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Dams have been always considered as the important 

infrastructures and their critical values measured. Hence, 

evaluation and avoidance of dams’ destruction have a 

specific importance. In this study seepage of the 

embankmentof Boukan Shahid Kazemi’s dam in Iran has 

been analyzed via RBF (radial basis function network) and 

GFF (Feed-Forward neural networks) models of Artificial 

Neural Network (ANN). RBF and GFF of ANN models were 

trained and verified using each piezometer’s data and the 

water levels difference of the dam. To achieve this 

goal,based on the number of data and inputs,864piezometric 

data set were used, of which 80% (691 data) was used for the 

training and 20% (174 data) for the testing the network.The 

results showed good agreement between observed and 

predicted values and concluded the RBF model has high 

potential in estimating seepage with Levenberg Marquardt 

training and 4 hidden layers. Also the values of statistical 

parameters R2 and RMSE were 0.81 and the 33.12. 

Keywords: 

Embankment Dam Seepage, 

Ann, 

Rbf Model, 

Gff Model, 

Boukanshahidkazemi's Dam. 

 

1. Introduction 

One of the ways to solve the water scarcity 

problem is to control surface waters. Dam 

construction and water storage are considered 

as one of the best methods to control water 

surface. The behavior of dams should be 

always evaluated and controlled due to the 

fact that their construction’s cost are too high 

and the damage of their destruction is 

irrecoverable. The study of dam 

behaviourconsists of three periods; 

construction, first dewatering and the 

operation time. 

For providing useful information about the 

possible problems of the embankment, 

earthquake and its effects on dam, pore 

pressure of the core, and the vertical and 

horizontal displacements should be studied in 

all three stages. 

http://dx.doi.org/10.22075/jrce.2018.13986.1254
http://civiljournal.semnan.ac.ir/


16 S. Emami et al./Journal of Rehabilitation in Civil Engineering 7-3 (2019) 15-32 

 

To study dam behavior, numerical methods 

were used. Since these methods are usually 

difficult, time-consuming and require 

complex programming researchers were 

looking for easier ways with less time and 

cost [1]. 

Artificial neural networks which are modeled 

on biological neural networks can be helpful 

in solving problems such as the above 

problem. Now, these networks which are 

considered as intelligent systems, are used in 

different science including water engineering 

with a wide variety of constructions. 

Generally, it can be said that in any given 

case which learning a linear or nonlinear 

mapping and a special space would be 

needed, these networks can ideally perform 

this conversion [1]. 

Recently, with the development of software 

programs, we can predict different 

phenomena with high accuracy. Artificial 

neural networks are one of the good and 

accurate predicting methods employed in 

different disciplines, including water 

resources engineering. 

Ersayin examined the seepage of the dam 

embankment, specifically. In his study, after 

a comprehensive introduction of various 

types of dams and seepage phenomenon, this 

phenomenon was modeled using artificial 

neural networks (ANNs). In his thesis, 

Ersayin used a set of data including 125 

piezometric data collected from the Jeziorsko 

earth fill dam in Poland to train and test his 

proposed model. Upstream and downstream 

water levels as inputs and water surface of 

piezometers were considered as output. The 

statistical parameters used in his study were 

consisted of; correlation coefficient (R
2
), root 

mean square error (RMSE) and MAE. The 

values of these parameters for train data were 

0.95, 0.232 and 0.205 respectively, and for 

test data were 0.93, 0.477 and 0.125 

respectively. In his study, hidden layers and 

various activity functions were used to obtain 

the best results. Finally, the network with the 

sigmoid activity function and one hidden 

layers yielded the most accurate result [2]. 

Nourani et al. analyzed the piezometric 

height at the core of Sattarkhan embankment 

dam in Iran using artificial neural networks 

(ANNs). The ANNs with details of the three 

layer prediction with the Levenger-Marqurdt 

algorithm post-propagation trained the data. 

