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Earthquake force, loading more than structural capacity, 

cracking, material fatigue, and other unpredicted events are 

undeniable in the structure life cycle in order that 

environmental conditions of the structure would be changed 

and treats health. Damage of structures such as crack, 

corrosion of the post-tension cables from inappropriate 

grouting of the post-tension structures, etc., can lead to the 

collapse of the structure. Accordingly, damage detection 

precedes the damage is essential. In this article, damage 

detection in the post-tensioned slab through 2D wavelet 

transform investigated. Hence, the structure has been 

modeled with finite element method. Damaged cables have 

been modeled by a reduction of the post-tension force. The 

vertical displacement has been derived through static 

analysis of the intact and damaged structure. Damage 

location will be detected with wavelet transform on the 

difference of the vertical displacements. To demonstrate the 

ability of 2D wavelet transform single and multiple scenarios 

of the post-tension cables, are tested. The influence of noise 

in the vertical displacement data for these scenarios is also 

considered. Using 2D wavelet transform and damage index 

W, an empirical equation has been proposed to calculate 

damage severity of the post-tensioned slab cables. 

Keywords: 
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Signal Processing, 
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1. Introduction 

Structural damages can occur for various 

reasons, including fatigue, construction 

mistakes, corrosion, crack, and etc. In the 

post-tensioned slab, the post-tension cables 

are located in slabs such as adding not only 

pressure load on the concrete portion but also 

an upward force in contrary to gravity load 

direction. This force makes loading capacity, 

and slab resistance increased as well, 

respectively. 

If the cables lose their efficiency partially or 

totally, the loading capacity of the slab will 

be decreased. It is important to compute the 

lack of efficiency of the post-tension cables 

http://dx.doi.org/10.22075/jrce.2017.11561.1191
http://civiljournal.semnan.ac.ir/
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as damage as well as damage severity of 

cables. 

Newland is the first person who found 

wavelet transform in signal processing of 

vibrational response [1]. In the following, the 

results of previous studies show that the 

damage of a structure during an earthquake is 

related to the number of peak points in the 

wavelet points [2]. Additionally, Liu et al. 

suggested that wavelets are calculated in 

space based on the finite element method or 

finite-difference. They investigated uniform 

beam vibration having lateral crack applying 

finite-difference, as a numerical method. 

Subsequently, wavelet coefficients have been 

determined in accordance with beam via 

numerical solution for the beam deflection 

[3]. 

Fan and Qiao persuaded that methods based 

on modal analysis apply structural vibration 

response of pre- and post- damage for 

damage detection. They also demonstrated 

that the dynamic analysis of the finite 

element model of the structure is necessary 

for location and damage severity [4].  

Roucka inspected the ordering effect of 

modes on the capability of damage detection 

in structures [5]. He applied the continuous 

wavelet transform of normalized mode 

shapes for damage detection. So, he studied 

the first eight modes of numerical and 

experimental in a cantilever beam. The 

results indicate the higher the mode shape 

order is, The reliability would increase. 

Solís et al. proposed a method to detect 

damage of beams through continuous 

wavelet analysis, analyzing the damage from 

the change in mode shape between intact and 

damaged structures. They approximate 

wavelet coefficient of every mode of changes 

in natural frequency. Finally, mode shape 

whose natural frequencies stayed fixed have 

been disregarded, and results of the other 

modes were compared. The method is 

sensitive to the minimum structural damage 

[6]. According to discrete curvelet transform 

with the use of unequal-interval of fast 

Fourier transform, Bagheri et al. applied a 

new method for damage detection in plate 

structures. In addition, he investigates the 

performance and sensitivity of the method 

through numerical and experimental data 

[7].Moreover, the use of signal processing 

techniques for detecting damage was 

developed by researchers [8-11]. 

In this study, a proposed approach applied 

based on 2D discrete wavelet with the use of 

deflection to detect the location of damages 

through extracted data from finite element 

model and assumed data from the lab in the 

post-tensioned slabs. Furthermore, the 

performance and sensitivity of this approach 

have been surveyed in different damage 

values of the post-tension cables. Finally, the 

damage severity of cables has been 

calculated by applying a damage index. 

