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The hydraulic jump can be used for some purpose such as 

dissipating the flow energy in order to prevent bed erosion; 

aerating water and facilitating the mixing procedure of 

chemical that used for water purification. In this paper, 

various artificial intelligence (AI) models including gene 

expression programming (GEP), adaptive-neuro-fuzzy 

inference system with grid partition (ANFIS-GP), and neural 

networks (ANNs) were used to estimate developed and non-

developed hydraulic jump length. Four various GEP, 

ANFIS-GP and ANN models including different 

combinations of Froude number, bed roughness height, 

upstream and downstream flow depth based on measured 

experimental data-set were developed to estimate hydraulic 

jump length variations. The root mean squared error (RMSE) 

and determination coefficient (R2) indices were applied for 

testing models’ accuracy. Regarding the comparison results, 

it was seen that the ANFIS-GP, ANN, and GEP models 

could be employed successfully in estimating hydraulic jump 

length. The comparison between three AI approaches 

emphasized the superiority of ANNs and ANFIS-GP over the 

other intelligent models for modeling developed and non-

developed hydraulic jump length, respectively. For non-

developed hydraulic jump, the R2 and RMSE values 

obtained as 0.87 and 2.84 for ANFIS-GP model.  
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1. Introduction 

Changing the supercritical flow to subcritical 

condition leads to occurr a standing wave 

phenomenon (i.e. hydraulic jump). Hydraulic 

jumps mostly can be seen in nature and man-

made hydraulic structures. Hydraulic jumps 

have been widely investigated and studied 

over the last decades (Pagliara and Palermo, 

2015). The hydraulic jump can be used for 

some purposes such as dissipating the energy 

of flow in order to prevent bed erosion; 

https://dx.doi.org/10.22075/jrce.2017.11047.1180
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aerating water flow and facilitating the 

mixing procedure of chemical that used for 

water purification (Gumus et al., 2015). 

Applying continuity and momentum 

equations, we can drive a formula for the 

sequent depths ratio for classical hydraulic 

jump (i.e. smooth bed) than has been widely 

investigated as follow: 
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Where, refers to Froude number; 1h and 

2h indicated initial and sequent water depths, 

respectively. 1rF is the Froude number. A 

hydraulic jump with related parameters is 

presented in Fig. 1. 

 
Fig. 1. Hydraulic jump on the smooth bed. 

The literature reported that the length and tail 

water depth of basin are critical variables for 

optimal design of stilling basin. One of the 

most effective parameter for stilling basin 

designing is the length of hydraulic jumps. In 

order to decrease the stilling basin length 

some measures have already been taken such 

as installing blocks at the end and middle 

parts of the chutes and the artificial 

roughness on the bed. 

1.1. Analysis of hydraulic jump on rough 

beds 

The rough bed can reduce the length of jump 

and depth of tail-water. In this regard, the bed 

shear stress increased based on the 

interaction of flow with the rough bed. So, 

regarding increasing of energy dissipation 

leads to deceasing in the length of jump that 

can be need for performance of basin design. 

In order to evaluate the performance of rough 

beds on hydraulic jump, many releavant 

studies are available (Hughes and Flack, 

1984; Mohamed Ali, 1991; Ead and 

Rajaratnam, 2002; Carollo et al., 2007; 

pagliara et al., 2008; Dey and Sarkar, 2008; 

Barahmand and Shamsai, 2010; Afzal et al., 

2011, Hager, 2013; Pagliara and Palermo, 

2015). 

Considering Fig. 2, Rajaratnam (1965) 

presented an equation for accounted the 

effect of boundary resistance in momentum 

equation as follow: 

1 1 2 2M M F                                         (2) 

in which 1  and 2 are hydrostatic forces at 

sections 1 and 2, respectively. 1h and 2h refer 

to initial and sequent water depths, 

respectively. Furthermore,  is integrated 

bed shear stress; M1 and M2 indicate 

momentum fluxes related to sections 1 and 2, 

respectively.  

