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Reclaimed asphalt pavement (RAP) is one of the waste 

materials that highway agencies promote to use in new 

construction or rehabilitation of highways pavement. Since 

the use of RAP can affect the resilient modulus and other 

structural properties of flexible pavement layers, this paper 

aims to employ two different artificial neural network (ANN) 

models for modeling and evaluating the effects of different 

percentages of RAP on resilient modulus of hot-mix asphalt 

(HMA). In this research, 216 resilient modulus tests were 

conducted for establishing the experimental dataset. Input 

variables for predicting resilient modulus were temperature, 

penetration grade of asphalt binder, loading frequency, 

change of asphalt binder content compared to optimum 

asphalt binder content and percentage of RAP. Results of 

modeling using feed-forward neural network (FFNN) and 

generalized regression neural network (GRNN) model were 

compared with the measured resilient modulus using two 

statistical indicators. Results showed that for FFNN model, 

the coefficient of determination between observed and 

predicted values of resilient modulus for training and testing 

sets were 0.993 and 0.981, respectively. These two values 

were 0.999 and 0.967 in case of GRNN. So, according to 

comparison of R2 for testing set, the accuracy of FFNN 

method was superior to GRNN method. Tests results and 

artificial neural network analysis showed that the 

temperature was the most effective parameter on the resilient 

modulus of HMA containing RAP materials. In addition by 

increasing RAP content, the resilient modulus of HMA 

increased. 
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1. Introduction 

Each year large amount of asphalt concrete 

are produced from reclaimed asphalt 

pavement (RAP) [1]. Recently, highway 

departments promote the use of RAP in 

asphalt pavement rehabilitations. The use of 

RAP has effect on some basic properties of 

hot-mix asphalt (HMA) such as resilient 

modulus. Resilient modulus as a measure of 

the stiffness of asphalt concrete mixture is 

one of the fundamental parameters that is 

used in evaluating of materials quality and as 

an input for asphalt pavement design. Colbert 

and You [2] evaluated the hot-mix asphalt 

containing 15, 35, and 50% RAP 

experimentally and indicated that the RAP 

increased the resilient modulus by 52%. 

Sondag et al. [3] blended 0 to 50% RAP with 

virgin aggregates and recommended different 

percentages of RAP (10-50%) and the 

respective asphalt binder grades to yield the 

stiffness similar to a virgin mixture. 

Zaumanis and Mallick [4] investigated the 

approaches for increasing the amount of RAP 

in asphalt concrete mixtures and indicated 

that the stiffness of high content RAP asphalt 

concrete mixtures was higher than that of the 

virgin. 

Nowadays, artificial neural network (ANN) 

technique has been widely applied in asphalt 

material studies. Tarefder et al. [5] used a 

four-layer feed-forward neural network to 

determine a mapping associating mix design 

and testing factors of asphalt concrete 

samples to predict their permeability. They 

observed an excellent agreement between 

simulation and laboratory data. Ozgan [6] 

applied an ANN based model for the results 

of Marshall stability tests. He concluded that 

experiment results and ANN model exhibit a 

good correlation. Xiao and Amirkhanian [7] 

used ANN approach for estimating stiffness 

behavior of rubberized asphalt concrete 

containing reclaimed asphalt pavement. Their 

results indicated that ANN techniques were 

more effective than traditional regression-

based prediction models in predicting the 

fatigue life of the modified mixture. Zaghal 

[8] modeled creep compliance behavior of 

asphalt concretes using ANN technique. This 

study showed that the proposed model could 

effectively predict the creep compliance of 

asphalt concrete mixtures at different 

temperatures with different binders. ANN has 

been also used for prediction of resilient 

modules of asphalt concrete mixtures. They 

are shown in Table 1. Figure 1 shows the 

research framework. 

