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This paper presents a robust hybrid improved dolphin echolocation 

and ant colony optimization algorithm (IDEACO) for optimizing 

the truss structures with discrete sizing variables. The dolphin 

echolocation (DE) is inspired by the navigation and hunting 

behavior of dolphins. An improved version of dolphin echolocation 

(IDE), as the main engine, is proposed and uses the positive 

attributes of ant colony optimization (ACO) to increase the 

efficiency of the IDE. Here, ACO is employed to improve the 

precision of the global optimization solution. In the proposed 

hybrid optimization method, the balance between exploration and 

exploitation process was the main factor to control the performance 

of the algorithm. IDEACO algorithm performance is tested on 

several problems of benchmarks discrete truss structure 

optimization. The results indicate the excellent performance of the 

proposed algorithm in optimum design and rate of convergence in 

comparison with other metaheuristic optimization methods, so 

IDEACO offers a good degree of competitiveness against other 

existing metaheuristic methods. 

Keywords: 
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1. Introduction 

The process of minimizing or maximizing an 

objective function is called optimization. In 

general, structural optimization is divided 

into three main types [1]. Sizing 

optimization, finding the area of each 

member of the structure. Shape (geometry) 

optimization, determining the coordinate 

nodes of the structure. Topology optimization 

was related to connectivity of structural 

members. In most cases, the three-mentioned 

type optimization problem is investigated 

independently; however, in some problems 

sizing; shape and topology optimization was 

preformed simultaneously that is called multi 

modals optimization [2]. 

Structural optimization problems can be 

divided into two general categories of 

continuous and discrete design variables. 

Most-recent papers on optimal structural 

http://dx.doi.org/10.22075/jrce.2017.11367.1186
http://civiljournal.semnan.ac.ir/


 M. Arjmand et al./ Journal of Rehabilitation in Civil Engineering 6-1 (2018) 70-87 71 

problems have studied with continuous 

design variables [3]. However, the 

accessibility of standard member sizes in the 

steel production sector proposes to select 

cross-sectional areas from an available list of 

discrete values. Optimization problems with 

discrete design variables are far more 

difficult to solve than problems with 

continuous [4]. 

Metaheuristic optimization methods are quite 

powerful and suitable for obtaining the 

solution to structural engineering 

optimization problems. The formulations of 

these methods are often inspired by either 

physical laws or natural phenomena. Meta-

heuristic optimization methods consist of two 

phases: an exploration of the search region 

and exploitation of the best points found. 

One of the main properties in extending an 

effective metaheuristic algorithm is to 

manage a suitable balance between 

exploration and exploitation [5-6]. 

Some of the popular meta-heuristic methods 

are such as genetic algorithms [7], simulated 

annealing optimization [8], ant colony 

optimization [9], particle swarm optimization 

[10], water cycle algorithm [11], min blast 

algorithm [12] and Time evolutionary 

optimization [13]. 

Each of the proposed optimization methods 

has specific characteristics. If the strengths 

and weaknesses of each method have been 

identified, they can be enhanced by 

combining two or more algorithms to 

reinforce the strengths and resolve the 

weaknesses of them. For this purpose, 

recently, the researchers have focused on the 

combination of optimization techniques. 

Some hybrid optimization algorithms are 

particle swarm optimizer, ant colony strategy 

and harmony search [14], charge system 

search and particle swarm optimization [15], 

imperialist competitive and ant colony 

algorithm [16], water cycle and min blast 

algorithm [17], particle swarm optimization 

and convex approximation [18], colliding 

bodies optimization and particle swarm 

optimization [19], hybrid big bang crunch 

[20]. 

Dolphin echolocation is the newly meta-

heuristic algorithm proposed by Kaveh and 

Farhoudi [21]. DE was mimicked from 

strategies applied by dolphins for their 

hunting process. 

The main advantages of the dolphin 

echolocation algorithm are simple 

formulation and no essential parameter 

tuning. Trapping in local optima solution at 

the exploitation phase is one of the 

weaknesses of dolphin echolocation. In the 

present paper, for resolving this issue, at first 

a version of improved dolphin echolocation 

was proposed, and then it was combined with 

ant colony optimization. The efficiency of 

this hybrid approach is evaluated by solving 

a constrained classical benchmark. 

2. Discrete Structural Optimization 

Problems 

2.1. Problem Formulation 

In discrete sizing optimization of truss 

structures, the cost function is to minimize 

the total weight of the structure. The design 

variables are the cross-sectional area of the 

truss members. The optimal design must 

satisfy constraints such as stress and/or 

displacement on the structural elements and 

nodes, respectively. 

The optimization problem for truss structures 

can be formulated as Eq. 1. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:𝑊(𝐴) =∑𝜌𝑖

𝑁

𝑖=1

𝐴𝑖𝐿𝑖 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜:

{
 
 

 
 𝜎𝑗

𝑚𝑖𝑛 ≤ 𝜎𝑗 ≤ 𝜎𝑗
𝑚𝑎𝑥 , 𝑗 = 1,2, … , 𝑁

𝛿𝑘
𝑚𝑖𝑛 ≤ 𝛿𝑘 ≤ 𝛿𝑘

𝑚𝑎𝑥 , 𝑘 = 1,2, … ,𝑀

𝐴𝑟𝜖{𝑺}, 𝑟 = 1,2, … , 𝑁

𝑺 = {𝑠1, 𝑠2, … , 𝑠𝑝}

 

(1) 

Where W is the total weight of the structure. 