 
Fig. 2. Schematic illustration of hydraulic jump 

for rough bed. 

integrated bed shear stress can be defined 

using following equation: 

 1 2F M M                                           (3) 

1rF

F
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where β refer to a positive constant (i.e. less 

than 1 to state Eq. (2). For a rectangular 

channel, Eqs. (2) and (3) can be combined 

and presented as following equation: 

 2 2 2

2 1

1 2

1 1 1 1
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in which and q are the density of water 

and is the discharge per unit width of 

channel, respectively (Carollo and Ferro 

2004b) 

 The following positive symmetrical solution 

can be presented for Eq. (4): 
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Finally, the following empirical equation can 

be derived between β and the relative 

roughness ks /h1: 

1

0.42 sk

h
                                                (6) 

Where, ks is the roughness height (Carollo 

and Ferro (2004). 

We have two different two types of hydraulic 

jumps, including developed and non-

developed roller flow (Hager et al., 1990). 

For developed hydraulic jump water depth 

increase gradually in and the water depth and 

quasi-steady. In the downstream of the toe, 

that the water depth is h1, the forward flow 

was near the bed and diverged further 

downstream. The stagnation point is located 

at the end of the developed roller and the 

surface waves in the downstream tail-water 

have a negligible height. 

For the non-developed roller with the 

developed roller, the hydraulic jump is 

unstable and the toe was moved to 

downstream. The incoming supercritical flow 

was occasionally diverted to the water 

surface, the roller length is extremely 

reduced, and surface waves are generated 

into the tailwater, significantly. 

A non-developed hydraulic jump for a 

clockwise roller is shown in Fig. 3. 

According to this figure, Lj refer to the length 

between the two cross sections with the 

sequent depths (i.e. h1 and h2). Also, Lr (i.e. 

the roller length) is the horizontal distance 

between the roller end and the toe section 

with the flow depth h1. This length can be 

calculated using visualization technique such 

as with a float to localize the stagnation 

point. 

 

Fig. 3. Non-developed hydraulic jump with a 

clockwise roller. 

Recent advancement in data driven models 

(i.e. gene expression programming (GEP), 

adaptive neuro-fuzzy inference systems 

(ANFIS) and artificial neural networks 

(ANN),) and and its application in hydraulics 

engineering have challenged the 

conventional techniques of the analysis. 

Diffrent hydraulics engineering phenomena 

are now being modeled using various 

artificial intelligence (AI) methods. Several 

researches have shown that soft computing 

techniques are more feasible and accurate 

than conventional techniques. 

Many applications of ANN in different areas 

of water resources engineering and 

hydraulics were reported (Liriano and Day, 


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2001; Nagy et al., 2002; Raikar et al., 2004; 

Azmathullah et al., 2005; Naderpour et al., 

2010; Ansari and Athar, 2013 and Ansari, 

2014). Recently Naseri and Othman (2012) 

used ANN for the determination of length of 

hydraulic jump on smooth beds. Omid et al. 

(2005) developed ANN models for 

estimating jump length and sequent depths of 

gradually expanding hydraulic jumps in 

trapezoidal and rectangular channels.  

The main object of current paper is to present 

a model for prediction of the length of 

hydraulic jump in rectangular channel with a 

horizontal apron having rough beds. In this 

regard some AI models including gene 

expression programming (GEP), adaptive 

neuro-fuzzy inference system based on grid 

partitioning method (ANFIS-GP), and 

artificial neural networks (ANN) were 

employed. 

2. Materials and Methods 

2.1. Hydraulic Jump on Rough Bed 

Hydraulic jump characteristics over a rough 

bed are dependent on hydraulic condition of 

flow, dimensions of roughness and properties 

of fluid. The length of roller (Lr) along a 

rough bed depends on gravitational 

acceleration (g), roughness height (ks) and 

depth of flow at upstream (h1), depth of flow 

at downstream (h2), upstream flow velocity 

(v1) and kinematic viscosity of fluid ( ): 

 1 2 1, , , , ,r sL f k g h h v                             (7) 