2. Review of the Wavelet 

Transforms Theory 

2.1. Continuous Wavelet Transform 

In wavelet analysis, there is a transform that 

its performance is the same as the Fourier 

transform. Wavelet transform on signal f(t) 

results in coefficients called wavelet 

coefficient. Wavelet transform equation is 

displayed as follows: 

𝑪(𝒔𝒄𝒂𝒍𝒆, 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏) = 𝑾𝒇(𝒔, 𝒖)

= ∫ 𝐟(𝐭). 𝛟(𝐬𝐜𝐚𝐥𝐞, 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧)𝐝𝐭
+

−

 
(1) 

According to the equation above, two-

property function-scale and location- is 

applied for wavelet transform, as an 
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alternative for trigonometric functions, which 

are the function of frequency. So, the given 

function is location and scale. 

Wavelet function has two properties: 

oscillation and short-term. Function Ψ (x) is 

called the wavelet function, only and if only 

the Fourier transform Ψ (w) is applied to the 

following equation: 

∫
|𝜳(𝒘)𝟐|

|𝒘𝟐|

+∞

−∞

𝒅𝒘 <  +∞ (2) 

where Ψ(x) is the mother wavelet function. 

According to the following equation, location 

and size of the wavelet functions applied in 

the processing are changed with two 

mathematic operations, including 

transmission and scale along with the 

processing signal. Ψ (x) is then stretched or 

compressed by a, and translated in space by 

b, to generate a set of basis functions Ψa,b(x) 

as follows: 

𝜳𝒂,𝒃(𝒙) =
𝟏

√𝒂
𝜳(

𝒙−𝒃

𝒂
) (3) 

Finally, continuous coefficients of wavelet on 

function f(x) in any point of signal b and for 

any scale values a are calculated through the 

equation: 

𝐶𝑊𝑇(𝑎, 𝑏) =
1

√𝑎
∫ 𝑓(𝑥)𝛹(

𝑥 − 𝑏

𝑎

+∞

−∞

) 𝑑𝑥

= ∫ 𝑓(𝑥)𝛹𝑎,𝑏

+∞

−∞

(𝑥) 𝑑𝑥 

(4) 

Similarly, there is the following equation for 

a 2D signal f(x,y). 

2𝐷𝑐𝑤𝑡(𝑠, 𝑎, 𝑏)

=
1

√𝑠. 𝑠
∫ 𝑓(𝑥, 𝑦). 𝛹(

𝑥 − 𝑎

𝑠

+∞

−∞

,
𝑦 − 𝑏

𝑠
)𝑑𝑥𝑑𝑦 

(5) 

where a and b are the input signal 

coordinates and s is the scale. 

2.2. Discrete Wavelet Transform 

The other form of wavelet transform called 

DWT is applied to analyze the signal. 

Parameters such as transmission and scale 

are discontinuously chosen in the discrete 

wavelet transform. 

𝑎 = 2−𝑗,𝑏 = 2−𝑗 × 𝑘 

where k and j are integers. With inducing a 

and b in the mother wavelet equation (Eq. 4), 

the discrete wavelet transform function is 

obtained. 

𝛹𝑗,𝑘(𝑥) = 2
𝑗

2 𝛹(2𝑗  𝑥 − 𝑘) (6) 

In 1D discrete wavelet transform, 1D input 

signal s(n) is decomposed into approximation 

section and details, according to the 

following equation: 

𝑆0(𝑛) = 𝑆𝑖(𝑛) + ∑ 𝑤𝑗(𝑛)

𝑗≤𝑖

 
(7) 

where, si(n) and wi(n) are approximation and 

details of a 1D signal in level i, respectively. 

They are calculated in level i+1: 

𝑆𝑖+1(𝑛) = ∑ 𝑔(𝑘)𝑆𝑖(2𝑛 − 𝑘)

𝑙−1

𝑘=0

 (8) 

𝑊𝑖+1(𝑛) = ∑ ℎ(𝑘)𝑆𝑖(2𝑛 − 𝑘)

𝑙−1

𝑘=0

 (9) 

where g(k) and h(k) are low and high- pass 

filter coefficients, respectively, and l is for 

filter size. Corresponding, 2D signal S(n1, 

n2) is decomposed into approximation and 

details in 2D discrete transform, according to 

the following equation: 

𝑆0(𝑛1, 𝑛2) = 𝑆𝑖(𝑛1, 𝑛2) + ∑ 𝑊𝑗
1(𝑛1, 𝑛2𝑗≤𝑖 ) +

∑ 𝑊𝑗
2(𝑛1, 𝑛2) + ∑ 𝑊𝑗

3
𝑗≤𝑖𝑗≤𝑖 (𝑛1, 𝑛2) 

