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In this study, Adaptive Neuro-Fuzzy Inference System 

(ANFIS) and Monte Carlo simulation are applied for 

reliability analysis of structures. The drawback of Monte 

Carlo Simulation is the amount of computational efforts. 

ANFIS is capable of approximating structural response for 

calculating probability of failure, letting the computation 

burden at much lower cost. In fact, ANFIS derives 

adaptively an explicit approximation of the implicit limit 

state functions. To this end, a quasi-sensitivity analysis in 

consonance with ANFIS was developed for determination of 

dominant design variables, led to the approximation of the 

structural failure probability. However, preparation of 

ANFIS , was preceded using a relaxation-based method 

developed by which the optimum number of training samples 

and epochs was obtained. That was introduced to more 

efficiently reduce the computational time of ANFIS training. 

The proposed methodology was considered applying some 

illustrative examples. 

Keywords: 

Reliability, 

Monte Carlo, 

Quasi Sensitivity, 

Fuzzy Systems. 

 

1. Introduction 

Assessment of structural responses for safe 

design of structures is inevitable [1,2]. 

Reliability analysis plays a key role for 

structural design. The probability of failure 

(Pf), is usually obtained applying standard 

reliability analysis methods such as Monte 

Carlo Simulation (MCS) techniques, the First 

Order Reliability Methods (FORM) and 

Second Order Reliability Methods (SORM) 

[3,4]. 

Various practical problems can be deliberated 

involving of any type of probability 

distribution for the random variables by 

MCS. It is capable of computing Pf with the 

desired accuracy [5,6]. However, a great 

number of structural analyses should be 

applied letting to rise the computation time 

excessively. In the case of complicated 

https://dx.doi.org/10.22075/jrce.2017.11853.1202
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structures and their nonlinear behavior, MCS 

call for enormous structural model [5]. 

Approximate structural responses could be a 

noble idea to overcome this drawback of 

methods in agreement with simulations. 

Neural Network (NN) models are proposed 

for such purposes, recently [7,8]. The 

combination of NN and MCS can improve 

the MCS performance [9,10]. On the other 

hand, both knowledge extraction and 

knowledge representation are problematic in 

neural networks. An advanced system, 

namely, Fuzzy Inference System (FIS) can 

deal with this type of problem and can model 

the qualitative characteristics of human data 

utilizing if-then rules. These systems have to 

capture the fuzziness of the reasoning 

process without applying accurate numerical 

analysis. Consequently, merging these two 

methodologies constructs Artificial Neural 

Fuzzy Interference System (ANFIS) [11]. 

ANFIS has been broadly employed for 

different purposes such as extrapolation, data 

discovery and healing [12-15]. In civil 

engineering, ANFIS has employed to 

increase the decision-making speed in 

structural control [16]. ANFIS network was 

also developed and applied to MCS, 

improving optimum design of truss structures 

with probability constraints [17]. Here an 

attempt is to be performed to merge a 

modified ANFIS with MCS for sensitivity 

analysis and structural reliability.  

An appropriately trained ANFIS may let the 

resolve of the structural responses more 

quickly rather than exact structural analysis. 

As the number of training samples and 

epochs for training the ANFIS affects the 

time and accuracy of the trained network, a 

relaxation-based method is introduced to 

reach to the optimum number variables for 

ANFIS. 

Sensitivity analysis is executed to recognize 

the major parameters affecting safety. The 

derivative-based approach of sensitivity has 

the attraction of being very efficient in 

computer time [18,19]. Derivatives for 

explicit limit state functions could be easily 

computed. However, for complex structures, 

they are not available readily. Applying 

neural networks, some studies were made to 

surmount this limitation [20]. However in the 

present paper, a Quasi Sensitivity Analysis 

(QSA) in the presence of uncertain inputs 

using neuro-fuzzy systems is proposed, in 

order to determine the most influential design 

variables. Thus, this approach will be 

employed to estimate Pf with only a certain 

number of design variables. 