𝜌𝑖, 𝐴𝑖 and 𝐿𝑖 are the structural weight, 

material density, cross-sectional area, and 

length of the ith member, respectively. N and 

M are the numbers of elements and nodes of 

truss structure respectively 

𝜎𝑖is stress in ith member and 𝛿𝑖 is nodal 

displacement in the ith node. The superscript 

max and min denote the maximum and 

minimum limits. Each cross-sectional area 

must be selected from a discrete set S of p 

available cross-sections according to 

production standards. 

2.2. Constraint Handling 

The most common strategy in the heuristic 

methods to handle constrains is to apply 

penalty functions [25]. In this method, a 

constrained optimization problem was 

converted into an unconstrained one by 

multiplying a coefficient penalty by cost 

function based upon the value of constraint 

violation appears as a problem. For that 

reason, the pseudo cost function should be 

transformed into Eq. 2. 

𝑊𝑝(𝐴) = [(1 + 𝜖(∑𝑀𝑎𝑥{0, 𝑐𝑖(𝐴)}))

𝑘

𝑖=1

2

]𝑊(𝐴) 

𝑐𝑖(𝐴) =
𝑔𝑖(𝐴)

𝑔𝑖
𝑎𝑙𝑙 − 1 

 

(2) 

Where 𝑊𝑝 is pseudo cost function. 𝜖 is 

constant-coefficient depending on each 

problem. k, 𝑔𝑖(𝐴) and 𝑔𝑖
𝑎𝑙𝑙 are the number of 

constraints, ith constraint function consist of 

stress or/and nodal displacement and 

allowable values of constraint, respectively. 

3. Improved Dolphin Echolocation 

and Ant Colony Optimization 

3.1. Dolphin Echolocation Optimization 

Dolphin echolocation algorithm is a new 

robust, and efficient Metaheuristic algorithm 

for solving structural optimization problems. 

DE is used as a simple formulation and 

doesn’t need extensive mathematical 

computations and parameter tuning. It is 

widely applied to various fields of 

optimization problems. The flowchart of the 

DE algorithm was illustrated in Figure 1. It 

can be referred to [21] for more details about 

this algorithm. 

 
Fig. 1. The flowchart of dolphin echolocation 

[21]. 
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3.2. Ant Colony Optimization 

Ant colony optimization (ACO) is a 

metaheuristic optimization method that was 

originated by Dorigo et al. [9]. The inspiring 

origin of this algorithm is the behavior of real 

ant colonies. At first, ants explore the 

surrounding environment of their nest 

randomly. On the move, ants spatter 

pheromone trail on the land. As soon as an 

ant finds a food source, it appraises the 

quality and the quantity of the food and 

carries some of them to the nest. While 

moving to the nest, the amount of pheromone 

that an ant spatters on the land can depend on 

the quality and quantity of the food. The 

pheromone instructs other ants to the food 

origin. It has been shown in that the indirect 

communication between the ants by 

pheromone enable them to find the shortest 

paths between their nest and food sources. 

These abilities of real ant colonies are 

exploited in artificial ant colonies for solving 

engineering problems [24]. It can be referred 

to [5] for more details about ACO. 

3.3. Hybrid Improved Dolphin 

Echolocation and ant Colony 

Optimization 

In this section, at first an improved version of 

the DE was proposed, and then a hybrid 

optimization algorithm was presented using 

improved dolphin echolocation and ant 

colony optimization. IDE optimization was 

introduced, which has been improved to get 

the best convergence and more reliable, 

optimal designs, especially in the final 

iterations and explore best results than 

previous studies. 

IDEACO is a new hybrid improved dolphin’s 

echolocation and ant colony optimization algorithm. 

This algorithm applies to improved dolphin’s 

echolocation for exploration of feasible space, while 

ant colony optimization is used as the exploitation of 

the best design. 

The main steps of IDEACO for discrete optimization 

are summarized as follows: 

Step 1. Create the alternative matrix 

First, the entire search space is considered to 

the matrix A. The elements of this matrix 

consist of the value of allowable that can be 

assigned to design variables as follows Eq. 3. 

𝐴(𝑚,𝑛𝑣𝑎𝑟)

=

[
 
 
 
 
 
𝐴1,1 𝐴1,2 ⋯

𝐴2,1 𝐴2,2 ⋯

⋮ ⋮ ⋱

𝐴1,𝑗 ⋯ 𝐴1,nvar
𝐴2,𝑗 ⋯ 𝐴2,nvar
⋮ ⋱ ⋮

𝐴𝑖,1 𝐴𝑖,2 ⋯

⋮ ⋮ ⋱
𝐴𝑚,1 𝐴𝑚,2 ⋯

𝐴𝑖,𝑗 ⋯ 𝐴𝑖,nvar
⋮ ⋱ ⋮

𝐴𝑚,𝑗 ⋯ 𝐴𝑚,nvar]
 
 
 
 
 

 

 

(3) 

Where m and nvar are the number of 

alternative and design variables, respectively. 

Elements of the matrix on each column are 

sorted from less to more. 

