efficiency of the indicator given by Eq. 52, 

four different damage cases listed in Table 3 

are contemplated. It should be noted that 

damage in the damaged element is simulated, 

hereby reducing the modulus elasticity (E) at 

the damaged location. 

Table 3. Four different damage cases induced in the simply supported beam  

Case 1 Case 2 Case 3 Case 4 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

14 0.70 8 0.70 12 0.70 9 0.70 

- - 33 0.70 18 0.70 15 0.70 

- - - - 28 0.70 23 0.70 

- - - - - - 29 0.70 

- - - - - - 36 0.70 

*Damage ratio is d

h

E

E
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4.2.1. Damage Identification Without 

Considering Noise 

Damage identification charts of the simply 

supported beam in free vibration analysis for 

cases 1 to 4 are presented in Figs. 13-16, 

respectively. As shown in the figures, the 

value of FVM is further in the vicinity of 

some elements that this indicates, damage 

occurs in these elements.Moreover, for 

verifying the  indicator given by Eq. 52, the 

result of FVM has been compared with that 

of FEM. As it’s presented in the figures, the 

efficiency of the proposed method for 

damage localization is high when compared 

with the damage indicator based FEM 

method. 

 
Fig 13. Damage identification chart of the 40-

element beam for damage case 1 considering: 

five modes for FVM and one mode for FEM 

based index  

 
Fig 14. Damage identification chart of the 40-

element beam for damage case 2 considering: 

five modes for FVM and one mode for FEM 

based index  

 
Fig 15. Damage identification chart of the 40-

element beam for damage case 3 considering: 

nine modes for FVM and three-mode for FEM 

based index  

 
Fig 16. Damage identification chart of the 40-

element beam for damage case 4 considering: 

twelve modes for FVM and eight modes for FEM 

based index  

4.2.2. The Effect of Measurement Noise 

In this part, the effect of measurement noise 

has been studied. For this instance , 3% noise 

is reviewed in scenario 4 of Table 3. As 

shown in Fig. 17, there is good compatibility 

between both damage identification charts 

with and without noise. In other words, the 

noise has a negligible effect on the 

performance of FVM. 

 
Fig 17. Damage identification chart of the 40-

element beam for damage case 4 considering 3% 

noise (using 12 mode shapes) 
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4.3. Third Example: Buckling Analysis 

The simply supported beam illustrated in Fig. 

7 is selected as the third example for 

buckling analysis. The beam is discretized by 

thirty-five 2D-beam elements leading to 74 

DOFs. In order to assess the efficiency of the 

indicator given by Eq. 52, four different 

damage cases listed in Table 4 are 

contemplated . It should be noted that 

damage in the damaged element is simulated, 

hereby reducing the modulus elasticity (E) at 

the damaged location. 

Table 4. Four different damage cases induced in 

the simply supported beam  

Case 1 Case 2 Case 3 Case 4 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

Element 

number 

Damage 

ratio 

15 0.50 18 0.50 10 0.50 8 0.50 

- - 24 0.50 17 0.50 14 0.50 

- - - - 26 0.50 21 0.50 

- - - - - - 29 0.50 

*Damage ratio is d

h

E

E
  

4.3.1. Damage Identification Without 

Considering Noise 

Damage identification charts of the simply 

supported beam in buckling analysis for 

cases 1 to 4 are depicted in Figs. 18-21, 

respectively. As presented in the figures, the 

value of FVM is further in the vicinity of 

some elements that this indicates, damage 

occurs in these elements.Moreover, for 

verifying the indicator given by Eq. 52, the 

result of FVM has been compared with that 

of FEM. As can be observed in the figures, 

the efficiency of the proposed method for 

damage localization is high when compared 

with the damage indicator based FEM 

method. 

 
Fig 18. Damage identification chart of the 35-

element beam for damage case 1: seven modes  

 
Fig 19. Damage identification chart of the 35-

element beam for damage case 2: seven modes  

 
Fig 20. Damage identification chart of the 35-

element beam for damage case 3: seven modes  

 
Fig 21. Damage identification chart of the 35-

element beam for damage case 4: ten modes 
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5. Conclusions 

In this paper, evaluating a damaged member 

in Timoshenko beam, applying the finite 

volume method (FVM) has been examined. 

