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Rock material is common in the construction of 

hydraulic structures. In the present study, to the aim is 

to examine the reactive solute relationships for transport 

and degradation processes through the rockfill media. 

By applying the analytical solution of reactive transport, 

the 1
st
 to 3

rd
 theoretical temporal moments have been 

extracted, consequently by applying two methods of 

curve fitting and temporal moment matching, the 

coefficients of dispersion and degradation have been 

exploited. Two rock diameter, two operating discharges 

and five instantly injection mass have been used as the 

variables of experiments. The EC sensors with 

operation software were installed inside the rockfill 

media and then the experimental breakthrough curves 

with intervals of 4 seconds have been extracted. It is 

concluded that both methods are suitable for application 

of transport and degradation processes inside the media. 

It was found that by increasing inflow discharges, pore 

velocity, and media diameters the dispersion coefficient 

decreases and with a decrease in media diameter or with 

increase in injection mass the decay rate decreases. The 

sensitivity analysis on the derived moment equation and 

also skewness coefficient equation indicated that the 

velocity and degradation are the most and less effective 

parameters on the moment equations respectively. 

Keywords: 

Pollutant Transport, 

Reactive Transport Equation, 

Decay Rate, 

Temporal Moments. 

 

1. Introduction 

Transport of pollutants through the 

different type aquatic ecosystems have 

been inspected by researchers since many 

years ago. By assuming complete mixing 

in the cross section, the one-dimensional 

http://dx.doi.org/10.22075/jrce.2018.12739.1221
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transport model of Taylor [1], can been 

applied. This model is somewhat simple 

and do not suffer diversity of model 

parameter and the transport process can 

be interpreted by only one parameter 

which is called Dispersion coefficient [1]. 

The velocity of the mentioned model is 

cross sectional average velocity. The 

dispersion coefficient have been 

computed firstly by routing method 

which were presented by Fischer [2]. It is 

believed by previous researchers that 

after initial mixing of the tracer over the 

cross section, the Gaussian distribution is 

dominant and the variance increases 

linearly by increasing of the time. 

However, due to the complexity of the 

dispersion process and geometrical 

irregularity of the rivers or other flow 

fields, the explanation of the dispersion 

process with this model is not accurate 

[3]. This fact forces the researchers to use 

other complicated transport models with 

more model parameters like Transient 

storage model or aggregated dead zone 

model [3]. Moreover, different methods 

exist for extraction of the model 

parameters. Two applicable and most 

famous methods are curve fitting and 

temporal moment methods. Thackston 

and Schnelle [4] and Fischer et al. [2] 

tried to catch temporal variation of the 

concentration in the dead zone and 

concluded that the dead zone model is 

applicable for interpretation of the 

skewness of pollutographs, having long 

tail in the falling limb. Thackston and 

Schnelle [4], Pedersen [5], Nordin and 

Troutman [6], and Seo and Maxwell [7] 

confirmed that the transient storage 

model produce better curve fitting for 

rebuilding of the long tail of the 

breakthrough curves. Czernuszenko et al. 

[8] concluded that there is difficulty in 

physically interpretation of the dead zone 

model parameters. Firstly, mathematical 

closed form of the first to third temporal 

moments of the dead zone model were 

extracted by Hays et al. [9] afterwards, 

the detailed description of them have 

been investigated by Nordin and 

Troutman [6] by application of Laplace 

transform. These relationships have been 

extracted for instantaneous mass slug 

over the cross section in the conservative 

mood for the tracer. After these 

researchers, the temporal moment 

relationships for none-conservative mood 

have been extracted by Schmid [10]. For 

1
st
 to 3

rd
 moments and consequently the 

fourth moment were presented by Seo 

and Cheong [11]. 