Step 2. Create initial population 

To start the optimization algorithm, matrix L 

is a candidate representing a matrix of the 

initial population with size (npop×nvar), which 

was produced randomly from matrix A as 

follows: 

for j=1 to the number of design variables 

   for i=1 to the number of population 

      L(i,j) = A(randi(m), j); 

   end 

end 

𝐿 =

[
 
 
 
 
 
 

𝐿1,1 𝐿1,2 ⋯

𝐿2,1   𝐿2,2 ⋯

⋮ ⋮ ⋯

𝐿1,𝑗 ⋯ 𝐿1,𝑛𝑣𝑎𝑟
𝐿2,𝑗 ⋯ 𝐿2,𝑛𝑣𝑎𝑟
⋮ ⋯ ⋮

𝐿𝑖,1   𝐿𝑖,2 ⋯

⋮ ⋮ ⋯
𝐿𝑛𝑃𝑜𝑝 ,1 𝐿𝑛𝑃𝑜𝑝,2 ⋯

𝐿𝑖,𝑗 ⋯ 𝐿𝑖,𝑛𝑣𝑎𝑟
⋮ ⋯ ⋮

𝐿𝑛𝑃𝑜𝑝,𝑗 ⋯ 𝐿𝑛𝑃𝑜𝑝,𝑛𝑣𝑎𝑟]
 
 
 
 
 
 

 

(4) 

 

Where npop is the number of population. 

Step 3. Calculate the fitness of each 

population 

Fitness must be defined in a manner that 

better solutions get higher values. In other 
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hands, by decreasing the objective function 

(f(x)), the fitness (𝐹𝑖𝑡𝑛𝑒𝑠𝑠) must be 

increased. In this paper, fitness is specified as 

Eq. 5. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
𝛽

𝑓(𝑥)
 (5) 

Where f(x) is an objective function, 𝛽 is 

constant-coefficient that is depended upon 

the type of problem that has value 10e3 in 

this paper. 

Step 4. Sort the matrix L 

The rows of matrix L based upon the fitness 

was sorted descending that is called SL. The 

fitness array of SL is SFitness as follows: 

[SFitness, indF ] = sort(Fitness,1,'descend'); 

for j =1 to the number of design variables 

   for i=1 to the number of population 

      SL(i,j)=L(indF(i),j); 

   end 

end 

Step 5. Calculate the effective radius 

The fitness of each member’s matrix SL is 

distributed by radius (Ri) of them. The value 

of Ri depends upon the radius of the main 

loop (RM), number of iteration (𝐼𝑡𝑒𝑟 and 

𝐼𝑡𝑒𝑟𝑚𝑎𝑥) and the place of each member on 

matrix SL, (𝑖) as Eq. 6. to Eq. 7. 

𝑅𝑖 = [𝑅𝑀 − (𝑅𝑀 − 1) (
𝑖

𝑛𝑃𝑜𝑝
)] , 𝑖 = 1,… , 𝑛𝑝𝑜𝑝 (6) 

Where i denotes to each member of the 

matrix SL. RM is determined by Eq. 5. 

𝑅𝑀 = [𝑅𝑚𝑎𝑥 − (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛) (
𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)] (7) 

Where Rmax, Rmin, Iter, and Itermax are the 

maximum and minimum of RM, the number 

of iteration in optimization procedure and the 

maximum number of iteration, respectively. 

Rmax, Rmin was selected according to the size 

of the search space. In this paper, the values 

of Rmax and Rmin are considered ¼ to ¾ of the 

number of alternative matrices and 2 or more 

than it. 

Step 6. Calculate the accumulative fitness 

After the calculation of Ri, the members of the matrix 

SL found from matrix A and then accumulative fitness 

(AF) is calculated as follows (Eq. 8.): 

𝐴𝐹(𝑎 + 𝑘, 𝑗) = 𝜑 (
𝑅𝑖 − 𝑎𝑏𝑠(𝑘)

𝑅𝑖
) 𝑆𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)

+ 𝐴𝐹(𝑎 + 𝑘, 𝑗) 

(8) 

Where 𝜑 is calculated by Eq. 9. 

𝜑 =
1

𝑖2
 (9) 

for i=1 to the number of population 

   for j =1 to the number of design variables 

   find the place of SL(i,j) in jth column matrix A and 

called a 

         for k=-Ri to Ri 

            calculate AF (a+k, j) by Eq. 8. 

         end 

   end 

end 

By increasing the amount of i, the fitness of 

each population of the matrix SL is 

decreased. Parameter 𝜑increases this effect. 

Accumulative fitness was distributed linearly. 

Figure 2 shows the distribution and their 

overlaps and reflects on the lower and upper 

bound of the design’s variables as follows: 

 
Fig. 2. the distribution of accumulated fitness 

[22]. 

for j=1 to the number of design variables 

   for i=1 to the number of population 

      a=find(A(:,j)==SL(i,j)); 

 %Calculate the radius of each member of the matrixSL 

      Ri=Max(floor(RM-(RM-1)*i/npop),1); 

      for k=-Ri to Ri 

         if a+k<1 

            S=abs(a+k)+1; 

         else if  a+k>size(A,1) 

           S=2*size(A,1)-(a+k)+1; 

         else 

            S=a+k; 
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         end 

      AF(S,j)=(1/Ri)*(1/i2)*(Ri-

abs(k))*(SFitness(i))+AF(S,j); 

      end 

   end 

end 

Step 7: Obtain the best answers and create 

BestL matrix 

The best solutions obtained, until now, is 

saved in BestL matrix. Matrix rows of BestL 

are sorted based on their fitness. The top 

rows of this matrix have a bigger fitness, so 

the first row of this matrix is the best optimal 

designs among the other rows. BestF is the 

array of the fitness of the matrix BestL. 

BestL is a memory which saves some 

historically best design and can improve the 

algorithm performance, such as higher rate 

convergence without increasing the 

computational cost [23]. 