This research focuses on the prediction of the 

resilient modulus of asphalt concrete 

mixtures containing different percentage of 

RAP. Two different ANN techniques 

including generalized regression neural 

network (GRNN) and feed-forward neural 

network (FFNN) were applied for prediction 

of resilient modulus and their accuracies 

have been compared to each other. The 

proposed model based on artificial neural 

networks helps designers and technicians to 

estimate the resilient modulus of asphalt 

concretes containing RAP materials with an 

appropriate accuracy. 
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Table 1. Application of ANN in prediction of resilient modulus 
Material Inputs Method References 

Emulsified asphalt mixtures 

Curing time 

Cement content 

Residual content 

Back propagation NN  
[9] 

Rubberized mixtures 

containing RAP 

Rubber content 

RAP content 

Binder rheology 

ANN and regression models 
[10] 

Fiber-reinforced asphalt 

concrete 

Fiber content 

Fiber length 

Fiber type  

Hybrid ANN-genetic 

algorithm model  

[11] 

Asphalt treated permeable 

base 

Asphalt contents 

Aggregate 

gradations 

Support vector machines 

and ANN 

[12] 

 

 
Fig. 1. Research framework. 

Feed-forward neural network 

(FFNN) 

Generalized regression neural network 

(GRNN) 

Evaluation of asphalt concrete mixtures 

Preparation of 216 cylindrical 

specimens and volumetric analysis 

 

Conduction of resilient modulus test 

(Test temperature.: 5, 25, 40 
o
C) 

(Loading frequency: 0.33, 0.5, 1 HZ) 

Artificial neural network 

Analysis 

Asphalt binder 

 (60-70 & 85-100) 

RAP 

(0, 25,50, 75%) 

 

Aggregate 

Preparation and characterization 

of Materials 
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2. Materials and Methods 

2.1. Aggregate 

Tables 2 and 3 show the properties and 

gradation of aggregates, respectively. 

Table 2. Aggregate properties 

Test  Result 

Specific gravity  2.485 

Los Angeles abrasion (%)  16 

Water absorption of Fine aggregate (%)  2.5 

Water absorption of Coarse aggregate) (%)  2.6 

Percent fracture (two faces) (%)  81 

Percent fracture (one face) (%)  93 

Flakiness index  25 

Elongation index  15 

 

Table 3. Aggregate gradation 

Sieve size (mm) Passing (%) 

25 100 

19 92 

9.5 70 

4.75 50 

2.36 36 

0.3 11 

0.075 5 

 

2.2 Asphalt Binders 

The asphalt binders used in this study were 

of penetration 60/70 and 85/100. Table 4 

show the properties of the asphalt binders. 

2.3 Reclaimed Asphalt 

Tables 5 and 6 show the properties and 

gradation of RAP aggregates, respectively. 

Table 7 shows the properties of asphalt 

binder extracted from reclaimed asphalt. 

Table 4. Properties of asphalt binders. 

Test  
result 

60-70 85-100 

Penetration 

(25° C)(0.1 

mm) 

 69 85 

Specific gravity 

(25° C) 
 1.016 1.000 

Ductility (25° 

C) (cm) 
 >100 >100 

Flash point 

(Cleveland)(
o
C) 

 310 298 

Softening point 

(
o
C) 

 49 48 

viscosity @ 

120 ° C 

(Centistokes) 

 832 797 

viscosity @ 

135 ° C 

(Centistokes) 

 440 372 

viscosity @ 

150 ° C 

(Centistokes) 

 137 133 

 

Table 5. Properties of RAP aggregate. 

Test  Result 

Asphalt binder content 

(%) 
 5.4 

Water absorption of 

coarse aggregate (%) 
 2.1 

Water absorption of fine 

aggregate (%) 
 2.51 

Specific gravity of coarse 

aggregate 
 2.495 

Specific gravity of fine 

aggregate 
 2.502 

 

Table 6. Aggregate gradation of reclaimed 

asphalt. 