(10) 

In the equation, S(n1, n2) is an 

approximation. W1(n1,n2),W2(n1,n2), and 

W3(n1,n2) are horizontal, vertical and 
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diagonal details of a 2D signal in level i. The 

approach to acquire wavelet transform for a 

1D signal is that signal with a low pass filter, 

and a high pass filter is classified into two 

portions: high-frequency portion and low-

frequency portion. Each portion has samples 

half the main signal. Subsequently, the low 

frequency portion again is divided into low 

frequency and high frequency. The action has 

the same times as the decomposition level of 

the wavelet transform [12]. In Fig. 1, 

computation of three levels of 1-D wavelet 

transform has been depicted. 

In 2D signal as the 1D signal, transform 

apply once in horizontal and another time in 

vertical. The diagram block in Fig.2 

portrayed the 2D Wavelet transform. 

 
Fig. 1. The diagram block of 1D wavelet transform in three decomposition levels. 

 
Fig. 2. the Diagram block of 2D wavelet transform in two decomposition levels. 

3. Damage Index in the 2D Wavelet 

Transform 

Four components are obtained through 2D 

wavelet transform on the vertical 

displacement of a 2D surface. CA
1
 is called 

as an approximate signal. CD1
1
, CD1

2
, CD1

3 

are named horizontal detail signal, vertical 

detail signal, and diagonal detail signal in the 

first decomposition level, respectively. 

Data is firstly determined in horizontal, 

vertical, diagonal directions in any levels of 

decomposition to identify the damage index. 

The value of e is the sum of the data for 

damage and healthy state of the structure. 

e=| CD11|+| CD12|+| CD13| (11) 

Finally, subtraction of e for the intact and 

damaged structures results in value w, as the 

damage index in the following equation: 

W=|edamage- eundamage| (12) 
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4. Numerical Analysis 

The dimensions of the post-tensioned slab in 

this study are 8m×8m×0.2m. According to 

Figs 3-4, the post-tension cables have been 

located at 1m intervals. Each of the cables 

includes three strands with a nominal 

diameter of 0.5 inches, having a cross-section 

area equal to 1cm
2
. Class of cables steel is 

A270 with failure ultimate strength 18900 

kgf/cm
2
. Pursuant to valid regulations of pre-

stressing such as ACI and BS, the maximal 

post-tension stress is about 75% of ultimate 

resistance. Thus, the force of the cables is 

considered up to 44250kgf. Properties of 

concrete consist of Young’s modulus E= 20 

GPa, specific density ρ=2500 kg/m
2
, and 

Poisson's ratio ν=0.2. The material properties 

of steel are Young’s modulus E=200 GPa, 

specific density p=7850kgf, and Poisson's 

ratio ν=0.2. 

In the numerical model of the slab, shell 

elements are applied. Moreover, four edges 

simply supported of slab have been 

considered; so the post-tension effects can be 

passed into the slab through cables. Cables 

have been modeled with tendon element. 

Longitudinally, they have a total parabolic 

curve as shown in Fig. 3. In Table 1, five 

presumed damage scenarios are presented. 

 
Fig. 3. Longitudinal cable profile. 

 
Fig. 4. Arrangement of cables plan. 
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Table 1. Damage scenario defined in the post-tensioned concrete slab model. 

Damage severity  

(decreasing the post-tension force) 
Damage location Damage scenario 

30% Cable B SB/30 

50% Cable B SB/50 

100% Cable B SB/100 

50% Cable F  
SF/50-S2/100 

100% Cable 2 

30% Cable1 

S1/30-S5/50-SE/100 50% Cable5 

100% CableE 

 

5. Damage Detection Approach 

The approach proposed in this study is based 

on 2D wavelet transform for damage 

detection in the cables of the post-tensioned 

concrete slab. 2D discrete wavelet transform 

has been applied to detect location and 

damage severity. 

In the previous section, theories required for 

2D wavelet transform were persuaded . This 

section investigates the implementation of 

this theory to detect damage of the post-

tensioned concrete slabs. After the structural 

analysis of the presented scenarios, the 

displacement of nodes is saved in a 2D 

matrix. In fact, each array of the matrix 

express the displacement values of one of the 

slab's nodes. The more the number of the 

slab's nodes are, the bigger the dimensions of 

the matrix and the more accuracy the 

approach will be. 