Damage identification of beams using a 

mode shape (or displacement) based 

indicator (MSBI or DBI) has been studied. 

The efficiency of the FVM based damage 

indicator has been assessed with considering 

a simply supported beam having different 

characteristics for static, buckling, and free 

vibration analysis. As it’s presented in the 

numerical instances , comparing the acquired 

results by finite volume method with the 

same procedure extracted from finite element 

method indicates a good match between the 

two methods, and there are rational 

correlations between them . Consequently, 

the finite volume method can be precisely 

applied for damage localization in the beam 

like structures. It was also presented that 

FVM can show the damaged element for 

both thin and thick beams without observing 

shear locking while shear locking is observed 

in the analysis of thin beams using FEM. 

REFERENCES 

[1] Cawley, P. and Adams, R.D. (1979), “The 

location of defects in structures from 

measurements of natural frequency”, The 

Journal of Strain Analysis for Engineering 

Design, Vol.14(2), pp.49-57. 

[2] Messina A., Williams E.J., Contursi T. 

(1998),  “Structural damage detection by a 

sensitivity and statistical-based method”, 

Journal of Sound and Vibration, Vol. 216, 

pp.791–808. 

 [3] Wang X., Hu N., Fukunaga H., Yao Z.H. 

(2001), “Structural damage identification 

using static test data and changes in 

frequencies”, Eng. Struct., Vol.23, pp. 

610–621. 

[4] Rytter, A. (1993), “Vibration Based 

Inspection of Civil Engineering 

Structures”. PhD Thesis, Aalborg 

University, Denmark.  

[5] He R.S., Hwang S.F. (2007), “Damage 

detection by a hybrid real-parameter 

genetic algorithm under the assistance of 

grey relation analysis”, Eng. Appl. Artif. 

Intell, Vol. 20, pp.980–992. 

[6] Yang Yang, He Liu, Khalid M. Mosalam, and 

Shengnan Huang. (2013). “An improved 

direct stiffness calculation method for 

damage detection of beam structures”. 

Structural Control and Health Monitoring,  

Vol.20 (5), pp.835-851. 

[7] Pandey, A.K. and Biswas, M. (1994), 

“Damage detection in structures using 

changes in flexibility”, Journal of Sound 

and Vibration, Vol.169(1), pp.3–17. 

[8] Jaishi, B., Ren, W.X.. (2006). “Damage 

detection by finite element model updating 

using modal flexibility residual”. Journal 

of Sound and Vibration. Vol. 290, pp.369–

387. 

[9] Miguel, L.F.F., Miguel, L.F.F., Riera, J.D., 

Menezes, R.C.R. (2007). “Damage 

detection in truss structures using a 

flexibility based approach with noise 

influence consideration”. Structural 

Engineering and Mechanics, Vol.27, 

pp.625–638.   

[10] Li, J., Wu, B., Zeng, Q.C. and Lim, C.W. 

(2010). “A generalized flexibility matrix 

based approach for structural damage 

detection”. Journal of Sound and 

Vibration, Vol.329, pp.4583–4587.  

[11] Wang, Z., Lin, R., Lim, M. (1997), 

“Structural damage detection using 

measured FRF data”. Computer Methods 

in Applied Mechanics and 

Engineering,Vol.147, pp.187–197.  

[12] Begambre O., Laier J.E. (2009), “A hybrid 

particle swarm optimization—simplex 

algorithm (PSOS) for structural damage 

identification”, Advances in Engineering 

Software, Vol.40, pp. 883–891. 

[13] Huang Q., Xu Y.L., Li J.C., Su Z.Q., Liu 

H.J. (2012), “Structural damage detection 

of controlled building structures using 



 B. Mohebi et al./ Journal of Rehabilitation in Civil Engineering 5-2 (2017) 66-81 81 

frequency response functions”, Journal of 

Sound and Vibration, Vol. 331, pp.3476–

3492. 

[14] Naderpour H., Fakharian P. (2016), “A 

synthesis of peak picking method and 

wavelet packet transform for structural 

modal identification”, KSCE Journal of 

Civil Engineering,Vol.20(7),pp.2859–

2867.  

[15] Seyedpoor S.M. (2012), “A two stage 

method for structural damage detection 

using a modal strain energy based index 

and particle swarm optimization”, Int. J. 