Generally it can be concluded that 

theoretically relationships for different 

types of transport model in various initial 

and boundary conditions have been 

propsed by Harvey and Gorelick [12], 

Luo et al. [13] for mass transfer of 

transport model, Czernuszenko and 

Rowinski, [8], Schmid, [14] for transient 

storage model, Goltz and Roberts [15], 

Cunningham and Roberts [16] for 

equilibrium and none equilibrium 

sorption models, Lees et al. [17] for 
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aggregated dead zone models and 

Argerich et al. [18] for metabolically 

active TS model [19]. 

2. Material and Methods 

2.1 Theoretical Approach  

If the advection and dispersion of solute 

is in none-conservative mood like so 

many solutes such that, the recovered 

mass from experimental BC
1
 curves is not 

equal with injected mass, it is called 

reactive solute transport. Putting it 

differently, in this case, the total mass of 

contaminants does not recover itself. The 

one-dimensional mass transport equations 

by adding degradation term becomes as 

equation (1). 

𝜕𝑐

𝜕𝑡
+ 𝑣

𝜕𝑐

𝜕𝑥
= 𝐷

𝜕2𝑐

𝜕𝑥2
− 𝑘𝑐 (1) 

Where 𝐷 is dispersion coefficient and 𝑘 is 

degradation rate.  

Equation (1) is extension of classical AD 

equation by first-order degradation term 

and 𝑘 > 0 that implies the contaminant 

degrades in its transportation path. By 

contemplating instantaneous slug release 

with mass of M to one dimensional flow, 

analytical solution of equation (1) 

becomes as equation (2). 

 𝐶(𝑥, 𝑡) =
𝑀

𝐴√4𝜋𝐷𝑡
𝑒𝑥𝑝 (−

(𝑥−𝑉𝑡)2

4𝐷𝑡
− 𝑘𝑡) (2) 

Where 𝐴 is cross sectional area, 𝑥 is the 

location of data acquisition, 𝑉 is the cross 

                                                 
1 ) Breakthrough 

sectional average flow velocity and 𝑡 is 

the time matrix [3]. 

One of the important methods for 

extraction of dispersion coefficient and 

degradation rate is curve fitting to the 

analytical solution (equation 2) with 

experimental acquired data series. 

Since experimental results are normally 

based on the temporal distribution of 

concentration (concentration variation 

versus time at the fixed location), 

therefore temporal analysis leads to 

extract characteristics of dispersion and 

degradation parameters. Applying 

analytical temporal moments for 

experimental BC curves, the central 

tendency of them can be computed. The 

absolute nth temporal moment of 

concentration time series 𝐶(𝑡) at the 

distance of 𝑥 with respect to zero is 

defined as equation (3): 

𝜇𝑛 = ∫ 𝑡𝑛𝐶(𝑡)𝑑𝑡
∞

0

 (3) 

And additionally nth normalized temporal 

moment about zero moment can be 

defined as equation (4): 

𝜇𝑛
∗ =

𝜇𝑛

𝜇0

 =
∫ 𝑡𝑛𝐶(𝑥, 𝑡)𝑑𝑡

∞

0

∫ 𝐶(𝑥, 𝑡)𝑑𝑡
∞

0

 (4) 

If the moments is computed with respect 

to the mean, then nth normalized 

temporal moment about the mean is 𝑚𝑛 

and is defined as the equations of (5) and 

(6): 
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𝑚𝑛 =
1

𝜇0

∫ (𝑡 − 𝜇1
∗)𝑛𝐶(𝑡)𝑑𝑡

∞

0

 
(5) 

𝑚𝑛 = ∑( )𝑛
𝑖

𝑛

𝑖=0

𝜇𝑛−𝑖
∗ (−𝜇1

∗)𝑖 
(6) 

Where: 𝑖 is an index. The equation (6) is 

an inverse binomial transform which can 

be applied to compute normalized central 

moments of order 1 (mean travel time), 2 

(variance) and 3 (skewness)  

(Equations of 7, 8 and 9)[20]. 