Step 8. Calculate the effective parameters for 

increasing accumulative fitness on BestL 

In this step, by using the properties of ant 

colony optimization on continuous variables 

[24], the accumulative fitness of members in 

BestL is increased. For this purpose, 

parameter ω is defined as Eq. 10. 

𝜔𝑖 = (
1

𝑞√2𝜋
2 𝑒

−
(𝑖−1)2

2𝑞2 ) , 𝑖 = 1,… , 𝑛𝑝𝑜𝑝 (10) 

Where i is each member of the population. q 

is defined as Eq. 11. 

𝑞 = 𝐾 (1 − (
𝐼𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)
𝑃𝑜𝑤

) + 휀 (11) 

Where K made more uniform, the amount of 

q and calculated by Eq. 10. Pow is dependent 

on the problem that has a value between 0.1 

and 2. Pow and constant parameter 휀 are 0.4 

and 1e-6, respectively. 

𝐾 = 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑎𝑙𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 
(12) 

Step 9. Calculate the enhance probability of 

BestL in accumulative fitness matrix 

The values of members in the accumulative 

fitness matrix are increased based on BestL 

as follows: 

for j=1 to the number of population 

   for i=1 to the number of design variables 

      RS=Rand-selection in jth column of BestL 

      X=find a row of RS in matrix A 

      Calculate AF (X, j) by Eq. 13. 

   end 

end 

𝐴𝐹(𝑋, 𝑗) =  (𝐴𝐹(𝑋, 𝑗) +
𝐵𝑒𝑠𝑡𝐹(𝑅𝑆)

𝑅𝑆
)𝑁 (13) 

Where N is calculated from Eq. 12. 

𝑁 = 1 + 𝜔 (14) 

In equations 10 to 14, by increasing 

coefficient i, factors 𝜔 and N will increase. 

In Eq. 13, 
𝐵𝑒𝑠𝑡𝐹(𝑅𝑆)

𝑅𝑆
 prevents the members of 

the matrix AF is zero. In addition, this term 

led to the algorithm can be escaped from the 

local minimum optimal. 

Step 10. Calculate the probability of each 

member of matrix A 

The probability of each member matrix A is 

calculated according to the accumulative 

fitness matrix by Eq. 15. 

𝑃𝑖,𝑗 =
𝐴𝐹𝑖,𝑗

∑ 𝐴𝐹𝑖,𝑗
𝑛𝐴𝑙𝑡
𝑖=1

, 𝑗 = 1,2, … . , 𝑛𝑣𝑎𝑟 , 

𝑖 = 1,2, … , 𝑛𝐴𝑙𝑡 

(15) 

Step 11. Rearrange the matrixL 

The new matrix L is created by roulette 

wheel according to matrix P, as follows: 

for i=1 to the number of design variables 

   for j=1 to the number of population 

      r=rand; 

      C(:,j)=(P(:,j))/(sum(P(:,j))); 

      C(:,j)=cumsum(C(:,j)); 

      F=find(C(:,j)>=r,1,'first'); 

      L(i,j)=A((F),j); 

   end 
end 
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Steps 3 to 11 are repeated as many times as 

stop criteria is satisfied. 

The flowchart of IDEACO is shown in 

Figure3. In this flowchart, the blue step is 

obtained from ant colony optimization. 

In main steps mentioned about IDEACO, 

steps 4, 7 and 9 are added, and steps 5, 6 and 

10 included modified effective radius, 

accumulative fitness, and probability of 

selection, are improved compared to 

algorithm DE optimization. 

 
Fig. 3. The flowchart of IDEACO algorithm. 

4. Design Examples 

The performance of the proposed meta-

heuristic algorithm was evaluated by solving 

three weight minimization benchmark truss 

structures with 72, 200, and 582 bars, 

including discrete variables. The material 

density and modulus of elasticity of the 

problems are given in Table 1. 

The results obtained by IDEACO are 

compared with those of some other popular 

meta-heuristic methods, presented recently in 

the literature. These methods are selected 

among various metaheuristic for evaluation 

considering their high computational 

efficiency, quality of optimal solution, and 

superiority of performance of the proposed 

method. 

Table 1. Main properties of benchmark truss 

structures. 

Structure 
72 

bar  

200 

bar  

582 

bar  

Modulus of elasticity 

(Msi) 
10  30  29  

Material density (lb/in
3
) 0.1  0.283  0.283  

 

4.1. 72-Bar Spatial Truss Structure 

The layout of 72bar spatial truss structure 

depicted in Figure 4. This example has been 

investigated in [3,4,10,14,21,26]. The 

members of this structure are categorized 

in16 groups as follows: 

(1) A1- A4, (2) A5- A12, (3) A13- A16, (4) A17- A18, (5) 

A19- A22, (6) A23- A30, (7) A31- A34, (8) A35- A36, (9) 

A37- A40, (10) A41- A48, (11) A49- A52, (12) A53- A54, 

(13) A55- A58, (14) A59- A66, (15) A67- A70, (16) A71- 

A72. 

Two optimization cases were implemented; 

the discrete design variables of the cross-

sectional area in both cases can be selected 

from the following: 

Case (i): 0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 

1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 

2.9, 3.0, 3.1, 3.2 (in
2
). 
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Case (ii): The discrete design variables are 

selected from the available cross-sectional 

areas of the AISC code, listed in Table 2. 

In Table 3; the loading condition of 72 bar 

truss structure is presented. The maximum 

tension or compression stress applied in 

members must not exceed ±25ksi 

(±172.38MPa). The displacement limitation 

of nodes is±0.25 in (6.35mm) in all 

coordinate directions. 