2. Reliability Analysis by Monte 

Carlo Simulation 

A reliability problem is normally expressed 

applying a failure function which is called a 

Limit State Function (LSF), ( )g X  where 

1 2{ , ,..., }nX x x x  is a random vector of 

design variables. Violation of the LSF is 

defined by the condition ( ) 0g X  . Pf is 

presented by the following expression [21]: 

1 2

( ) 0

[ ( ) 0] ... ( )d d ...df X n

g X

P P g X f X x x x


     
 

 (1) 

( )Xf X is the joint probability density 

function. 

Estimation of fP via MCS can be given by: 

1

1
( )

N

f

i

P I X
N 

   (2) 

where ( )I X  is: 
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1   if  ( ) 0
( )

0  if  ( ) 0

g X
I X

g X


 


 (3) 

According to Eq. (2), N represents the 

number of independent sets of random design 

variables. Therefore, Pf is achieved by: 

H
f

N
P

N
  (4) 

where NH is the total number of cases where 

LSF would be negative and failure of the 

structure has occurred. 

3. ANFIS Structure 

The ANFIS normally consists of a feed-

forward network that uses back-propagation 

learning algorithms and fuzzy reasoning to 

map inputs into an output. A typical ANFIS 

architecture with only two inputs leading to 

four rules and one output for the first order 

Sugeno fuzzy model is expressed here. Such 

architecture can be simply adjusted 

confirming to problem characteristics. 

Each input requires two associated 

Membership Functions (MFs). The MF of a 

fuzzy set is a generalization of the indicator 

function in classical sets. In fuzzy logic, it 

represents the degree of truth as an extension 

of valuation [22]. 

A typical rule set with four fuzzy if–then 

rules that is to say Sugeno fuzzy model can 

be expressed as [23,24]: 

1 1 11 11 11 11

1 2 12 12 12 12

2 1 21 21 21

Rule 1:    if     is  A    and     is  B    then   f

Rule 2:   if     is  A    and     is  B    then   f

Rule 3:   if     is  A    and     is  B    then   f

x y p x q y r

x y p x q y r

x y p x q

  

  

  21

2 2 22 22 22 22Rule 4:   if     is  A    and     is  B    then  f

y r

x y p x q y r



  

 

 (5) 

where A1, A2 are labels representing MFs for 

the input x. Similarly, B1 and B2 are labels for 

input y. Also, pij, qij and rij (i, j = 1, 2) are 

parameters of the output MFs. 

 
Fig. 1. Flowchart of ANFIS. 

An adaptive network is a multi-layer feed 

forward network in which each node 

performs a particular function on received 

signals. Figure 1 illustrates ANFIS 

architecture as a special configuration of 

adaptive networks. 

Learning process of ANFIS is to adjust all of 

the modifiable parameters to make the 

http://en.wikipedia.org/wiki/Fuzzy_set
http://en.wikipedia.org/wiki/Indicator_function
http://en.wikipedia.org/wiki/Indicator_function
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Degree_of_truth
http://en.wikipedia.org/wiki/Valuation_%28mathematics%29
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ANFIS output match the desired output. For 

this purpose, a two-step process is carried 

out; the backward pass and the forward pass 

under a so-called hybrid learning algorithm 

[25]. In the backward pass, the output MF 

parameters or consequent parameters

( , , )i i ip q r  are held fixed, the error signals 

propagate backward and the input MF 

parameters or the premise parameters 

( , , )i i ia b c are updated by the gradient descent 

method. In the forward pass, premise 

parameters are held fixed up to stage 4, 

where the consequent parameters are updated 

by the least squares method.  

4. Quasi Sensitivity Study for 

Reliability Analysis 

Sensitivity analysis may be applying to 

answer the questions of ‘which of the input 

factors is major in determining the 

uncertainty in the output of interest?’ Or if 

we could exclude the uncertainty in one of 

the input elements, which factor should we 

choose to mostly diminish the change of the 

output?’ [26]. 