𝑚1 = 𝜇1
∗ (7) 

𝑚2 = 𝜇2
∗ − (𝜇1

∗)2 (8) 

𝑚3 = 𝜇3
∗ − 3𝜇1

∗𝜇2
∗ + 2(𝜇1

∗)3 (9) 

By contemplating the equation of (2) as 

the base equation for our research and 

also doing some mathematical 

integrations, the zero ,1
st
 ,2

nd
 and 3

rd
 

theoretical temporal moments have been 

computed respectively as equations of 

(10), (11), (12) and (13). If the classical 

advection-dispersion equation was the 

base function then the zero moment was 

equal to the 𝑀/𝑄 and due to the constant 

rate of flow, the mass of the tracer is 

product of volumetric flow rate and zero 

moment. 

𝜇0 =
𝑀

𝐴√𝑉2 + 4𝑘𝐷

× exp (
𝑥𝑉 − 𝑥√𝑉2 + 4𝑘𝐷

2𝐷
) 

 

(10) 

𝜇1 =
𝑀(2𝐷 + 𝑥√𝑉2 + 4𝑘𝐷)

𝐴(𝑉2 + 4𝑘𝐷)3/2

× exp (
𝑥𝑉 − 𝑥√𝑉2 + 4𝑘𝐷

2𝐷
) 

(11) 

𝜇2 =

𝑀 [
𝑥2(𝑉2 + 4𝑘𝐷) + 12𝐷2

+6𝐷𝑥√𝑉2 + 4𝑘𝐷
]

𝐴(𝑉2 + 4𝑘𝐷)
5

2

 

× exp (
𝑥𝑉 − 𝑥√𝑉2 + 4𝑘𝐷

2𝐷
) 

(12) 

𝜇3 =

𝑀

[
 
 
 
 
12𝐷𝑥2(𝑉2 + 4𝑘𝐷)

+120𝐷3

+60𝑥𝐷2√𝑉2 + 4𝑘𝐷

+𝑥3(𝑉2 + 4𝑘𝐷)
3

2 ]
 
 
 
 

𝐴(𝑉2 + 4𝑘𝐷)
7

2

 

× exp (
𝑥𝑉 − 𝑥√𝑉2 + 4𝑘𝐷

2𝐷
) 

(13) 

By manifesting more algebraic 

operations, 

The 0
th

, 1
st
, 2

nd
 and 3

rd
 normalized 

moments with respect to the zero have 

been computed as equations of (14) to 

(17). As is illustrated, the normalized zero 

moment is equal to one. 

𝜇0
∗ = 1 (14) 

𝜇1
∗ =

(2𝐷 + 𝑥√𝑉2 + 4𝑘𝐷)

(𝑉2 + 4𝑘𝐷)
 

(15) 

𝜇2
∗ =

[
𝑥2(𝑉2 + 4𝑘𝐷) + 12𝐷2

+6𝐷𝑥√𝑉2 + 4𝑘𝐷
]

(𝑉2 + 4𝑘𝐷)2
 

(16) 
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𝜇3
∗ =

[

12𝐷𝑥2(𝑉2 + 4𝑘𝐷) + 120𝐷3

+60𝑥𝐷2√𝑉2 + 4𝑘𝐷 +

𝑥3(𝑉2 + 4𝑘𝐷)
3

2

]

(𝑉2 + 4𝑘𝐷)3
 

(17) 

Furthermore, with regard of equations of 

(7) to (9) and (14) to (17) by applying 

some more algebraic operations, the 

normalized temporal moments with 

respect to the mean have been computed 

as the equations of (18) to (21). These 

relationships can be applied for 

calculation of mean travel time, temporal 

variance and skewness coefficient of 

experimental BC curves. 

m1 = μ1
∗ =

(2D + x√V2 + 4kD)

(V2 + 4kD)

= tm 

(18) 

𝑚2 = 𝜇2
∗ − (𝜇1

∗)2

=
8𝐷2 + 2𝐷𝑥√𝑉2 + 4𝑘𝐷

(𝑉2 + 4𝑘𝐷)2
= 𝜎2

𝑡 

(19) 