Sieve size (mm) Passing (%) 

19 100 

9.5 98 

4.75 78 

2.36 52 

0.3 17 

0.075 9 
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Table 7. Properties of extracted asphalt binder 

Test  result 

Softening point (
o
C)  72 

Penetration (25° C)(0.1 mm)  20 

viscosity @ 135 ° C (Centistokes)  1977 

 

2.4. Mix Design and Specimen 

Preparation 

In this research, Marshall mix design method 

(ASTM D1559) was used to determine the 

optimum asphalt binder contents of the 

control mixtures. The optimum asphalt 

binder contents were obtained 5.5% and 

4.9% for asphalt containing asphalt binders 

of 60/70 and 85/100, respectively. In order to 

prevent the effect of asphalt binder 

percentage on the test results, all asphalt 

mixtures containing different percentages of 

RAP (25, 50 and 75 wt.% of the total mix) 

were made with the same optimum asphalt 

binder percentage. 

2.5 Resilient Modulus Test 

When a material is subjected to a stress, the 

induced strain will depend on the properties 

of the material. In general, the total strain 

may be divided to recoverable and non-

recoverable strains. The Resilient Modulus 

(MR) is defined as the ratio of applied 

deviator stress to the recoverable strain 

(Eq.1) [13]. 

d
R

r

σ
M =

ε
 (1) 

Where rε is resilient or recoverable strain and 

dσ  is the deviator stress. 

There are several methods for determining 

the resilient modulus of asphalt concrete 

mixtures. In this research study the resilient 

modulus test was carried out in the indirect 

tensile mode and in accordance with ASTM 

D4123 [14]. Figure 2 shows the machine 

used for determining the resilient modulus of 

the asphalt mixtures. The loading waveform 

was haversine. In addition the loading 

frequencies were 0.33, 0.5 and 1 Hz. The test 

was conducted at 5, 25 and 40
o
C and then 

resilient modulus (MR) was computed using 

the Eq. 2. The specimens remained in the 

controlled-temperature chamber at each 

temperature for about 24 h prior to testing. 

Each specimen was precondition by applying 

100 repeated haversine waveform load to 

obtain uniform deformation readout. In 

according to ASTM D4123 a minimum of 50 

to 200 load repetitions is typical. The 

magnitudes of loads were 1000 N for tests at 

5
o
C and 500 N for tests at 25

o
C and 40

o
C. In 

accordance with ASTM D4123 the load 

range should be that to induce 10 to 50% of 

the tensile strength. 

R

P(ν 0.27)
M

tΔH


  (2) 

Where MR is the resilient modulus (MPa), v 

is the Poisson ratio, P is the magnitude of the 

dynamic load (N), ΔH is the total recoverable 

horizontal deformation (mm) and t is the 

specimen thickness (mm). The height 

(thickness) and diameter of the specimens 

were about 70 mm and 102 mm, respectively. 

The Poisson ratio (v) may be computed from 

Eq. 3 [15]. 

(3.1849-0.04233t)

0.35
ν=0.15+

1+e
 (3) 

Where e is the base of the natural logarithm 

(2.7183) and t is the test temperature and is 

expressed in degrees Fahrenheit. 
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Fig. 2. Measuring the resilient modulus of asphalt concrete mixture 

3. Establishment of Dataset 

The final dataset was established based on 

the results of 214 experimental resilient 

modulus tests. Input variables (or predictors) 

were considered as temperature (5, 25, and 

40 
o
C), penetration grade of asphalt binder 

(60/70 and 85/100), loading frequency (0.33, 

0.5, and 1 Hz), change of asphalt binder 

content compared to the optimum asphalt 

binder content (-1, 0, and 1%), and 

percentage of RAP (0, 25, 50, and 75%). 

Output (or dependent variable) was assumed 

as resilient modulus of asphalt concrete 

mixtures in MPa. Statistical properties of 

different fields of experimental dataset are 

given in Table 8. 

 

Table 8. Statistical properties of different fields of dataset. 