In traditional sensitivity methods, usually the 

derivatives of the output with respect to the 

distribution parameters of inputs are 

deliberated. For most structures, the LSF is 

an implicit function of design variables. 

Thus, aiming for reliability analysis of 

complicated structures in particular; 

derivatives of the LSFs are not readily 

available. 

One major aim of the present study is, to 

determine the probability of failure with 

participation of just some of the input 

variables. If possible, which inputs are most 

inflectional in fP prediction? 

To seek those answers, a hybrid ANFIS-MCS 

methodology, followed then by reliability 

analysis is innovated. The proposed 

technique undertakes three main objectives; 

(1) since the number of training samples and 

epochs are two essential parameters affecting 

the accuracy and training time of ANFIS, the 

first aim is to introduce a relaxation-based 

scheme through which optimum numbers for 

training samples and epochs are performed. 

(2) To focus merely on the most influential 

design variables, a QSA approach presented 

here. (3) To allow for the determination of 

the structural failure probability in a 

considerable reduction of computational time 

by merging QSA-based ANFIS with MCS, 

considering the numerous amounts of 

analyses encountered the crude MCS. 

4.1. Training of the ANFIS 

Firstly, the number of epochs is kept fixed to 

one while the number of training samples is 

allowed to vary from one to a point where the 

process may be halt due to some relaxation 

criteria. Thus, for each training sample, 

adjustable parameters of ANFIS are modified 

only once. Using test samples, then the Mean 

Relative Percentage Error (MRPE) for each 

set of training samples will be calculated as 

in Eq. (6): 

1

1
100 ( )

tn
i i

it i

p a
MRPE

n a


   (6) 

where ai and pi represent actual and predicted 

values of structural response respectively, 

and nt is the number of testing samples. 

The variation of MRPE will then relax to a 

value which indicates a minimum number of 

training samples required. 

As the second stage then, the number of 

training samples is fixed while the number of 

epochs is allowed to vary and the 
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corresponding MRPE values are recorded. 

The convergence history will then be studied 

through which the minimum number of 

epochs required will be obtained. 

4.2. Determination of Most Influential 

Design Variables of Structure  

The step by step summery of the algorithm to 

determine the ni influential design variables 

from nd candidates in predicting the LSF, 

leading thus to the prediction of fP , is as 

follows: 

a)  AInitial parameters of structure are 

established and ni is set to 1. 

b)  Some structures are randomly 

generated. 

c)  The structural responses for all 

members are evaluated using 

conventional finite element analysis. 

d)  Structural samples are split into 

training and testing samples. 

e)  For each combination of ni variables 

from nd candidates one ANFIS model is 

built and trains. This leads to a number 

of an  ANFIS models where: 

 

( )!

( )! !

d d
a

i i d i

n n
n

n n n n

 
  

 

 (7) 

f) Using test samples, MRPE for each 

model is computed. The variable with 

relatively minimum MRPE possesses 

the most influence among all the 

individual variables. It will then be 

recorded.  

g) The outcome of step (f) will then be 

combined with a second variable from 

the list one by one, the minimum MRPE 

of which will be recorded and thus the 

corresponding two most influential 

variables. 

h) Step (g) will be repeated adding more 

variables, until no further considerable 

reduction of MRPE is observed. 

Therein, we say a relaxation of the 

global minimum MRPE is taken place.  

i) End of algorithm. 

5. Examples 

In this section, two high nonlinear examples 

as explicit and implicit LS functions are 

presented. 

5.1. Example 1 

A bumpy multidimensional LSF [27,28] is 

attempted in the first example, where: 

6

1 2 3 4 5 6

1

( ) 2 2 5 5 0.001 sin(1000. )
i

i

g X x x x x x x x


         

 (8) 

The statistics of the related six random 

variables are listed in Table 1. 

Table 1. random variables - Example 1. 