𝑚3 = 𝜇3
∗ − 3𝜇1

∗𝜇2
∗ + 2(𝜇1

∗)3

=
64𝐷3 + 12𝐷2𝑥√𝑉2 + 4𝑘𝐷

(𝑉2 + 4𝑘𝐷)3
 

(20) 

𝑆𝐶 =
𝑚3

𝑚2
(
3

2
)

=
16𝐷 + 3𝑥√𝑉2 + 4𝑘𝐷

(4𝐷(4𝐷 + 𝑥√𝑉2 + 4𝑘𝐷)3)
 

(21) 

Where: 𝑡𝑚 is mean travel time of the BC 

curve, 𝜎2
𝑡 is temporal variance of BC 

curve and 𝑆𝐶 is skewness coefficient of 

BC curve 

The first moment has dimension of time 

and is from t=0 to the center of gravity of 

the area under time-concentration curve. 

Generally, it is called the average travel 

time of the tracer (equation 22). In many 

experimental or field conditions, by 

manifesting more simplification on the 

second central temporal moment of the 

classical advection-dispersion equation 

and neglecting of one ignorable term, the 

mean residence time of tracer can be 

approximated as (22): 

𝑚1 = 𝜇1
∗ = 𝑡𝑚 =

𝑥

𝑉
 (22) 

Where 𝑡𝑚 is average travel time. 

The equation of (23) can be computed 

from second central moment from 

classical advection-dispersion equation. 

𝐷 =
𝑉3

2𝑥
(𝜇2

∗ − (𝜇1
∗)2) 

(23) 

(𝜇2
∗ − (𝜇1

∗)2) is variance of BC curve. It 

is clear that time temporal variance 

changes linearly with distance which 

gives equation (24) [3]. 

𝐷 =
𝑉3

2

𝑑𝜎2
𝑡

𝑑𝑥
 

(24) 

 On that account, it is apparent that if 𝜎2
𝑡 

is plotted against 𝑥 as straight line, then 

the longitudinal dispersivity is a constant 

value independent to the travel distance 

and the dispersion coefficient can be 

calculated applying the slope of straight 

line from (24).  

Now by calculation of central temporal 

moments from experimental data series 

and regarding analytical solutions of 
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different moments, one set of two 

equations (18 to 21) with two unknown 

parameters can be formed for estimation 

of dispersion coefficient and degradation 

rate or by using equation (22) which is 

operated with large number of previous 

researchers [19], the dispersion 

coefficient would be extracted by using 

one other equation (18 to 21). Hence, the 

degradation rate would be computed.  

2.2 Experimental Data 

The experiments have been operated in 

the rockfill media box with 1.3m length 

and 0.2m width having erect up and 

downstream sides. Two rock median 

diameters of 1.1 and 1.8 cm having 

porosities of 42 and 47% respectively 

were imposed inside the media box. Five 

injection masses of 5, 10, 15, 25 and 50 

gr have been introduced instantly at the 

upstream of media as tracer. 

Two completely flowthrough discharges 

of 0.26 and 0.37 (l/s) have been applied to 

the media. Pre-calibrated EC sensors 

were installed at the distances of 0.36 and 

1.1m from media entrance, connecting to 

the data logger with designed software 

system. Data recording interval was 4 

seconds and solution of sodium chloride 

have been injected instantly at the 

upstream of the media and 

simultaneously the data recording has 

begun. The different parts of the 

experimental setup has been presented in 

figure 1. 

3. Results and Discussion 

All of the experimental BC curves were 

zeroed with base concentration of the 

flowing water through the porous media. 