The results of 72 bar truss structure are 

shown in Tables 4 and 5 for case (i) and case 

(ii) respectively.In Table 4, it can be 

illustrated in Case (i) the best solution is 

achieved using IDEACO that is better than 

GA, HS, and HPSO. Although it is the same 

as DHPACO, DE, and HHS. 

Table 5 shows that in Case (ii), the results 

obtained using IDEACO is better than 

previously published works such as GA, 

DHPSACO, and DE. 

Table 2. The available cross-sectional areas for 72 bar truss structure (case (ii)). 

mm
2 in

2 No. mm
2 in

2 No. mm
2 in

2 No. mm
2 in

2 No. 

7419.340 11.500 49 2477.414 3.840 33 1008.385 1.563 17 71.613 0.111 1 

8709.660 13.500 50 2496.769 3.870 34 1045.159 1.620 18 90.968 0.141 2 

8967.724 13.900 51 2503.221 3.880 35 1161.288 1.800 19 126.451 0.196 3 

9161.272 14.200 52 2696.769 4.180 36 1283.868 1.990 20 161.290 0.250 4 

9999.98 15.500 53 2722.575 4.220 37 1374.191 2.130 21 198.064 0.307 5 

10322.56 16.000 54 2896.768 4.490 38 1535.481 2.380 22 252.258 0.391 6 

10903.20 16.900 55 2961.284 4.590 39 1690.319 2.620 23 285.161 0.442 7 

12129.01 18.800 56 3096.768 4.800 40 1696.771 2.630 24 363.225 0.563 8 

12838.68 19.900 57 3206.445 4.970 41 1858.061 2.880 25 388.386 0.602 9 

14193.52 22.000 58 3303.219 5.120 42 1890.319 2.930 26 494.193 0.766 10 

14774.16 22.900 59 3703.218 5.740 43 1993.544 3.090 27 506.451 0.785 11 

15806.42 24.500 60 4658.055 7.220 44 2019.351 3.130 28 641.289 0.994 12 

17096.74 26.500 61 5141.925 7.970 45 2180.641 3.380 29 645.160 1.000 13 

18064.48 28.000 62 5503.215 8.530 46 2238.705 3.470 30 792.256 1.228 14 

19354.80 30.000 63 5999.988 9.300 47 2290.318 3.550 31 816.773 1.266 15 

21612.86 33.500 64 6999.986 10.850 48 2341.931 3.630 32 939.998 1.457 16 

 
Figure 4. The layout of the spatial 72 bar truss structure 
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Fig. 5. Convergence curves of the spatial 72 bar 

truss structure for case (i). 

 
Fig. 6. Convergence curves of the spatial 72 bar 

truss structure for case (ii). 

Table 3. Loading condition for 72 bar truss structure 
Pz 

kips 

 (kN) 

Py 

kips 

(kN) 

Px 
 kips 

(kN)  
nodes 

Load 

case 

-5.0 

(-22.24) 

5.0 

(22.24) 

5.0 

(22.24) 
17 1 

-5.0 

(-22.24) 

0.0 

(0.00) 

0.0 

(0.00) 
17 

2 

-5.0 

(-22.24) 

0.0 

 (0.00) 

0.0 

(0.00) 
18 

-5.0 

(-22.24) 

0.0 

(0.00) 

0.0 

 (0.00) 
19 

-5.0 

(-22.24) 

0.0 

(0.00) 

0.0 

(0.00) 
20 

 

Table 4. Comparison of IDEACO results with literature for the 72-bar truss structure (case (i)). 

Element Group 
GA 

 [26] 

HS 

[4] 
HPSO [10] 

DHPSACO 

[14] 

DE 

[21] 

HHS 

[3] 
IDEACO 

1 1.5 1.9 2.1 1.9 2 1.9 2 

2 0.7 0.5 0.6 0.5 0.5 0.5 0.5 

3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

5 1.3 1.4 1.4 1.3 1.3 1.3 1.3 

6 0.5 0.6 0.5 0.5 0.5 0.5 0.5 

7 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

9 0.5 0.6 0.5 0.6 0.5 0.6 0.5 

10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

12 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

13 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

14 0.5 0.5 0.5 0.6 0.6 0.6 0.6 

15 0.5 0.4 0.3 0.4 0.4 0.4 0.4 

16 0.7 0.6 0.7 0.6 0.6 0.6 0.6 

Best (lb) 400.66 387.94 388.94 385.54 385.54 385.54 385.54 

Average (lb)      386.040 386.096 

Stdev (lb)      1.155 0.6774 

No. of analyses  16044 50000   5000 6000 
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Table 5. Comparison of IDEACO results with literature for the 72-bar truss structure (case (ii)) 

Element 

Group 

GA 

[26] 

DHPSACO 

[14] 

DE 

[21] 
IDEACO 

1 0.196 1.8 2.13 1.99 

2 0.602 0.442 0.442 0.563 

3 0.307 0.141 0.111 0.111 

4 0.766 0.111 0.111 0.111 

5 0.391 1.228 1.457 1.228 

6 0.391 0.563 0.563 0.442 

7 0.141 0.111 0.111 0.111 

8 0.111 0.111 0.111 0.111 

9 1.8 0.563 0.442 0.563 

10 0.602 0.563 0.563 0.563 

11 0.141 0.111 0.111 0.111 

12 0.307 0.25 0.111 0.111 

13 1.563 0.196 0.196 0.196 

14 0.766 0.563 0.563 0.563 

15 0.141 0.442 0.307 0.391 

16 0.111 0.563 0.563 0.563 

Best (lb) 427.203 393.38 391.329 389.33 

Average (lb)    390.31 

Stdev (lb)    1.010 

No. of analyses    10000 

 

Figures 5 and 6 show the comparison of 

convergence curves for 72 bar truss structure 

at case (i) and case (ii) respectively. 