Variable Mean 
Standard 

deviation 
Distribution 

1x  120 12 Lognormal 

2x  120 12 Lognormal 

3x  120 12 Lognormal 

4x  120 12 Lognormal 

5x  50 15 Lognormal 

6x  40 12 Lognormal 

5.1.1. Determination of Relaxed Number 

of Training Samples and Epochs – 

Example 1 

In this example, the design variable vector 

 1 2 3 4 5 6, , , , ,X x x x x x x  is selected as 

input of the ANFIS. LSF value is also taken 

as the output of the ANFIS. A generalized 

bell type MF as in Eq. (9) is contemplated for 
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calculating the membership value of the 

linguistic labels. 

2

1
( )

1 ( )
Li

i

i

bi

x
x c

a

 




 (9) 

where Li and { , , }i i ia b c are the membership 

function for i
th

 linguistic label and premise 

parameters set, respectively. Two rules for 

each MF are considered. 

Confirming to the expressions in section 4.1, 

training of ANFIS was attempted using 

different number of samples. The reason was 

to study relaxation of MRPE for a certain 

number of test samples. In other words, 

although the ANFIS could be trained 

applying any number of training samples as 

small as 50; however, the test samples may 

not be satisfied as far as the MRPE is 

concerned. Therefore, a thorough 

investigation was made to obtain the least 

amount of training samples for which any 

number of test samples could result 

satisfactorily. As a result, two figures are 

produced. In Fig. 2, relaxation for number of 

training samples using different number of 

test samples is presented. It is found that 

MRPE variations are converged to a relax 

number of 400 training samples with the 

corresponding MRPE of 0.061%. By fixing 

the training samples to 400, number of 

epochs was allowed to vary. Figure 3 

portrays that by increasing the number of 

epochs from 1 to 100, MRPE does not 

change considerably and only drops off from 

0.061% to 0.059%. Therefore, number of 

training samples and epochs were fixed to 

relaxed values of 400 and 1, respectively, for 

ANFIS model.  

 
Fig. 2. MRPE versus number of training samples - Example 1. 
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Fig. 3. MRPE versus epochs - Example 1. 

5.1.2. Determination of Most Influential 

Design Variables - Example 1  

Here, the idea is to investigate whether it is 

possible to eliminate the least important 

design variables. Therefore a QSA technique, 

described in section 4.3 is implemented. To 

this end, from the total of 6 candidates, 

various combinations of design variables 

from 1 to a maximum of 6 were attempted.  

It was observed that among 6 variables, x5 is 

mostly influences the LSF. This is clearly 

demonstrated in Table 2 where the 

corresponding QSA has the least MRPE. The 

verification of what accomplished was made 

applying the sigma-normalized derivatives 

based on Eq. (10) where: 

.i

xi

x

g i

g
S

x










 (10) 

As listed in Table 2, the results obtained 

reveal that x5 is most dominant, considering 

that a cosine function alters between -1 and 

1. 

Furthermore, by studying the MRPE in Table 

2, it can be deduced that the order of 

importance of the design variables is 

5 6 3 2 1 4x x x x x x      which is in 

agreement with the traditional sensitivity 

analysis results using Eq. (10). 

Table 2. Results for QSA - Example 1. 

Design variable MRPE (QSA) 
xi

S  

x1 72.45% 1 1

12
[1 cos(1000 )]x

g

S x


 
 

x2 
70.81% 

 
2 2

12
[2 cos(1000 )]x

g

S x


 
 

x3 
70.79% 

 
3 3

12
[2 cos(1000 )]x

g

S x


 
 

x4 
72.98% 

 
4 4

12
[1 cos(1000 )]x

g

S x


 
 

x5 
46.45% 

 
5 5

15
[ 5 cos(1000 )]x

g

S x


  
 

x6 
50.64% 

 
6 6

12
[ 5 cos(1000 )]x

g

S x


  
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The QSA depended MRPE results for 

different combinations of Design Variables 

(D.V.) are listed in Table 3, where a smooth 

convergence history was detected while 

removing the least important D.V. of 1.  