While for the integrated FFBP network, the 

number of hidden neurons was 6 and for the 

integrated RBF network the radius was 

considered 0.5, the hidden neurons for single 

network were 5 and 7. The results of their 

study showed a good adaptation between 

prediction and measured values. The 

correlation coefficient (R
2
) for the single 

network was 0.798 and for the FFBF and 

RBF networks were 0.67 and 0.87, 

respectively. They concluded that the results 

of artificial neural networks are closer to 

reality, compared to the numerical methods 

which have been used in previous studies [3].  

Pourkarimi et al. presented a new method for 

determining the seepage flow from the 

foundation and body of embankment dam 

based on data analysis methods. After 

studying Fileh-Khaseh embankment dam in 

Zanjan province in Iran, the seepage of 

embankment’s soil was estimated by the 

finite element software called SEEP. In his 

study, a set of 96 data on effective parameters 

of seepage including permeability coefficient 

of the foundation and water heights behind 

the dam in allowable range were produced. 

Then, 65 and 31 data were used for training 

and testing the model respectively. The 

results showed that ANN provides an 
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effective appliance for detecting patterns in 

data and accurate prediction of seepage from 

the foundation and body of Filleh-Khaseh 

dam. The statistical parameters used in this 

study were R
2
, RMSE, MSE and MAE. The 

values of these parameters for the train data 

were 0.93, 43, 1870 and for the test data were 

0.092, 17 and 1841 respectively [4]. 

Kamanbedast and Delvari Analyzed seepage 

and stability of earth dam using Ansys and 

Geo-Studio software.Therefore, result wore 

compared whit Geo studio Software result. 

Firstly, Dam were studied with using there 

analysis method, then seepage are predicated 

the seepage rate in Ansys, 18% is lower than 

Geo-Studio results. Results showed the 

significant difference of two software is 

related to safety factor and eventually it can 

be deducted that Ansys answer is more 

acceptable. Brifly, as a result, dam is at 

suitable situation according to the software 

results and Just vertical settlement at core 

zone should be studied more and perfectly 

[5]. Ebtehaj and Bonakdari (2013), Evaluated 

of Sediment Transport inSewer using 

Artificial Neural Network (ANNs). They 

reported in comparison with existing 

methods, the ANN showed acceptable results 

[6]. 

Aljeyri attempted to investigate soil dam 

behavior using Ansys. In this study, H was 

assumed that, none impervious layer behind 

layer are exist and downstream seepage is 

influenced by each change of two impervious 

layers which are concluded dams [7]. 

Shamsaie et al. studied the behavior of 

Mahabad dam using numerical methods. In 

their study, the status of Mahabad dam was 

analyzed for changes in seepage. After 

constructing the cutoff wall and grout curtain 

at foundation of dam, numerical simulation 

showed the seepage foundation of dam 

decreased to 0.05 that it ignorable [8]. 

Nourani and Babakhani predicted seepage 

from Sattarkhan dam using RBF model. The 

results of RBF model indicated this method 

has better accuracy and less computation in 

comparison with the finite difference method 

[9]. 

Naderpour et al. estimated the Shear Strength 

Capacity of Masonry Walls Improved with 

Fiber Reinforced Mortars (FRM) Using 

ANN-GMDH Approach. The results showed 

the proposed model (ANN-GMDH) has a 

correlation coefficient of 0.95, which 

represented the high efficiency of the model 

[10]. 

Jamal et al. predicted the amount of 

discharge to the clay core of embankment 

dams under unstable permeability conditions 

using ANN. In his study, finite element 

models were constructed and analyzed for 

non-saturated conditions. Then the results 

with input conditions were used to train the 

perceptron neural network model. The results 

of this research indicate the ability of ANN to 

accurately predict seepage of embankment 

dam in unsaturated condition [11]. 

Santillán et al. analyzed dam seepage by 

means of an artificial neural network model. 

Results showed artificial neural network 

models a powerful tool for predicting and 

understanding seepage phenomenon [12]. 

Naderpour et al. predicted the torsional 

strength of RC beams strengthened with FRP 

sheets by using neural network and reported 

it was possible to achieve a satisfactory result 

with less cost and time by training the 

artificial neural networks [13]. 