Values of details w1 (horizontal), w2 

(vertical), w3 (diametric) be determined by 

applying a proper wavelet function on 

derived matrix from static analysis of intact 

and damaged structures. Subsequently, by 

applying the damage index e for intact and 

damaged structures and depicted the 

difference of these values as damage index W 

in 3D histogram shape, location and severity 

of damage in the structure will be identified. 

5.1. Adding Noise to Experimental 

Parameters 

In a real test, the measured structural 

response data involves in deviation. The 

deviation is expected to have a remarkable 

effect on damage detection procedure. By 

producing a small deviation in the measured 

structural response data, this issue is 

measured as [13-15]: 

ωdr = ωd × (1 + random(−1,1) ×

Noiseω) (13) 

where w is the slab deflection, dr denotes a 

noisy value, and noisew denote deviations of 

the extracted deflection data of structure 

which is equal 3%. 

5.2. Identification of Damage Position 

Different wavelet functions are applied to the 

survey capacity of the wavelet transform and 

data identification. Figs. 5 to 14 have 

considered capacity and sensitivity of the 

approach to detect the damaged location of 

the post-tension cables as well as the effect of 

noise on the damage identification approach 

through 2D wavelet transform bior2.4 and 

determining the damage severity of tendons. 
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Applying the mentioned approach to detect 

the structural damage, the damage index is 

identified with discrete 2D wavelet 

transform. Figs. 5-14 present capacity of the 

mentioned approach to detect the damage 

location in the post-tensioned slab through 

damage index W. 

As illustrated in Fig.5 in the first case of 

damage identification studies, the cable 

damage in the post-tensioned slab has been 

characterized by applying the damage index 

in the second level of decomposition. The 

results show that the peak of the damage 

index W is observed in the start and end 

position of the damaged cable in the model. 

In the other cables, the insignificant value of 

damage has been exhibited after performing 

wavelet transform. Moreover, the mentioned 

approach demonstrates the direction of the 

damaged cable carefully.  

In Fig.6, noise added to the deflection data 

extracted from the finite element model to 

investigate the ability of 2D wavelet 

transform to detect damage of the post-

tension cable. The direction of the damaged 

cable is detected. Pursuant to the results of 

the damage index W of the second and third 

scenario cases, it will be obvious that the 

more the cable damage is, the more the 

damage index value in the cable location to 

the first case is. 

In the fourth case, two damaged cables with 

different damage value have been defined in 

the post-tensioned slab. Damage severity of 

the first and second cable is 50% and 100%, 

respectively. As seen in Fig. 11, the damage 

index can locate damaged cables while the 

difference in the damage severity also 

specifies. Fig. 12 shown that 2D wavelet 

transforms for damage detection with added-

noise data, and a little error demonstrates the 

damage location well. 

In the fifth case, three damaged cables have 

been modeled with 30%, 50%, 100% damage 

severities. As illustrated in Fig. 13 and 14, 

the direction of damaged cables is identified. 

The results indicate that the approach can 

greatly perceive single and multiple damage 

scenarios of the structure in a damage 

identification phase by applying damage 

index W, that is, sensitivity to 2D discrete 

wavelet transform is due to data processing. 

 
Fig. 5. Coefficient result of 2D wavelet details bior2, 4 in two levels of decomposition for the SB/30 

scenario case using W index. 
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Fig. 6 Coefficient result of 2D wavelet details bior2.4 in two levels of decomposition for the SB/30 

scenario case with noise using W index. 

  
Fig. 7 Coefficient result of 2D wavelet details bior2,4 in two levels of decomposition for the SB/50 

scenario case using W index. 

 
Fig. 8. Coefficient result of 2D wavelet details bior2.4 in two levels of decomposition for the SB/50 

scenario case with noise using W index. 
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Fig. 9 Coefficient result of 2D wavelet details bior2,4 in two levels of decomposition for the SB/100 

scenario case using W index. 

 
Fig. 10 Coefficient result of 2D wavelet details bior2.4 in two levels of decomposition for the SB/100 

scenario case with noise using W index. 
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Fig. 11 Coefficient result of 2D wavelet details bior2,4 in two levels of decomposition for the SF/50- 

S2/100 scenario case using W index. 

 
Fig. 12. Coefficient result of 2D wavelet details bior2,4 in two levels of decomposition for the SF/50- 

S2/100 scenario case with noise using W index. 