Statistical Parameter 
Temperature 

(
o
C) 

PGC
a
 

Frequency 

(Hz) 

CBC
b
 

(%) 

RAP 

(%) 

MR 

(MPa) 

Minimum 5 0 0.33 -1 0 539 

Maximum 40 1 1 1 75 20883 

Mean 23.18 0.50 0.61 0.00 37.85 7836.71 

Standard Deviation 14.35 0.50 0.29 0.82 27.91 6074.23 
a
PGC: Penetration grade code (0 for 60/70 asphalt binder and 1 for 85/100 asphalt binder) 

b
CBC: change of asphalt binder content compared to optimum asphalt binder content 
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Loading Piston 

Frame for Setting the 
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the Temperature of 
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Specimen 
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4. Modeling Using Artificial Neural 

Network (ANN) 

According to neural networks mathematical 

theory, a feed-forward neural networks 

(FFNN) with only one hidden layer can 

approximate any continuous function [16]. 

Therefore, in recent study two types of ANN 

models including feed-forward neural 

network and general regression neural 

network were employed for modeling 

resilient modulus of asphalt concrete 

mixtures containing RAP with respect to 

different mix parameters, loading time and 

temperature. 

In order to modeling resilient modulus, two 

famous architectures including (FFNN) and 

generalized regression neural networks 

(GRNN) were employed. These two 

architectures of neural network will be 

described in the next sections. 

FFNN is one of the simplest type of artificial 

neural network type. In FFNN, the 

information only transmitted in one way 

from the input layer into the hidden layers 

and to the output layer [17]. 

Similar to the human brain, a FFNN utilizes 

numerous basic computational components, 

named artificial neurons, connected by 

variant weights [18]. Components of an 

artificial neuron is demonstrated in Figure 3. 

A FFNN can be trained by tuning the values 

of the connection weights between different 

neurons and after that it is able to predict a 

particular function. ANNs are trained so that 

a specific input results in a specific output. 

The connection weights of ANN are adjusted 

according to comparison of the output values 

and the target values until the network output 

values coincide the target values. Generally 

many such input and target value pairs are 

needed for network training. 

 
Fig. 3. A typical artificial neuron [25]. 

4.1. Feed-Forward Neural Network 

(FFNN) 

The back propagation algorithm is commonly 

used for training of a FFNN which involves 

two stages [19, 20]: 

Forward stage. In this stage, the network's 

free parameters are set and the input signal 

from the input layer is transmitted to the 

hidden layer and then into the output layer. 

The forward stage finishes with an error 

signal calculation. 

iii yde 
 (4) 

where di denotes the target response, and yi 

denotes the predicted output by the ANN 

resulted from input xi. 

Backward stage. During this stage, the error 

signal e is transmitted through the ANN in 
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the backward or reverse direction. In point of 

fact, tuning of network's free parameters are 

implemented in this stage in order to 

minimize the error e in a statistical context. 

In this research, the back propagation 

training algorithm of Levenberg - Marquardt 

was employed. The architecture of a FFBP 

has been presented in Figure 4. 

 
Fig. 4. A three layer feed-forward 

backpropagation network architecture [21]. 

4.2. General Regression Neural Network 

(GRNN) 

Specht was the first one who proposed the 

Generalized Regression Neural Network 

(GRNN) [22]. 

GRNN is a version of ANNs that utilizes 

brain synapse-like framework for handling 

data. The GRNN has excellent approximation 

capability and learning speed, specifically for 

large sample datasets. The GRNN also has 

excellent forecast results, in case of relatively 

small datasets[23]. 

GRNN aims to predict the output vector 

Y=[y1,y2,…,yk]
T
 based on the input vector 

X=[x1, x2,…,xn]
T
 by means of a linear or 

nonlinear regression surface. The GRNN 

model can be write as follows: 












dXXYf

dXXYYf

XYE

),(

),(

]|[

 (5) 

where X denotes the input vector with 

dimension of n, Y is the estimated output 

value by GRNN model, E[Y|X] is the target 

value of the output Y, given the input vector 

X and f(Y,X) is the joint probability density 

function of X and Y. 