Final results for calculating the probability of 

failure has been summarized in Table 4. It is 

displayed that the number of LSF evaluation 

is reduced drastically in comparison with 

crude MCS. On the other hand, reduction in 

input space of ANFIS to only 5 variables, 

decreased the computing time to a relative 

reduction of 15.8%. As listed, the Pf drifts are 

negligible in proposed methods highlighted 

in rows 4 and 5 of Table 4, compared to the 

crude MCS of row 1. Additionally, a 

comparison between results of the proposed 

method and those by Cheng (2007)[28] were 

made and documented in that table. As it is 

evident, ANFIS based methods applying less 

training samples matched more closely the 

MCS results listed as Reference values. 

Table 3. Results for predicting most influential 

variables - Example 1. 
Number of variables  

from 6 candidates 

Optimal 

combination 
MRPE 

1 5 46.45% 

2 5,6 16.65% 

3 5,6,3 13.73% 

4 5,6,3,2 8.58% 

5 5,6,3,2,4 4.19% 

6 5,6,3,2,4,1 0.30% 

Table 4. Final results for reliability analysis - 

Example 1. 

Method 

Number of  

LSF 

evaluation 
fp  Error 

Crude MCS[27] 100000 0.0121 – 

GA–ANN [28] 2600 0.00845 
–

30.2% 

GA–ANN–MCSIS 

[28] 
1050 0.0124 2.5% 

MCS–ANFIS - all 

variables 
400 0.0123 1.65% 

MCS–ANFIS - 5 

influential variables 
400 0.0126 4.13% 

5.2. Example 2 

A two-dimensional frame as shown in Fig. 4 

is considered [28]. This example as an 

implicit LSF is selected in order to show the 

efficiency of the proposed approach to apply 

for a wide range of the actual structures. 

 
Fig. 4. Linear portal frame - Example 2. 

Different cross sectional areas iA  and 

horizontal load P are treated as independent 

random variables. The probabilistic 

distribution of their design variables are 

listed in Table 5. The sectional moments of 

inertia are expressed as 2

iii AI  (

1 2 3 4 50.08333, 0.26670, 0.2000         

). The Young’s modulus E  is treated as 

deterministic being equal to
7 22.0 10 KN / m . 

The five element types of the structure are 

illustrates in Figure 4. The frame is recorded 

as a failure whenever its horizontal 
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displacement Au  at node A, exceeds 0.096 m. 

Therefore, one could express the LSF as: 

),,,,,(096.0),,,,,( 5432154321 PAAAAAuPAAAAAg A  

 (11) 

Table 5. random variables - Example 2. 
Random 

Variable 
Mean 

Standard 

deviation 
Distribution 

1A  (
2m ) 0.25 0.025 Lognormal 

2A (
2m ) 0.16 0.016 Lognormal 

3A (
2m ) 0.36 0.036 Lognormal 

4A (
2m ) 0.20 0.020 Lognormal 

5A (
2m ) 0.15 0.015 Lognormal 

P (KN) 30.0 7.5 Type I largest 

 

5.2.1. Determination of Relaxed Number 

of Training Samples and Epochs – 

Example 2 

In this example, the design variable vector 

for the frame structure 

1 2 3 4 5{ , , , , , }X A A A A A P  is selected as the 

input for the ANFIS. Displacement of node A 

is considered as the output. Like Example 1, 

bell type MF is applied in ANFIS models. 

In Figure 5, the MRPE variation versus the 

increment of number of training samples is 

recorded, while keeping number of epochs 

equal to one. As illustrated in the figure, one 

realizes that after 300 training samples, the 

MRPE is independent of the number of test 

samples. This indicates a relaxation on the 

least number of training samples after which 

the exceeded number of training samples is 

just ineffective as far as the accuracy of LSF 

estimation is concerned. 

Having fixed the number of training samples 

to 300 then, the variation of number of 

epochs was studied aiming for minimum 

sufficiency. The history of convergence of 

MRPE for LSF prediction against number of 

epochs is shown in Figure 6, where the epoch 

number is relaxed to 80, after which no 

reduction of MRPE is recorded. 