In Figures 7 and 8, the comparison of the 

allowable and existing constraints such as 

stress ratio (
𝜎𝑖

𝜎𝑖
𝑎𝑙𝑙) for 72 bar truss structure 

was shown by using IDEACO for case (i) 

and case (ii) respectively. 

a  
b  

Fig. 7. Comparison of the allowable and existing constraints for 72 bar truss structure, case (i): a) 

Displacement in all coordinate direction, b) stress ratio. 
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a  b  

Fig. 8. Comparison of the allowable and existing constraints for 72 bar truss structure, case (ii): a) 

Displacement in all coordinate direction, b) stress ratio. 

4.2. 200 Bar Planar Truss Structure 

The third example considered throughout this 

paper is the 200-bar planar truss structure 

shown in Figure 9. This structure is 

investigated as a large-scale, size 

optimization problem in some recent papers 

[3, 27, 28, 29]. The stress limitation on 

members is ±10 ksi (±68.95MPa). 

In this structure, the members are divided into 29 

groups that described in Table 6. The discrete design 

variables of the cross-sectional area in both cases can 

be selected from the following: 

0.1, 0.347, 0.44, 0.539, 0.954, 1.081, 1.174, 

1.333, 1.488, 1.764, 2.142, 2.697, 2.8, 3.131, 

3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 

8.525, 9.3, 10.85, 13.33, 14.29, 17.17, 19.18, 

23.68, 28.08, 33.7 (in). 

This structure was subjected to three loading 

conditions presented in Table 7. 

Table 8 presents the statistical results 

obtained by the IDEACO algorithm and the 

other optimization methods. 

It is obvious; that IDEACO reached the 

superior results compared to other methods, 

in best, average and standard deviation which 

are 26831.22, 27634.24 and 371.03lb 

respectively, in over 12000 numbers of 

analyses. Figure10 depicts the convergence 

curves of 200 bar truss structure. 

In Figure11, for 200 bar truss structure, the 

comparison of the allowable stress 

constraints for elements and displacement of 

nodes were shown by using IDEACO. 

 
Figure 9. The layout of the 200-bar truss 

structure 
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Table 6. The design variables in the 200 bar truss 

structure 

Number of truss elements 
Element 

Groups 
1, 2, 3, 4 1 

5, 8, 11, 14, 17 2 

19, 20, 21, 22, 23, 24 3 

18, 25, 56, 63, 94, 101, 132, 139, 170, 177, 4 

26, 29, 32, 35, 38 5 

6, 7, 9, 10, 12, 13, 15, 16, 27, 28, 30, 31, 33, 34, 

36, 37 
6 

39, 40, 41, 42 7 

43, 46, 49, 52, 55 8 

57, 58, 59, 60, 61, 62 9 

64, 67, 70, 73, 76 10 

44, 45, 47, 48, 50, 51, 53, 54, 65, 66, 68, 69, 71, 

72, 74, 75 
11 

77, 78, 79, 80 12 

81, 84, 87, 90, 93 13 

95, 96, 97, 98, 99, 100 14 

102, 105, 108, 111, 114 15 

82, 83, 85, 88, 89, 91, 92, 103, 104, 106, 107, 

109, 110, 112, 113 
16 

115, 116, 117, 118 17 

119, 122, 125, 128, 131 18 

133, 134, 135, 136, 137, 138 19 

140, 143, 146, 149, 152 20 

120, 121, 123, 124, 126, 127, 129, 130, 141, 

142, 144, 145, 147, 148, 150, 151 
21 

153, 154, 455, 156 22 

157, 160, 163, 166, 169 23 

171, 172, 173, 174, 175, 176 24 

178, 181, 184, 187, 190 25 

158, 159, 161, 162, 164, 165, 167, 168, 179, 

180, 182, 183, 185, 186, 188, 189 
26 

191, 192, 193, 194 27 

195, 197, 198, 200 28 

196, 199 29 
 

 

 
Fig. 10. Convergence curve of the 200-bar 

truss structure 

Table 7. Loading condition for the 200-bar truss 

structure. 

Node number direction  
Force 

kips 
Load 

case 

1, 6, 15, 20, 29, 34, 43, 

48, 57, 62,71 
X 1 1 

1-6, 8, 10, 12, 14, 16-20, 

22, 24, 26, 28-34, 36, 38, 

40, 42-48, 50, 52, 54, 

56-62, 64, 66, 68, 70-75 

Y -10 2 

Load cases (1) and (2) 

together 
  3 

 

a  b  

Fig. 11. Comparison of the allowable stress constrains and displacement nodes for 200 bar truss 

structure, a) Displacement in all coordinate direction, b) stress ratio. 
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Table 8. Comparison of IDEACO results with literature for the 200-bar truss structure 

Variables 
ESASS 

[27] 

ADS 

[28] 

HHS 

[3] 