Nonlinear Mech, Vol.47, pp.1–8. 

[16] Nobahari, M. and Seyedpoor, S.M. (2013), 

“An efficient method for structural damage 

localization based on the concepts of 

flexibility matrix and strain energy of a 

structure”, Structural Engineering and 

Mechanics, Vol.46(2), pp.231-244. 

[17] Seyedpoor, S.M. and Yazdanpanah, O. 

(2013). “An efficient indicator for 

structural damage localization using the 

change of strain energy based on static 

noisy data”. Appl. Math. Modelling, 

Vol38(9-10), pp.2661-2672. 

[18] Fallah N., Hatami F. (2006), “A 

displacement formulation based on finite 

volume method for analysis of 

Timoshenko beam”,  Proceedings of the 

7th international conference on civil 

engineering, Tehran, Iran. 

[19] Fallah N. (2013), “Finite volume method for 

determining the natural characteristics of 

structures”, Journal of Engineering Science 

and Technology, Vol. 8, pp.93-106. 

[20] Wheel M. (1997), “A finite volume method 

for analysing the bending deformation of 

thick and thin plates”, Computer Methods 

in Applied Mechanics and Engineering, 

Vol. 147, pp. 199-208. 

[21] Fallah N. (2004), “A cell vertex and cell 

centred finite volume method for plate 

bending analysis”, Computer Methods in 

Applied Mechanics and Engineering, 

Vol.193, pp. 3457-3470. 

[22] Bailey A. C., Cross M. (2003), “Dynamic 

solid mechanics using finite volume 

methods”, Applied mathematical 

modelling, Vol. 27, pp. 69-87. 

[23] Cardiff P., Karač A., Ivanković A.  (2014), 

“A large strain finite volume method for 

orthotropic bodies with general material 

orientations”, Computer Methods in 

Applied Mechanics and Engineering, Vol. 

268, pp. 318-335. 

[24] Ivankovic A., Demirdzic I., Williams J., 

Leevers P. (1994), “Application of the 

finite volume method to the analysis of 

dynamic fracture problems”, International 

journal of fracture, Vol. 66, pp. 357-371. 

[25] Bailey C., Cross M. (1995), “A finite 

volume procedure to solve elastic solid 

mechanics problems in three dimensions 

on an unstructured mesh”, International 

journal for numerical methods in 

engineering, Vol. 38, pp. 1757-1776. 

[26] Oñate E., Zienkiewicz O., Cervera M. 

(1992), “A finite volume format for 

structural mechanics”, Centro 

Internacional de Métodos Numéricos en 

Ingeniería. 

[27] Demirdžić I., Muzaferija S., Perić M. 

(1997), “Benchmark solutions of some 

structural analysis problems using finite 

volume method and multigrid 

acceleration”, International journal for 

numerical methods in engineering, Vol. 40 

pp. 1893-1908. 

[28] Pandey A.K., Biswas M., Samman M.M. 

(1991), “Damage detection from changes 

in curvature mode shapes”, Journal of 

Sound and Vibration, Vol. 145, pp. 321–

332. 

[29] Abdel Wahab M.M., De Roeck G. (1999), 

“Damage detection in bridges using modal 

curvatures: application to a real damage 

scenario”, Journal of Sound and Vibration, 

Vol. 226, pp. 217–235. 


	B. Mohebi1*, A.R. Kaboudan2 and O. Yazdanpanah2
	1. Assistant Professor, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
	2. Ph.D. Student, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
	*Corresponding author: mohebi@eng.ikiu.ac.ir
	1. Introduction
	2. The Finite Volume (FV) Procedure
	2.1. Static Analysis
	2.1.1. Applying Boundary Condition

	2.2. Free Vibration Analysis
	2.3. Buckling Load Analysis
	2.3.1. Calculation of Buckling Load


	3. Damage Detection Indicator
	4. Numerical Examples
	4.1. First Example: Static Analysis
	4.1.1. Damage Identification Without Considering Noise

	4.2. Second Example: Free Vibration Analysis
	4.2.1. Damage Identification Without Considering Noise
	4.2.2. The Effect of Measurement Noise

	4.3. Third Example: Buckling Analysis
	4.3.1. Damage Identification Without Considering Noise


	5. Conclusions
	REFERENCES