GRNN is arranged using four layers 

including layer of input, layer of pattern, 

layer of summation and layer of output 

(Figure 5). The layer of input receives and 

saves input parameters to an input vector X. 

The number of neurons in the input layer is 

similar to the input vector dimension. Then, 

the data are transmitted from input layer are 

fed to the pattern layer. 

The pattern layer performs a non-linear 

mapping from the input space to the pattern 

space. The neurons in the pattern layer can 

memorize the relationship between the input 

neuron and the proper response of pattern 

layer. The number of neurons in the pattern 

layer is the same as the number of input 

variables. The pattern Gaussian function of pi 

can be expressed as: 
T

i i
i 2

(X-X ) (X-X )
p =exp - (i=1,2,...,n)

2σ

 
 
 

 (6) 

Where σ denotes the smoothing parameter, X 

denotes the input variable and Xi is a specific 

training vector of the neuron i in the pattern 

layer. 

The summation layer consists of two 

summations including simple summation (Ss) 

and weighted summation (Sw). Ss and Sw 

calculate the arithmetic sum of the pattern 

layer outputs and the weighted sum of the 

pattern layer outputs, respectively (Eqs. 7 

and 8). 

s i
i=1

S = p  (7) 
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w i i
i=1

S = w p  (8) 

Where wi is the weight of connection 

between pattern neuron i and summation 

layer. 

The number of neurons in the output layer is 

equal to the dimension k of the output vector 

Y. After commutating the summations of 

neurons in the summation layer, they are fed 

into the output layer. The output Y of the 

GRNN model can be determined as follows: 

s

w

S
Y=

S
 (9) 

It is evident that the GRNN model has only 

one parameter σ which needs to be tuned. 

This parameter sets the generalization 

capability of the GRNN. 

 
Fig. 5. Architecture of GRNN [24]. 

4.3. Evaluation of Models Performance 

In the present study, the performances of 

FFNN and GRNN were evaluated according 

to the following statistical indicators (Eqs. 10 

and 11): 

Root Mean Square Error (RMSE): 

 (10) 

Coefficient of determination (R
2
): 

 (11) 

where N  denotes the size of observations 

vector, ix  denotes the x  value for 

observation i , iy  denotes the y  value for 

prediction i , x  denotes the mean x  value, y  

denotes the mean y  value, xσ  denotes the 

standard deviation of x, and yσ  denotes the 

standard deviation of y . 

5. Optimum Architecture and 

Performance of ANN Models 

5.1. Optimum Architecture of FFNN 

The FFNN performance greatly depends on 

the ANN architecture and setting of 

parameters. An important task in developing 

a FFNN is finding the optimum number of 

hidden layers as well as optimum number of 

neurons in each hidden layer. This task is 

commonly completed by trial and error 

approach. On the other hand, the setting of 

original weight and bias values has a major 

impact on the results of the FFNN. 

In this study, the ANN toolbox of Matlab was 

employed for implementation of FFNN. 

Matlab ANN toolbox automatically selects 

the initial values for weights and biases for 

each run, which affects the performance of 

the trained ANN considerably, even if all 

parameters and ANN architecture remain 

constant. This leads to additional difficulties 

in choosing the optimum network 

architecture and initial value of parameters. 

To overcome this difficulty, a code was 

developed in Matlab which handles the trial 

and error process, automatically. This code 

checks various numbers of the neurons in the 

hidden layer for several times and chooses 

the best ANN architecture based on the 

minimum RMSE (Root Mean Squared Error) 

for overall dataset. The testing (20%), cross 

validating (10%) and training (70%) sets for 

2

1

) (
1

i

N

i
i xy

N
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



2
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ANN training procedure were selected 

randomly from the established dataset. The 

optimal structure of ANN was determined as 

5-14-1 (one hidden layer with 14 neurons). 