The following equation can be obtained 

using the principles of dimensional analysis 

(DA): 
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Where, 1

1

v

gh
  is upstream Froude number at 

the starting location of the hydraulic jump 

and 1 1v h


 refer to Reynolds number of the 

approaching flow. The viscous effects can be 

ignored for the large value of the Reynolds 

number (Abbaspour et al., 2009). Finally the 

following equation can be derived: 
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2.2. Used Data and Dataset 

In this study, the experimental dataset 

provided by Carollo et al. (2007) was utilized 

to evaluate the efficiency of different AI 

methods in estimation of hydraulic jump 

length. The experiments were conducted in a 

rectangular flume that that dimensions 

included 14.4 m long, 0.6 m wide, and 0.6 m 

deep. Five rough beds made up of closely 

packed crushed gravel particles cemented to 

the bottom were evaluated. The grain size 

distribution of each gravel bed was obtained 

using a sample of 100 particles. Three axial 

sizes were measured for each particle, and 

the diameter was calculated as the average 

value. The characteristics of grain-size 

distributions were as d50=0.46, 0.82, 1.46, 

2.39, and 3.20 cm that d50 refer to the 

diameter of the bed particles for which 50% 

were finer. The median diameter d50 was 

utilized as roughness height (ks). 

The reference level for the rough bed was 

assumed coincident with the plane crossing 

at the top of the particles whose height was 

assumed equal to the median size (i.e. d50). 

For each run, the discharge (Q), the upstream 

flow depths (h1), the downstream flow depth 

(h2), the jump length Lj were measured. 

Finally, 370 experiments were conducted for 
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rough bed. Among total experiments, 189 

and 181 dataset considered as developed and 

non-developed hydraulic jump, respectively. 

For each type of hydraulic jump, 75 and 25% 

of total data used for train and test phase, 

respectively. The variation ranges of 

experiments database including upstream and 

downstream flow depth, Froude number, bed 

roughness height and the length of hydraulic 

jump for developing AI models is presented 

in Table 1. 

2.3. Soft Computing Models 

2.3.1. Artificial Neural Networks (ANNs) 

The basic of ANNs model is similar to the 

framework of human brain. The ANNs have 

been used for different reason such 

simulation, clustering and pattern 

recognition. ANNs learned intelligently for 

mapping a set of input/output data and 

finding function approximators. Various type 

of ANNs based on different structure can be 

considered. Multilayer perceptron (MLP) as 

a static ANN is the most applied method in 

various filed of engineering (Araghinejad, 

2013). MLP as a usual ANNs model can be 

applied successfully to solve various 

problems in different field of studies. MLP 

has three specified properties. The first, the 

model of each neuron consist of a nonlinear 

activation function in the network. The 

second is that the network includes one or 

more layers of hidden neuron that help to 

network to learn complex task. The third one 

is that network exhibits a high degrees of 

connectivity. Various training algorithms can 

be applied in the structure of MLP model. In 

this study, the most popular Levenberg–

Marquardt (LM) algorithm was used. More 

details about MLP can be found in Haykin 

(1999). In this study, for application of 

ANNs, a code written in MATLAB (based on 

nntool toolbox) by the authors was used. 

2.3.2. Adaptive Neuro-Fuzzy Inference 

System (ANFIS) 

ANFIS as a combination of an adaptive 

neural network and a fuzzy inference system 

was invented by Jang (1993). ANFIS 

combined the principles of neural networks 

and fuzzy logic. Thus, ANFIS has potential 

to capture the benefits of both neural 

networks and fuzzy logic in a single model 

and have the advantages of both fuzzy 

systems (humanlike IF-THEN rules thinking 

and ease of incorporating expert knowledge) 

and neural networks (such optimization 

abilities, learning abilities, and connectionist 

structures) (Jang, 1993).  

ANFIS as a network structure includes of a 

number of nodes connected through 

directional links that each node consist of a 

node function comprising fixed or adjustable 

parameters. The parameters related to the 

fuzzy inference system are calculated using 

neural networks learning algorithms (Brown 

and Harris, 1995). ANFIS has the capability 

to approximate any real continuous function 

on a compact set to any degree of accuracy 

(Jang et al., 1997). 