Consequently, the results of experiments 

for both 1
st
 and 2

nd
 sensors which were 

positioned at distances of 0.36m and 1.1m 

respectively have been displayed in the 

tables of 1 and 2. The range of 

longitudinal dispersion coefficient is 

between 2 to 25 (cm
2
/s) and the 

magnitudes of degradation rate is in the 

range of 0.01 to 0.05 (1/s). Generally the 

computed dispersion coefficients and 

degradation rate (extracted from both 

least square curve fitting and temporal 

moments method) for first sensor is 

greater than second one which exhibit the 

spatial variation of the above-mentioned 

parameters. Furthermore, it is observed 

that by increase in pore flow velocity due 

to increase of media diameter or entrance 

discharges, the dispersion coefficient and 

degradation rate of tracer increases. This 

is due to the enhancing of the mechanical 

dispersion inside of the large porous 

media. The average difference between 

the quantities of for the dispersion 

coefficients which were computed from 

two different methods is about 33%, 

presenting any considerable differences, 

but the values of the degradation rate 

show significant differences. Increase in 

tracer injection mass dose not shows any 

special trend in the dispersion coefficient 

but the values of degradation rate which 

were extracted from curve fitting method 

has shown a reverse order with injection 

mass. Furthermore, degradation rates that 
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were computed from method of moments 

have displayed somewhat a constant 

value. Recovery percentage of injected 

mass from experimental BC curves is in 

direct relation with injection mass. in 

other words, with increase in injection 

mass, the recovered mass through the BC 

curves increases and inversely 

degradation rate decreases. It is also 

noteworthy to mention that changing of 

all parameters which would increase pore 

velocity inside of the large porous media 

would enhance the mechanical dispersion 

and consequently the large values of the 

dispersion coefficients would be 

exhibited. 

 

 (A) 
 

 (B) 

 

 (C) 

 

 

(D) 

Fig. 1. Laboratory flume (C), EC meter sensors (A), Data accusation system (B), Designed software (D). 
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Table. 1. Extracted parameters for 1st sensor from curve fitting method to the analytical solution and 

temporal moments method. 

Media 

diameter 

(cm) 

Discharge 

(l/s) 

Injection 

mass 

(mgr) 

Recovery 

*(%) 

Dispersion 

coefficient 

(cm2/s) 

CF2 

Dispersivity 

(cm) 

CF 

Degradation 

rate (1/s) 

CF 

Dispersion 

coefficient 

(cm2/s) 

MOM3 

Dispersivity 

(cm) 

MOM 

Degradation 

rate (1/s) 

MOM 

1.8 0.26 5000 31.42 8.677 5.903 0.0414 9.0452 5.6540 0.0400 

1.8 0.26 10000 45.92 5.523 3.757 0.0283 5.3246 3.8262 0.0357 

1.8 0.26 15000 51.80 9.231 6.280 0.0213 7.0506 4.7240 0.0378 

1.8 0.26 25000 68.11 5.381 3.660 0.0139 5.1856 3.8254 0.0348 

1.8 0.26 50000 93.15 5.213 3.546 0.0033 5.1343 3.7793 0.0349 

1.8 0.37 5000 30.81 6.486 3.612 0.0533 8.1416 4.3193 0.0480 

1.8 0.37 10000 45.05 6.026 3.355 0.0358 7.0977 4.2527 0.0425 

1.8 0.37 15000 47.18 10.266 5.716 0.0307 8.4140 4.8258 0.0441 

1.8 0.37 25000 56.66 19.851 11.053 0.0198 12.1302 5.9038 0.0512 

1.8 0.37 50000 74.03 10.571 5.886 0.0123 8.9427 5.0197 0.0449 

1.1 0.26 5000 30.20 2.933 1.968 0.0510 5.5993 4.2459 0.0336 

1.1 0.26 10000 43.45 6.124 4.110 0.0308 5.7696 4.1893 0.0351 

1.1 0.26 15000 51.06 5.875 3.943 0.0251 5.0205 3.8412 0.0335 

1.1 0.26 25000 69.63 5.398 3.623 0.0137 5.2043 3.9860 0.0334 

1.1 0.26 50000 92.42 4.430 2.973 0.0039 4.2947 3.6022 0.0307 

1.1 0.37 5000 44.20 3.212 2.007 0.0350 3.6364 2.4167 0.0396 

1.1 0.37 10000 59.57 6.642 4.151 0.0192 7.0176 4.6978 0.0378 

1.1 0.37 15000 61.87 7.260 4.537 0.0176 5.8664 3.9552 0.0380 

1.1 0.37 25000 71.72 5.656 3.535 0.0136 4.7959 3.5657 0.0347 

1.1 0.37 50000 97.44 5.777 3.611 0.0021 5.6281 4.0493 0.0355 

*Recovery percentage is calculated by dividing of the recovered mass by experimental BC curve to the 

injection mass. 