 
Fig. 13. Coefficient result of 2D wavelet details bior2,4 in two levels of decomposition for the S1/30- 

S5/50-SE/100 scenario case using W index. 
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Fig. 14 Coefficient result of 2D wavelet details bior2,4 in two levels of decomposition for the S1/30- 

S5/50-SE/100 scenario case with noise using W index. 

5.3. Calculation of Damage Severity 

To compute the damage severity of the post-

tension cables (tendons), an empirical 

equation has been extracted (Eq. 14). The 

equation calculates the damage severity 

through the damage index Wmaxi for cables 

on the basis of bior2.4 function. 

𝐷𝑆

= (109 𝑊max 𝑖
2 + 13362𝑊max 𝑖

+ 0.0315) × 100 ∓ 10% 
(14) 

Wmaxi= the maximal damage index of the 

cable 

Ds= damage severity  

To calculate the damage severity of cables in 

added noise condition and free-noise 

condition, the above equation is applied. In 

Figs.15-19, the damage severity in the actual 

condition, the added- noise condition and the 

noise-free condition can be seen. 

As illustrated in Figs.15-19, damage severity 

calculated for single and multiple damage 

scenarios is done with a good approximation 

while in other tendons detected little 

damages. Table 2 includes the computed 

value of damage severity for each scenario 

with the maximal damage index of the 

cables. The table indicates the equation can 

compute the damage value of damaged 

cables, whether in a single damaged cable 

condition or the contemporary multiple 

damaged cables. It is noticeable that the 

equation possesses accuracy in the multiple 

damages; so it can be described as an 

appropriate criterion to compute the damage 

value of the post-tension cables (tendons). 
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Fig. 15. Damage severity of tendons in actual, added-noise, and free noise conditions corresponding to 

scenario SB/30. 

 

Fig. 16. Damage severity of tendons in actual, added-noise and free noise conditions corresponding to 

scenario SB/50. 

 
Fig. 17. Damage severity of tendons in actual, added-noise and free noise conditions corresponding to 

scenario SB/100. 

 
Fig. 18. Damage severity of tendons in actual, added-noise and free noise conditions corresponding to 

scenario SF/500-S2/100. 
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Fig. 19. Damage severity of tendons in actual, added-noise and free noise conditions corresponding to 

scenario S1/30-S5/50-SE/100 

Table 2. The values of computed damage severity of the damage scenarios versus the actual one. 

Scenario 
Actual damage severity 

(%) 
Wmax i 

Computed damage value 

(%) 

SB/30 30 9.943E-6 32 

SB/50 50 1.606E-5 59 

SB/100 100 2.228E-5 95 

SF/50-S2/100 
50 1.565E-5 59 

100 2.194E-5 95 

S1/30-S5/50-SE/100 

30 1.407E-5 32 

50 1.479E-5 59 

100 2.106E-5 95 

6. Conclusions 

6.1. Discussion on Noise-Free Data 

The results of the identification of the post-

tensioned slab damages indicate that by 

applying appropriate wavelet function and 

damage index W, the location of single and 

multiple damaged cables can be found. By 

investigation different wavelet functions to 

identify damages of the post-tensioned slab, 

it is obvious that function db2 and bior2.4 

can locate the damaged cables appropriately. 

6.2. Discussion on Added Noise 

Condition 

To actualize measuring deflection of different 

points of the structure, noise added to the 

data extracted from the static analysis of the 

structure. The appropriate wavelet function 

and the damage index W localize the single 

and multiple damaged cables with little 

errors. By investigation different wavelet 

functions to identify damage of the structure, 

function db2 hasn’t introduced the location of 

damaged cables as well; but function bior2.4 

indicates the location of damaged cables with 

the use of added noise data up to 3%. 

6.3. Discussion on Damage Severity of 

Tendons 

To calculate the damage severity of damaged 

tendons, the damage index Wmax has been 

utilized. The index has been obtained with 

performing the wavelet function on the data 

extracted from intact and damaged cable in 

noise-free and added noise conditions. The 

proposed equation estimates damage severity 

of the cable or the given cables. The damage 

severity of the tendons has been calculated 

with an error of about less than 10%. 
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6.4. Conclusion 

In this study, 2D wavelet transform has been 

applied to detect location and severity of 

damaged cables in the post-tensioned slab 

with using noise-free data and added noise 

data. As the study has shown, location and 

the damage severity of tendons can 

considerably be identified through 

performing the appropriate function as well 

as extracting the appropriate empirical 

equation. 
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