ADDE 

[29] 
IDEACO 

1 0.1 0.1 0.1 0.1 0.1 

2 0.954 0.954 0.954 0.954 0.954 

3 0.1 0.347 0.1 0.1 0.1 

4 0.1 0.1 0.1 0.1 0.1 

5 2.142 2.142 2.142 2.142 2.142 

6 0.347 0.347 0.347 0.347 0.347 

7 0.1 0.1 0.1 0.347 0.1 

8 3.131 3.131 3.131 3.131 3.131 

9 0.1 0.1 0.1 0.1 0.347 

10 4.805 4.805 4.805 4.805 4.805 

11 0.347 0.44 0.44 0.539 0.347 

12 0.1 0.1 0.347 0.1 0.1 

13 5.952 5.952 5.952 5.952 5.952 

14 0.1 0.1 0.347 0.1 0.1 

15 6.572 6.572 6.572 6.572 6.572 

16 0.44 0.539 0.954 0.440 0.539 

17 0.539 0.1 0.347 0.539 0.347 

18 7.192 8.525 8.525 8.525 8.525 

19 0.44 0.539 0.1 0.347 0.44 

20 8.525 9.3 9.3 9.3 9.3 

21 0.954 0.954 1.081 0.954 0.954 

22 1.174 0.1 0.347 0.1 0.1 

23 10.85 10.85 13.33 13.33 13.33 

24 0.44 0.954 0.954 0.1 0.1 

25 10.85 13.33 13.33 13.33 13.33 

26 1.764 1.333 1.764 0.954 0.954 

27 8.525 7.192 3.813 5.952 5.952 

28 13.33 10.85 8.525 10.85 10.85 

29 13.33 14.29 17.17 14.29 14.29 

Best (lb) 28,075.49 27,190.49 27,163.59 26960.152 26831.22 

Average (lb)   28,159.59 27969.510 27634.24 

Stdev (lb)   1149.91 422.130 371.03 

No. of analyses 11,156 5000 5000 6189 12,000 

Constraint violation None None %36.42 None None 

 

4.3. 582 Bar Planar Truss Structure 

In Figure 12, the layout of 582bar spatial 

truss structure was presented. In this 

structure, the members are divided into 32 

groups, as showed in Figure 12. This 

example has been investigated in [14, 21, 30, 

31]. 

The discrete design variables of the cross-

sectional area can be selected from 140 

economic standard steel W-shape profile list 

based on the area and radius of gyration 

properties. The lower and upper bounds on 

cross-sectional areas of all elements can be 

taken as between 39.74 and 1378.09 cm
2
 

(6.16 and 215 in
2
). 

This tower structure was subject to a single 

load case, the lateral loads of 5 kN (1.12 kips) 

and 30 kN (6.74 kips) applied in both x and y 

directions and in the z-direction at all nodes, 

respectively. The nodal displacement of 

nodes must not exceed 3.15 in (80 mm).The 

stress limitations of the members are 

considering, according to ASD-AISC as Eq. 

16. 

{
𝜎𝑖
𝑇 = 0.6𝐹𝑦𝜎𝑖 > 0

𝜎𝑖
𝐶𝜎𝑖 < 0

 (16) 
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Where𝜎𝑖
𝐶can be computed according to the 

slenderness ratio as Eqs. 17 and 18. 

 
Fig. 12. The layout of the 582-bar spatial truss 

structure. 

𝜎𝑖
𝐶 =

{
 
 

 
 (

1−𝜆𝑖
2

2𝐶𝑖
2 ) 𝐹𝑦

(5
3
+ 3𝜆𝑖

8𝐶𝑐
−

𝜆𝑖
3

8𝐶𝑐
3)
𝜆𝑖 < 𝐶𝑐

12𝜋2𝐸

23𝜆𝑖
2 𝜆𝑖 ≥ 𝐶𝑐

 (17) 

𝐶𝑐 = √
2𝜋2𝐸

𝐹𝑦
 (18) 

Where E, 𝜆and 𝐹𝑦are the modulus of 

elasticity, the slenderness ratio (λi = kiLi ri⁄ ) 

and the yield stress (248 MPa (36ksi)) 

according to ASD-AISD respectively. The 

slenderness ratio divides the elastic and 

inelastic buckling regions by Cc.Li is the 

slenderness ratio, ri, and kiare radius of 

gyration and effective length factor, 

respectively. 

The slenderness ratio must not exceed 300 

and 200 for tension and compression 

members, respectively. If for compression 

members, the slenderness ratio was more 

than 200, the value of stress in these 

members should be less than the value 

calculated by
12𝜋2𝐸

23𝜆𝑖
2  . 

This tower structure is analyzed for two 

different cases as follows. 

case (i): maximum number of iteration in the 

optimization process is considered 1000. 

case (ii): maximum number of iteration in the 

optimization process is considered 2000. 

The optimization results of 582 bar truss 

structure are shown in Table 9. The results 

obtained by IDEACO are the superiors 

compared with other methods, in best, 

average, worst, standard deviation, and 

number of analysis in both cases. 

a

 

b

 
Fig. 13. Convergence curves of the spatial 582 bar truss structure, a. case (i), b. case (ii). 
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a  b  

Fig. 14. Comparison of the allowable stress constrains and displacement nodes for 582 bar 

truss structure, a) Displacement in all coordinate direction, b) stress ratio. 
 