Table. 2. Extracted parameters for 2nd sensor from curve fitting method to the analytical solution and 

temporal moments method. 

Media 

diameter 

(cm) 

Discharge 

(l/s) 

Injection 

mass 

(mgr) 

Recovery 

(%) 

Dispersion 

coefficient 

(cm2/s) 

CF 

Dispersivity 

(cm) 

CF 

Degradation 

rate (1/s) 

CF 

Dispersion 

coefficient 

(cm2/s) 

MOM 

Dispersivity 

(cm) 

MOM 

Degradation 

rate (1/s) 

MOM 

1.8 0.26 5000 34.46 18.696 7.922 0.0215 24.2937 9.6010 0.0215 

1.8 0.26 10000 43.38 10.565 4.477 0.0166 10.7374 4.3397 0.0217 

1.8 0.26 15000 54.95 16.785 7.112 0.0122 36.4640 16.0166 0.0187 

1.8 0.26 25000 57.02 11.869 5.029 0.0111 11.3712 4.7388 0.0210 

1.8 0.26 50000 73.45 11.857 5.024 0.0062 12.0859 5.0310 0.0210 

1.8 0.37 5000 22.08 20.823 7.545 0.0353 25.4458 8.0742 0.0270 

1.8 0.37 10000 35.96 16.076 5.825 0.0233 17.0280 5.5472 0.0267 

1.8 0.37 15000 42.04 21.033 7.621 0.0192 19.6074 6.2630 0.0271 

                                                 
2
 ) Curve Fitting 

3
 ) Method of moments 
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1.8 0.37 25000 46.52 32.644 11.828 0.0160 19.6462 5.8572 0.0291 

1.8 0.37 50000 60.27 22.631 8.200 0.0110 17.6963 5.7354 0.0268 

1.1 0.26 5000 17.53 7.029 3.138 0.0377 14.3434 6.7434 0.0184 

1.1 0.26 10000 29.83 10.653 4.756 0.0237 13.7571 5.9007 0.0203 

1.1 0.26 15000 35.84 10.303 4.599 0.0200 11.7250 5.1558 0.0199 

1.1 0.26 25000 42.05 10.697 4.775 0.0168 11.5724 5.2019 0.0194 

1.1 0.26 50000 54.23 8.902 3.974 0.0125 10.9006 5.1183 0.0186 

1.1 0.37 5000 21.48 7.645 3.058 0.0353 14.2303 5.5916 0.0222 

1.1 0.37 10000 38.90 12.764 5.106 0.0205 24.6519 9.5134 0.0220 

1.1 0.37 15000 39.43 12.481 4.992 0.0201 15.2303 5.9076 0.0224 

1.1 0.37 25000 43.88 11.285 4.514 0.0184 12.1847 5.0363 0.0211 

1.1 0.37 50000 52.10 12.371 4.948 0.0146 13.6492 5.6433 0.0210 

 

The figures of 2(a, b) are indicating some 

examples of experimental and analytical 

BC curves which have been conducted at 

the two above mentioned positions. As is 

presented, by moving along the large 

porous media, the dispersion and 

degradation processes have acted and the 

downstream curves have indicated a 

lower magnitude in climax point. In 

addition to the experimental curves, 

analytical curves by applying the 

dispersion and degradation coefficients, 

which were exploited from both above-

mentioned methods, have been depicted. 

As a conclusion it can be implied that 

both of the methods is beneficial and can 

be applied to the tracer tests. 