Table 1. The variation of experimental database used in this study. 
Type Fr h1(cm) h2(cm) ks(cm) Lj(cm) 

Developed hydraulic jump 1.87-8.47 1.11-7.09 8.98-23.45 0-1.46 18-90 

Non-developed hydraulic jump 2.22-9.89 1.58-6.75 12.11-20.42 0.46-3.2 41-76 
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The set of parameters related to ANFIS is 

obtained applying the hybrid learning 

algorithms (i.e. combination of least squared 

error method and back-propagation gradient 

descent error digestion). In current paper, the 

Sugeno's fuzzy method was used to obtain 

the values for the output variable based on 

input variables. A typical architecture of an 

ANFIS model with two inputs is shown in 

Figure 4. Further details about ANFIS can be 

found in Jang (1993). 

 
Fig. 4. The schematic structure of ANFIS model 

with two inputs. 

ANFIS can be applied with different 

identification approaches of Sugeno model 

including grid partitioning (GP) and 

subtractive clustering (SC). Regarding 

ANFIS-GP, the input space divided into 

rectangular subspaces by applying a number 

of local fuzzy regions. In order to calculate 

fuzzy sets and parameters, the least square 

method according to the MF type and 

partition was utilized. (Abonyi et al. 1999). 

For utilizing ANFIS-GP, the number of input 

variables should be less than 6. In this paper, 

four variables are used for hydraulic jump 

length modeling and thus ANFIS-GP can be 

used successfully. For application of ANFIS-

GP, the code written using MATALAB by the 

authors was utilized.  

2.3.3. Gene Expression Programming 

(GEP) 

GEP includes both the ramified structures of 

different sizes and shapes such as the parse 

trees in genetic programming (GP) and the 

simple, linear chromosomes of fixed length 

such as the ones applied in genetic 

algorithms (GA) (Ferreira, 2001). According 

to the ramified structures of different shapes 

and sizes that totally encoded in the linear 

chromosomes of fixed length, we can say in 

GEP, the genotype and phenotype are finally 

separated from one another and the model 

can now benefit from all the evolutionary 

advantages this brings about (Ferreira, 2006). 

 
Fig. 5. The flowchart of the gene expression 

algorithm (Ferreira, 2006). 

GEP is an example of a full-fledged 

replicator/ phenotype system where the 

expression trees/chromosomes form a truly 

functional, indivisible whole (Ferreira, 2001). 

The fundamental steps of the gene expression 

algorithm (GEA) are schematically showed 

in Figure 5. 
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The procedure for hydraulic jump length 

estimation by GEP are consist five major 

steps. At the first, the fitness function was 

selected. In this study, Root relative squared 

error (RRSE) was chosen as the best fitness 

function. In the second step, the set of 

terminals (T) and functions (F) were 

selected.In this stuy, the terminal set 

including. 

the bed roughness height, Froude number, 

upstream and downstream flow depths. The 

function set is chosen regarding to the 

complexity and nature of the phenomena. In 

this paper, different functions were used, 

including basic arithmetic operators
 

 , , ,      as well some of other 

mathematical functions as follow: 

 

2 3 3ln , , , , , ,sin ,
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Selecting the chromosomal architecture was 

considered in the third step. In the fourth 

step, the kind of linking function was 

selected. Finally, the set of genetic operators 

and their rates considered for GEP model 

(Ferreira, 2006). 

For application of GEP model, the computer 

program namely GeneXpro Tools 4.0 has 

been applied to estimate hydraulic jump 

length.  

The summary of GEP parameters were as 

follow: number of genes: 3, head size: 8, 

Number of chromosomes: 30, one point 

recombination rate: 0.3, two point 

recombination rate: 0.3, mutation rate: 0.044, 

inversion rate: 0.1, gene recombination rate: 

0.1, gene transposition rate: 0.1, IS 

transposition rate: 0.1, RIS transposition: 0.1.  

2.4. The Performance of Models  

The performance of applied models was 

evaluated using two different criteria 

consisting of root mean square error (RMSE) 

and coefficient of determination (R
2
). RMSE 

can be calculated as follow: 

 
2

1

1
o e

N

j j
i

RMSE L L
N 

              (10) 

where, N is the number of data-sets, Ljo and 

Lje are the observed and simulated hydraulic 

jump length values, respectively. 