Table9. Comparison of IDEACO results with literature for the 582-bar truss structure. 
 Case (i) Case (ii) 

Variables 
PSO 

[30] 

ABC 

[31] 

DHPSACO 

[14] 

DE 

 [21] 
IDEACO 

ABC 

[31] 

DE 

[21] 
IDEACO 

1 W8×21 W8×22 W8×24 W8×21 W8×21 W8×22 W8×21 W8×21 

2 W12×79 W12×97 W12×72 W12×96 W14×90 W10×78 W27×94 W14×90 

3 W8×24 W8×25 W8×28 W8×24 W8×024 W8×25 W8×24 W8×24 

4 W10×60 W12×59 W12×58 W12×58 W10×60 W14×62 W12×58 W14×61 

5 W8×24 W8×24 W8×24 W8×24 W8×24 W8×24 W8×24 W8×24 

6 W8×21 W8×21 W8×24 W8×21 W8×21 W8×21 W8×21 W8×21 

7 W14×48 W12×46 W10×49 W12×45 W10×49 W12×51 W12×50 W14×48 

8 W8×24 W8×24 W8×24 W8×24 W8×24 W8×24 W8×24 W8×24 

9 W8×21 W8×21 W8×24 W8×21 W8×21 W8×21 W8×21 W8×21 

10 W10×45 W12×46 W12×40 W12×45 W14×43 W10×50 W12×45 W10×45 

11 W8×24 W8×22 W12×30 W8×21 W8×21 W8×25 W8×21 W8×21 

12 W10×68 W12×66 W12×72 W12×65 W16×67 W10×69 W12×72 W16×67 

13 W14×74 W10×77 W18×76 W10×77 W18×76 W18×77 W14×74 W14×74 

14 W14×48 W10×49 W10×49 W10×49 W10×45 W14×49 W12×50 W10×45 

15 W18×76 W14×83 W14×82 W14×82 W14×74 W10×78 W10×68 W18×76 

16 W8×31 W8×32 W8×31 W8×31 W8×31 W8×32 W8×31 W8×31 

17 W16×67 W12×53 W14×61 W10×60 W16×67 W21×62 W14×61 W16×67 

18 W8×24 W8×24 W8×24 W8×24 W10×22 W8×24 W8×24 W10×22 

19 W8×21 W8×21 W8×21 W8×21 W8×21 W8×21 W8×21 W8×21 

20 W8×40 W16×36 W12×40 W12×45 W14×43 W14×43 W14×43 W14×43 

21 W8×24 W8×24 W8×24 W8×21 W8×21 W8×24 W8×21 W8×21 

22 W8×21 W10×22 W14×22 W8×21 W8×21 W8×21 W8×21 W8×21 

23 W10×22 W10×22 W8×31 W10×22 W8×24 W8×24 W6×25 W8×24 

24 W8×24 W6×25 W8×28 W8×21 W8×21 W8×24 W8×21 W8×21 

25 W8×21 W8×21 W8×21 W8×21 W8×21 W8×21 W8×21 W8×21 

26 W8×21 W8×21 W8×21 W8×21 W8×21 W8×21 W8×21 W8×21 

27 W8×24 W8×24 W8×24 W8×21 W8×21 W8×24 W8×21 W8×21 

28 W8×21 W8×21 W8×28 W8×21 W8×21 W8×21 W8×21 W8×21 

29 W8×24 W8×22 W16×36 W8×21 W8×21 W8×21 W8×21 W8×21 

30 W8×21 W10×23 W8×24 W8×21 W8×21 W8×21 W8×21 W8×21 

31 W8×21 W8×25 W8×21 W8×21 W8×21 W8×24 W8×21 W8×21 

32 W8×24 W6×26 W8×24 W8×21 W8×21 W8×24 W8×21 W8×21 

Best (lb) 363795.7 368484.1 380982.7 360367.8 357933.4 365906.3 360143.3 357906.6 

Average (lb) 365124.9 370178.6  364404.7 359357.6 366088.4 362207.1 358830.8 

Worst (lb) 370159.1 373530.3  371922.1 361499.0 369162.2 367512.2 360534.2 

Stdev (lb)     1176.40   1133.24 

No. of 

analyses 
50000 50000 8500 25000 20000 100000 50000 40000 
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In case (i), the best design in IDEACO 

algorithm was 1.64%, 2.95%, 6.44%, and 

0.68% lighter than PSO, ABC, DHPSACO, 

and DE respectively. In case (ii), the best 

design in IDEACO algorithm was 2.24% and 

0.63% lighter than ABC and DE respectively. 

Figure 13 depicts the convergence curve of 

582 bar spatial truss structure in both cases. 

In Figure 14, for 582 bar truss structure, the 

comparison of the allowable stress 

constraints for elements and displacement of 

nodes was shown by using IDEACO. 

5. Conclusion 

In this paper, a new hybrid optimization 

algorithm was presented, including dolphin 

echolocation and ant colony optimization. 

This algorithm can be applied for discrete 

sizing optimization problems such as truss 

structures. At first, the DE was improved as 

called IDE, and then it is hybridized with ant 

colony optimization algorithm to use solution 

benchmark structural optimization problems. 

The performance and efficiency of IDEACO 

were tested extensively using four 

benchmark truss structure optimization 

problems. The comparison of the numerical 

result received by IDEACO and other 

optimization methods are presented. These 

results verify the efficiency, effectiveness, 

and robustness of the proposed method. 

The IDEACO algorithm yielded better results 

than optimization methods applied for 

comparison in convergence capability and 

optimum design. Almost in all design 

problems, the proposed algorithm reached a 

result that is better than or similar to 

literature and needed much fewer structural 

analyses. So, hybridization of the IDE and 

ACO not only may lead to a balance between 

exploitation and exploration but also improve 

convergences to optimum design. IDEACO 

is the desired method for solving complex 

problems, and the hybrid method is surely an 

issue to be studied in future researches. 
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