The transfer function for hidden and output 

layer was assumed as hyperbolic tangent 

sigmoid and linear transfer functions, 

respectively. Weights and bias matrix are 

presented in appendix A. 

5.2. Optimum Architecture of GRNN 

Matlab ANN toolbox was employed in this 

research study for training and testing of 

GRNN model. The smoothing parameter of σ 

affects the generalization capability of the 

GRNN and should be set to an appropriate 

value for optimal performance of GRNN. In 

order to determine the optimum value of 

smoothing parameter, a program was 

developed in Matlab. This program was able 

to train GRNN according to different values 

of spread parameter. In case of each value of 

smoothing parameter (σ could varies from 

0.001 to 1 with increment of 0.001), the 

value of RMSE for testing set was 

determined and the value that results in 

minimum value of RMSE was selected as 

optimum value of smoothing parameter. 80% 

of dataset records were selected as training 

set and remaining 20% were considered as 

testing set. Training set in case of GRNN was 

the union of training and cross validation sets 

of FFNN and testing set was the same for 

both neural network models. Variation of 

RMSE versus spread parameters for both 

training and testing sets is demonstrated in 

Figure 6. According to the Figure 6, by 

increasing the smoothing parameter, the 

RMSE of training set increases, but the 

minimum RMSE of testing set is achieved 

when the value of smoothing parameters is 

equal to 0.157. 

 
Fig. 6. RMSE versus smoothing parameter. 

5.3. Performances of FFNN and GRNN 

The performances of FFNN and GRNN for 

predicting resilient modulus using training 

and testing sets are demonstrated in Figures 7 

to 10. Also, the RMSE and R
2
 values for each 

model are given in Table 9. 

 
Fig. 7. Performance of FFNN model (training 

set). 

 
Fig. 8. Performance of FFNN model (testing set). 
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Fig. 9. Performance of GRNN model (training 

set). 

 
Fig. 10. Performance of GRNN model 

(testing set). 

Table 9. The accuracy of different artificial 

neural network models 

Model 
Training Set Testing Set 

R
2
 RMSE R

2
 RMSE 

FFNN 0.993 502.95 0.981 827.20 

GRNN 0.999 142.33 0.971 1017.46 

 

According to Table 9, in case of FFNN, the 

coefficient of determination (R
2
) between 

observed and predicted values of resilient 

modulus for training and testing sets is 0.993 

and 0.981, respectively. These two values are 

0.999 and 0.971 for GRNN. It is evidence 

that the accuracy of FFNN model is superior 

to GRNN. In this case, the FFNN model is 

capable to predict resilient modulus of 

asphalt concrete with R
2
 more than 0.98. 

6. Parametric Analysis 

In order to investigate the effect of various 

factors such as the temperature, penetration 

grade of asphalt binder, loading frequency, 

change of asphalt binder content compared to 

optimum asphalt binder content, and 

percentage of RAP on the resilient modulus 

of asphalt concrete mixtures, one asphalt 

concrete mixture under standard conditions 

was assumed. The assumed asphalt concrete 

mixture with standard conditions is given in 

Table 10. 

Table 10. Standard conditions for parametric 

analysis. 

Temp.(
o
C) PGC

a
 

Frequency 

(Hz) 

CBC
b
 

(%) 

RAP 

(%) 

25 0 0.5 0 25 
a
PGC: Penetration grade code (0 for 60/70 asphalt 

binder and 1 for 85/100 asphalt binder) 
b
CBC: change of asphalt binder content compared to 

optimum asphalt binder content 

To study the effect of different parameters, 

on the resilient modulus, the trained FFNN 

was used and by changing the desired 

parameters, the resilient modulus was 

computed. The results of the parametric 

analysis are presented in Figures 11 to 15. 

Fig. 11. Resilient modulus versus 

temperatures for the asphalt mixture. 
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Fig. 12. Effect of penetration grade of asphalt 

binder on the resilient modulus of asphalt 

concrete mixture. 