3. Results and Discussion 

ANN, ANFIS-GP, and GEP techniques were 

employed for assessing prediction of 

developed and non-developed hydraulic 

jump length. Froude number, deb roughness 

height, upstream and downstream flow depth 

data were used as inputs to the models.  

3.1. ANNs Models 

Various training algorithms were utilized for 

obtaining the ANN weights. As mentioned 

before, among various training algorithms, 

Levenberg-Marquardt (LM) back-

propagation algorithm was selected as 

appropriate one. Table 2 gives the test indices 

of ANNs models in terms of different input 

combinations. In this table, 4-4-1 shows an 

ANN model involving 4 inputs 

corresponding to downstream flow depth, 

Froude number, upstream flow depth and bed 

roughness height, 4 hidden and 1 output 

nodes, individually. The appropriate number 

of hidden nodes was determined using trial-

error method. Tangent sigmoid and linear 

activation functions were applied for the 

hidden and output nodes, respectively. Based 

on application of LM training algorithm, 
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iteration number equals to 1000 was selected 

in this study. 

It is obvious from the table that input 

combination No. 4 has a superior exactness 

(lower RMSE and higher R
2
) than the other 

patterns for both type of hydraulic jump (i.e. 

developed and non-developed). The results 

showed that the Froude number and bed 

roughness height has important role in 

prediction of hydraulic jump length for 

developed and no-developed hydraulic 

jumps, respectively. It is found that by adding 

Froude number in developed hydraulic jump 

(Pattern No. 2) the RMSE value decreased as 

18.3%. Furthermore, by adding ks in the case 

of non-developed hydraulic jump (pattern 

No. 4) REMSE decreased as 20% in 

comparison with the pattern No. 3. The 

scatterplot of predicted and measured 

hydraulic jump length for optimal ANNs 

model during the test period, was presented 

in Fig. 6. This figure shows the capability of 

ANNs in prediction of hydraulic jump length. 

The results revealed that ANNs can be used 

an alternative of empirical equations to 

simulate the characteristics of hydraulic 

jump. 

3.2. ANFIS Models 

In table 3, structure and statistical measures 

of ANFIS-GP model for prediction of 

developed and non-developed hydraulic 

jump length using different input 

combinations is presented. It can be seen 

from the table, for both hydraulic jump types 

(i.e. developed and non-developed), the input 

combination No. 4 that includes all of 

variables gives the best prediction with the 

lowest RMSE. By application of input 

combination No. 4 for developed hydraulic 

jump, the R
2
 and RMSE were obtained as 

0.84 and 5.35, respectively. In the case of 

non-developed condition, the R
2
 and RMSE 

were calculated as 0.87 and 2.84, 

respectively. For both types of hydraulic 

jump, the triangular membership function 

with 2 memberships corresponds to 

downstream flow depth, Froude number, bed 

roughness height and upstream flow depth 

was selected as the best one. It is notable that 

for determine the optimal architecture of 

ANFIS-GP model for a given input 

combination; different type of membership 

functions (i.e. triangular, Gaussian, 

trapezoidal and etc.) was tried. Furthermore, 

different numbers of memberships (i.e. 2, 3 

and etc.) for each type of membership 

function was evaluated and finally the best 

structure with respect to minimum value of 

RMSE was selected. 

Table 2. The test results of ANNs for simulation of developed and non-developed hydraulic jump length. 

Pattern No. Variables 

Developed hydraulic jump Non-developed hydraulic jump 

Structure of 

Model 
R2 RMSE 

Structure of 

Model 
R2 RMSE 

1 h2 1-3-1 0.73 7.21 1-2-1 0.71 4.45 

2 h2, Fr 2-5-1 0.81 5.89 2-4-1 0.74 4.20 

3 h2, Fr, h1 3-4-1 0.84 5.33 3-5-1 0.78 3.71 

4 h2, Fr, h1, ks 4-3-1 0.85 5.29 4-4-1 0.86 2.97 
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Table 3. The test results of ANFIS-GP for simulation of developed and non-developed hydraulic jump 

length. 