 
Fig. 5. MRPE versus training samples - Example 2. 
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Fig. 6. MRPE versus epochs - Example 2. 

Training of ANFIS model for reliability and 

sensitivity analysis was therefore processed 

applying 300 training samples with 80 

epochs. 

5.2.2. Determination of Most Influential 

Design Variables - Example 2 

The study results of combined most 

influential variables are given in Table 6. 

Using QSA, valued statistics about the status 

of the design variables is in hand. It was 

found that the lateral load P is the most 

influential variable in this example. Bottom 

corner columns are the next important 

parameters which is meaningful in practice. 

This could be as a result to their key role in 

lateral resistance in a flexural frame. 

Moreover, beams with A4 cross sectional 

areas covering most of the elements in the 

frame are in the third level of importance. 

As exhibited in Table 6, the 3
th

 combination 

has been relaxed to a 3.69% MRPE value, 

after which a negligible reduction on its 

value is observed. So reliability analysis 

applying MCS-ANFIS method was 

performed using only the 3 most important 

design variables being P, A1 and A4.  

The structural failure probability was then 

obtained through the ANFIS. The results 

were then compared with those of crude 

MCS and GA-ANN [28] as listed in Table 7. 

The normalized CPU time illustrated in Table 

7 indicates a numerous computational time 

reduction using the proposed method. It is 

inferred that ANFIS-MCS method can derive 

a well-intentioned estimate of the implicit 

LSF through only few training samples. 

Through applying ANFIS, the approximation 

function written in an explicit form, once 

found, will be directly used instead of 

conducting deterministic Finite Element 

Analysis (FEA). The calculation of an 

explicit function requires only a fraction of a 

second compared to FEA requiring relatively 

extensive computational time.  

Table 6. Results for predicting most influential 

variables - Example 2. 

Number of 

variables from 6 

candidates 

Optimal 

combination of 

design Variables 

MRPE 

1 P 8.29% 

2 P, A1 5.54% 

3 P, A1, A4 3.69% 

4 P, A1, A4, A3 3.67% 
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Table 7. Final results for reliability analysis - 

Example 2. 

Method 

Number 

of 

FEA 
fp  Error 

Normalized 

CPU time 

Crude MCS 100000 0.0751 - 1 

GA–ANN [3] 5210 0.0718 –4.3% Not available 

MCS–ANFIS 

- all variables 
300 0.0744 –0.9% 0.0096 

MCS–ANFIS 

- 3 influential 

variables) 

300 0.0776 3.2% 0.0078 

6. Conclusion 

An effective methodology is accessible for 

reliability analysis of structures employing 

MCS and ANFIS. The approximate concepts 

that are innate in reliability analysis 

motivated the use of ANFIS. 

The computational efforts involved in the 

crude MCS come to be too much in large 

scale problems because of the massive 

sample size and the computing time required 

for each MCS run. The use of ANFIS can 

practically diminish any constraint on the 

scale of the problem. Moreover, the sample 

size used for MCS provided that the 

predicted LSF, corresponding to different 

simulations, fall within acceptable tolerances. 

It was also inferred that, contrary to neural 

network applications in other field of 

computational structural mechanics, the 

present application demonstrated a 

considerable robustness with regard to 

selection of training samples and epochs in 

estimating the probability of failure. The 

selection criterion involved a relaxation 

method to be introduced to extract the 

operational number of samples and epochs 

for training ANFIS. The proposed method 

confirmed to be independent on the type of 

structure or the type of the required analysis.  

A sensitivity method in consonance with 

ANFIS called quasi sensitivity analysis was 

developed and validated to discover most 

influential variables and compute probability 

of failure using a reduced vector of input 

variables. The power behind this method was 

found to be in ANFIS abilities for nonlinear 

function estimation. 

The numerical examples illustrated the 

application and the effectiveness of the 

proposed method. Comparisons were made 

possible with an analytic method based on 

derivatives of the LSF. It was demonstrated 

through some examples that the performed 

method provided accurate results and was 

computationally efficient for estimating the 

failure probability of structures. 
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