 
Fig. 13. Effect of loading frequency on the 

resilient modulus of asphalt mixure. 

 
Fig. 14. Effect of CBC parameter on the resilient 

modulus of asphalt mixure. 

 
Fig. 15. Effect of RAP content on the resilient 

modulus of asphalt concrete mixture 

According to Figures 11 to 15, the effect of 

different parameters on the resilient modulus 

of asphalt concrete mixtures can be stated as 

follows: 

Temperature: by increasing the temperature, 

the resilient modulus of asphalt mixes 

decreases and vice versa. Due to visoelastic 

behavior of asphalt materials, by increasing 

temperature, the viscosity of asphalt binder 

decreases and thus the stiffness of asphalt 

concrete decreases. 

Change of asphalt binder content compared 

to optimum asphalt binder content: by 

increasing asphalt binder content compared 

to optimum asphalt binder content, resilient 

modulus increases. Also by decreasing 

asphalt binder content compared to optimum 

asphalt binder content, resilient modulus 

decreases. As the asphalt binder content 

increases, the adhesion and tensile strength in 

the mixture structure improves. This leads to 

decrease in the horizontal deformation in the 

resilient modulus test, so in according to 

equation 2, the resilient modulus of asphalt 

concrete mixtures increases. However it 

should be noted that if the asphalt binder 

content increases so much, the excess asphalt 

binder will weak the interlocking the 
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aggregate and so the resilient modulus of 

asphalt concrete mixture will decrease. 

Penetration grade of asphalt binder: by 

increasing the Penetration grade, the resilient 

modulus of asphalt mixes decreases and vice 

versa. Asphalt binder with higher penetration 

grade has lower viscosity and this decreases 

the stiffness and resilient modulus of the 

asphalt concrete mixtures. 

Loading frequency: by changing loading 

frequency between 0.5 to 0.9 Hz, no 

distinctive change is observed for resilient 

modulus. This can be explained by narrow 

range of frequency change. 

In fact for exploring the effect of frequency 

on the resilient modulus of asphalt concrete, 

the frequency should be changed in a wide 

range specially for moderate and low 

temperatures.For further research, it is 

recommended that a wide range of 

frequencies (from 0.1 to 10) to be used for 

experimental program. 

RAP content: By Increasing RAP content, the 

resilient modulus of asphalt mixes increases, 

significantly. Since, RAP contains aged 

asphalt binder, so the addition of RAP makes 

the mixture stiffer and increases the resilient 

modulus. It should be noted that although the 

increasing of resilient modulus may 

considered as a positive parameter for 

pavement design, but the other properties 

such as fatigue and rutting resistance of 

asphalt concrete mixture containing RAP 

should be evaluated. 

7. Conclusion 

In this study, two different versions of 

artificial neural networks including FFNN 

and GRNN, were employed for modeling of 

the resilient modulus of asphalt concrete 

mixtures containing reclaimed asphalt 

pavement. In ANN architecture, temperature 

(
o
C), penetration grade code (0 for 60/70 

asphalt binder and 1 for 85/100 asphalt 

binder), loading frequency (Hz), change of 

asphalt binder content compared to optimum 

asphalt binder content (%), and RAP content 

(%) were chosen as the input parameters and 

the resilient modulus (MPa) of asphalt 

concrete mixtures was assumed as the output 

parameter. 

According to the results of this study the 

following statements can be concluded: 

- The optimum architecture of FFNN for 

predicting resilient modulus was determined 

as 5-14-1 (one hidden layer) with hyperbolic 

tangent sigmoid and linear transfer functions 

for the hidden layer and output layer, 

respectively. R
2
 and RMSE for predicted 

values of resilient modulus using FFNN was 

determined as 0.981 and 827.20 for testing 

set, while these values are 0.971 and 1017.46 

in case of GRNN. Thus, the accuracy of 

FFNN model was superior to GRNN model 

for predicting resilient modulus of asphalt 

concrete mixtures containing RAP materials. 