  Developed hydraulic jump Non-developed hydraulic jump 

Pattern 

No. 
Variables 

Type of 

MFs 

Number 

of MFs 
R2 RMSE 

Type of 

MFs 

Number 

of MFs 
R2 RMSE 

1 h2 triangular 2 0.74 7.13 triangular 4 0.75 3.99 

2 h2, Fr Gaussian 3,2 0.78 6.22 triangular 2,2 0.76 3.84 

3 h2, Fr, h1 triangular 2,3,2 0.83 5.71 Gaussian 3,3,2 0.79 3.65 

4 h2, Fr, h1, ks triangular 2,2,2,2 0.84 5.35 triangular 2,2,2,2 0.87 2.84 

 

The results indicated that the utilization of 

triangular and Gaussian memberships 

functions are preferred to other types for 

prediction of hydraulic jumps length. The 

scatterplots of observed and simulated 

hydraulic jump length for developed and 

non-developed hydraulic jump based on 

optimal inputs (No. 4) is presented in figure 

7. This figure confirms the results presented 

in table 3. The results showed that the 

performance of ANFIS-GP in prediction of 

hydraulic jump length is promising. However 

the performance of ANFIS-GP in prediction 

of hydraulic jump length for non-developed 

hydraulic jump was better that the developed 

type and RMSE value was improved as 46% 

in this regard. 

3.3. GEP Models 

Similar ANN and ANFIS-GP models, the 

same the input combinations were used for 

developing GEP models. As mentioned 

earlier, several steps were considered for 

applying GEP. In this research, the RRSE 

fitness function was selected. Then, different 

function set (Table 4) was evaluated for 

obtaining the parse tree. As can be seen from 

the table, for developed and no-developed 

hydraulic jump F3 and F6 selected, 

respectively. After selecting function set, we 

tried to finding the suitable linking function 

that among several linkage functions, the 

addition ones chosen in order to link sub-

trees. 

Table 4. The results of various GEP function set for the parse tree during test phase. 

Functions set No. Definition 
RMSE 

Developed type Non-developed type 

F1 , , ,     5.31 3.41 

F2 , , , , , exp, ln,sin,cos     5.38 3.39 

F3 , , , , , exp, ln, pow     5.32 3.90 

F4 
2, , , , , , exp, ln,x pow     5.47 3.11 
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F5 , , , ,sin,cos     5.35 3.32 

F6 , , , , ,sin,cospow     5.63 2.87 

F7 , , , , pow     5.49 3.79 

F8 
2, , , , ,x     5.52 3.29 

F9 , , , , exp, ln   
 5.41 3.80 

F10 Default setting of software
 

5.51 4.01 

Table 5. The test results of GEP for simulation of developed and non-developed hydraulic jump length. 

  
Developed hydraulic 

jump 

Non-developed hydraulic 

jump 

Pattern 

No. 
Variables R2 RMSE R2 RMSE 

1 h2 0.74 7.13 0.75 4.12 

2 h2, Fr 0.82 5.78 0.77 3.88 

3 h2, Fr, h1 0.83 5.42 0.78 3.71 

4 h2, Fr, h1, ks 0.85 5.32 0.86 2.87 

Table 6 The results of optimal AI models in train-test phases. 

Model 

Developed hydraulic jump Non-developed hydraulic jump 

Train phase Test phase Train phase Test phase 

R
2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE 

ANNs 0.90 4.65 0.85 5.29 0.90 2.53 0.86 2.97 

ANFIS-GP 0.88 4.79 0.84 5.35 0.89 2.61 0.87 2.84 

GEP 0.89 4.67 0.85 5.32 0.90 2.44 0.86 2.87 
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The procedures that mentioned before were 

implemented for different input combinations 

in hydraulic jump length prediction. 

The results of GEP models based on defined 

input combinations (i.e. i–iv) in terms of 

suitable function set have reported in Table 5. 

It is seen from Table 5 that the pattern No. 4 

gives the best results for the hydraulic jump 

length forecasting. 