Furthermore, the depicted curves 

indicates asymmetry between two limbs 

of the BC curves because of transient 

storage of tracer inside the media and 

gradually outgoing from that. 

The sensitivity analysis for 1
st
 to 3

rd
 

temporal moments and skewness 

coefficient have been arranged. 4 

parameters of velocity, degradation rate, 

dispersion coefficient and length scale 

were chosen as variables of the moments. 

The real magnitudes for mentioned 

parameters were selected to examine the 

sensitivity of them in the moment 

equations. Since all the parameters are in 

different dimensions, the normalized form 

of them have been computed in order to 

arrange them in the limited domain. The 

normalization process were accomplished 

applying equation of (25).  

𝑥𝑛 =
(𝑥𝑖 − �̅�)

𝑠𝑡𝑑(𝑥𝑖)
 

(25) 

Where: the 𝑥𝑖 is the real parameter, �̅� is 

the mean of parameter and 𝑠𝑡𝑑(𝑥𝑖) is the 

standard deviation of the parameter.  

The figures of the sensitivity analysis is 

illustrated in Fig. 3(a) to (d). Among the 

examined parameters, the pore velocity 

has the most important and reverse role in 

the moment equations. Since all the 

moments change very intensely by 

increasing of the pore velocity. Increasing 

of the length scale exhibits a linear 

increasing tendency for all the moments 
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but in skewness coefficient, it operate a reverse none-linear tendency. 

 
(a)  

 
(b)  

Fig. 2. Experimental and analytical BC curves for a) injection mass equal to 5000 (mgr), median diameter 

of media d=1.8 cm and entrance discharge equal to 0.26 (l/s) b) Injection mass equal to 15000 (mgr), 

median diameter of media d=1.1 cm and entrance discharge equal to 0.37 (l/s). 
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(a)  

 
(b)  

 
(c) 

 
(d) 

Fig. 3. Sensitivity analysis for moment equations a) 1st temporal moment versus normalized parameters 

b) 2nd temporal moment versus normalized parameters c) 3rd temporal moment versus normalized 

parameters d) skewness coefficient versus normalized parameters. 
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The decay rate reveals a gentle decreasing 

manner in the all moment and skewness 

coefficient equations such that it has the 

lowest impact on the model equations. 

The parameter of the dispersion 

coefficient has very interesting role in 

which in the 1
st
 and 2

nd
 moment equation 

it has linear trend but decreasing in the 1
st
 

and increasing in the 2
nd

 moment. For 3
rd

 

moment equation, the dispersion 

coefficient shows non-linear increasing 

manner. Moreover, in the skewness 

coefficient equation, non-linear 

increasing manner with respect to the 

dispersion coefficient has been observed.  

4. Summary and Conclusions 

Sometimes, the injected mass as tracer in 

different type flow fields cannot be 

recovered totally. Consequently, the 

reactive equations is beneficial for 

application. In this research, the 

theoretical temporal moments were 

derived from direct integration from 

analytical equation of the advection-

dispersion including first-order reactive 

term. The magnitudes of the decay rate 

and dispersion coefficients have been 

extracted for one experimental data series 

applying two different methods named 

least square curve fitting and temporal 

moment. The outcomes reveals 

proficiency of the both of these methods. 

Notwithstanding, the rebuilt breakthrough 

curves by the coefficients of LSCF shows 

a better agreement with the experimental 

BC curves. The results revealed that the 

magnitudes of the both of the mentioned 

coefficients illustrated spatial variation 

along the porous media. All geometrical 

and hydraulically parameters which 

enhances mechanical dispersion 

processes causes enhancing in the both of 

the coefficients. The sensitivity analysis 

were demonstrated for the obtained 

moment equations by changing of the 4 

involved parameters. It is concluded that 

the velocity parameter is the most 

effective parameter among others which 

shows a reverse effect in the different 

order moment equations. Furthermore, 

the degradation rate is the less effective 

parameter in the all the moment and 

skewness coefficient equations which 

indicate reverse linear decreasing manner.  
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