- The most effective parameter on the 

resilient modulus of asphalt concrete 

mixtures containing RAP materials was 

temperature. 

- The resilient modulus of asphalt concrete 

mixtures increased when the RAP content 

increases or stiffer asphalt binder is 

employed. 

- Results of this study also showed that by 

decreasing temperature and increasing 

asphalt binder content compared to optimum 

asphalt binder content, resilient modulus 

increases. 
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Appendix A. Weights and biases of 

Artificial Neural Network (ANN) 

This Appendix is assigned to input vector, 

output vector, weight factors, and bias factors 

of the back propagation neural network 

which was discussed in section 4.5. The 

optimum architecture of back propagation 

neural network is 5-14-1 with sigmoid 

transfer function in the hidden layer and 

linear transfer function in the output layer. 

The order of normalized predictors in the 

input vector is as follows: 

 
1×5

I= T,PGC,Frequency,CBC,RAP  (12) 

The order of normalized output parameters in 

the output vector is as follows: 

 
1×1

O= Mr  (13) 

Equation (14) may be used for simulation of 

ANN and prediction of resilient modulus 

based on given input vector. 

            
T T TT

h h o oOut =tansig Inp × W + θ × W + θ  

(14) 

Where tansig (x) can be obtained as follows: 

-2x

2
tansig(x)= -1

1+e
 (15) 

Weight matrix for hidden and output layers 

are given in Table 11 and Table 12, 

respectively. Bias vector for hidden and 

output layer are given in Table 13 and Table 

14, respectively. 

Table 11. Weight matrix of hidden layer (W
h
)

t
14×5 

-0.299643482 0.331131154 -0.150468515 3.894341144 -1.668650763 

1.245192212 -0.474771598 -0.018442791 -2.452333208 3.068082506 

1.748791212 0.145061223 -0.767821500 0.608096855 -0.051696506 

-1.423850700 0.280712802 -0.191103718 0.395230798 -0.118328016 

-1.809273169 0.145292928 1.949744431 0.989839148 -2.461689208 

-0.922523725 0.689167058 0.620551910 -1.382514250 1.110017441 

2.213075920 1.798941169 1.390372619 0.573364045 -0.215540190 

-2.105617879 0.003661187 0.046071359 -0.625417854 0.838355064 

-1.101012107 -1.135496135 0.468455867 -7.184626798 -0.977689316 

2.425698003 1.168375909 -0.318634537 -1.986476824 -0.819925948 

2.054786137 -1.787104430 0.994535680 2.862659074 -2.284213323 

0.960594508 -0.912956687 -0.138879608 3.623386289 2.789123777 

-0.290257636 1.097970413 0.150710357 -1.003233075 2.653275383 

-0.762431346 -1.915528492 1.229452135 1.775558134 1.225965169 

 

http://dx.doi.org/10.1109/72.97934
https://doi.org/10.1016/j.knosys.2012.08.015
https://doi.org/10.1016/S0305-0548%2899%2900144-6
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Table 12. Weight matrix of output layer (W
o
) 

14×1 

-0.295478876 

-0.204809027 

0.083193339 

0.397573892 

0.024329070 

0.064349455 

-0.060940316 

0.289739736 

0.077479325 

-0.104030104 

0.057266017 

0.105736230 

0.175164928 

0.022502847 

 

Bias vector for hidden and output layer are 

given in Table 13 and Table 14, respectively: 

Table 13. Bias vector of hidden layer (θ
h
) 

-4.765303345 

3.153745569 

-2.332963106 

-0.607005988 

-1.178814078 

1.336729674 

1.370637157 

0.275829938 

-2.188464110 

1.655692989 

-1.621861283 

2.530472150 

-4.183043913 

-2.608443726 

 

Table 14. Bias vector of output layer (θ
o
) 

-0.017525849 
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