The observed and modeled hydraulic jump 

length scatterplots during test phase has 

shown in Fig. 8. The high generalization 

capacity of the GEP model (i.e. high 

correlation and relatively low error) 

demonstrated based on comparing the GEP 

estimations with the observed data during 

test phase. By considering the straight line 

equations in the scatterplots (i.e. the equation 

as y=ax) shows the a coefficient is close to 

1for GEP model. Also, for the ANFIS-GP 

and ANNs models the similar results can be 

seen. The results showed that the input 

combination (iv) increase the accuracy of the 

ANN, ANFIS-GP and GEP models compared 

to the other input combinations. The input 

combination (iv) consist of complete and 

total input variables and it seems this is the 

reason behind the accuracy of models 

compared to other input combinations. The 

expression tree of the final GEP model for 

developed and non-develop hydraulic jump 

length prediction is presented in Fig. 9. The 

Eq. 11 and 12 refer to mathematical formula 

of the GEP model for developed and non-

develop hydraulic jump, respectively. 
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Table 6 presented the summary of and 

comparison results of optimal AI models (i.e. 

ANN, ANFIS-GP and GEP) for prediction 

hydraulic jump length. It should be noted 

here that the obtained results are evaluated by 

using t test (i.e. at 95% significance level) in 

order to verify and checking the robustness 

of the applied models. The results indicated 

that p values were calculated <0.001 for all 

AI applied models.  

Table 6 showed that the ANNs and ANFIS-

GP outperform the other AI methods models 

for developed and no-developed hydraulic 

jump, respectively. The differences among 

the results of different AI models are 

somewhat low based on the comparison 

results. 

Finally, the results indicated that ANNs, 

ANFIS-GP and GEP models selected as the 

most powerful tools for the estimation of 

hydraulic jump length, respectively. 

4. Conclusion 

In this study, GEP, ANFIS-GP and ANN 

methods were applied in estimating the 

length of hydraulic jump values has been 

investigated. Bed roughness height, Froude 

number, upstream and downstream flow 

depth data were applied for training-testing 

the suggested AI models. 
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(b)  

(a) 
Fig. 6. The scatterplot of simulated and observed hydraulic jump length using ANNs for test period a) 

developed b) non-developed. 

 
(b)  

(a) 
Fig. 7. The scatterplot of observed and simulated hydraulic jump length using ANFIS-GP for test period 

a) developed b) non-developed. 
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(b) 

 
(a) 

Fig. 8. The scatterplot of observed and simulated hydraulic jump length using GEP for test period a) 

developed b) non-developed. 

 
Fig. 9. Siscription of expression tree of optimal GEP model for Hydraulic jump length estimation a) 

developed b) non-developed. 

                                   *
Function set: +, *, -, 3Rt, x2. 

                                   *
Terminal set: d0, d1, d2, d3 refer to h2, Fr, h1 and ks, respectively. 
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The results indicated that the performance of 

the suggested AI methods in modeling the 

nonlinear behavior of hydraulic jump length 

values based on different statistical indices. 

In general, the ANNs model performs better 

than the other AI methods in estimation of 

hydraulic jump length for developed and no-

developed hydraulic jump. The differences 

among several AI methods were quite low. 

For all of applied models, the best result was 

obtained by application of  

The input combination (iv) including 

upstream and downstream flow depths, 

Froude number and bed roughness height 

provide the best gives the best results for all 

of applied models. It should be noted here 

that GEP, ANFIS-GP and ANN methods can 

be applied as promising models for 

predicting hydraulic jump length values, 

based on hydraulic variables. It can be 

concluded that increasing the number of 

input combinations, increases the prediction 

accuracy of all AI models. According to the 

aim of this study that is evaluating the 

feasibility of AI models for prediction 

hydraulic jump length variations, it should be 

noted that the results obtained in current 

study are for research intention. Using the 

current results for field and real world 

application required sophisticated steps and 

rebuilding-reevaluating the AI models 

regarding to available dataset and variables 

maybe influence on the hydraulic jump 

length data.  
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