Ebtehaj et al. predicted sediment transport in 

sewers using an expert system with radial 
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basis function neural network based on 

decision trees. The results of DT-RBF are 

compared with RBF and RBF particle swarm 

optimization (PSO), which uses PSO for 

RBF training. It appears that DT-RBF is 

more accurate R
2
= 0.934, MARE = 0.103, 

RMSE = 0.527, SI = 0.13, BIAS = -0.071) 

than the two other RBF methods [14]. 

Naderpour et al. used artificial neural 

networks (ANNs) for compressive strength 

prediction of environmentally friendly 

concrete. The results showed that the ANNs 

were an efficient method to predict the 

compressive strength of ARC [15]. 

Given that the seepage of Shahid Kazemi 

Boukan dam has not investigated yet, in the 

present research, was investigated the power 

of the neural network in predicting the 

seepage and monitoring of Boukan dam 

body. 

The following purposes were pursued: 

- Comparison of RBF (radial basis function 

network) and GFF (Feed-Forward neural 

networks) models of ANN. 

- Determine the best topology of ANN model 

(number of nodes and neurons, number of 

layers and appropriate training function). 

2. Materials and Methods  

2.1.Area of Study 

In order to use artificial neural network 

(ANN) method to predict seepage value from 

dam body, ShahidKazemiBoukan dam 

located in Boukan city of west Azarbaijan 

province was selected. This dam was built on 

Zarrineh River in Azarbaijan province. The 

purposes of the construction of 

ShahidKazemi dam were to irrigate 85000 

haof Miandoab plain lands, control of 

destructive floods, adjust the water level of 

the Zarrineh River, supply the drinking water 

of upstream and downstream cities and 

protect aquatic ecosystems. Zarrineh River 

basin is located between the geographical 

limits on the 32ᵒ 26 minute in the northern, 

also on the meridian 46ᵒ 32 minutes east of 

the Greenwich meridian [16]. 

The location of Shahid Kazemi dam is shown 

in Figure 1. 

  
Fig. 1.ShahidKazemiBoukan dam position on the map 

In Table 1, the technical characteristics of 

ShahidKazemiBoukan dam are given. This 

study is conducted using these 

characteristics.  
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Table 1.BoukanShahidKazemi dam technical characteristics. 
Before Increasing the height of 

the dam 

After Increasing the height of the 

dam 

Construction characteristics and 

Facilities 

Gravel with a Silt-Clay core Gravel with a Clay core Dam Body Type 

50-174 m 52.5 m in 1995 Height of Foundation 

520 m 520 m Crest length 

10 m 50 m Crest Width 

1424 m 1426.5 m The Level of Dam Crest 

Free 10 Radial Gates with 5 m Height Spillway Type 

4300 m3/s 2300 m3/s Spillway Capacity 

1416 m 1421 m Water Level 

 

650 Mm3 808 Mm3 Reservoir Volume in Normal 

Level 

117.5 m3 135.8 m3 Dead volume 

 

2.2. Governing Equation 

The fluid motion is assumed to obey the 

classical Richards equation. This equation 

may be written in several forms, with either 

pressure head (h) or moisture content (θ)as 

the dependent variable, and the mixed form 

of them. The h-based” form is written as [3]:  

C(h)
ƌh

ƌt
= ∇. K(h)∇h −

ƌk

ƌz
                              (1) 

Where C(h)is the specific moisture capacity 

function [L
-1

], K(h)is the unsaturated 

hydraulic conductivity [LT
-1

], which can be 

written as K(h)= kks in saturated and 

unsaturated regions, where ks is the saturated 

conductivity and k is the relative 

permeability which equals one in the 

saturated zone. The Dirichlet boundary 

condition specifies the pressure head on 

some part of the boundary, whereas the 

Neumann condition specifies the flux on 

other part of the boundary. The initial 

condition prescribes the distribution of the 

pressure head and the saturation throughout 

the solution domain at the start of the 

solution history. Therefore, the initial and 

boundary conditions take the form [3]: 

h(x, 0) = hini                                                 (2) 

h (xb, t) = hb                                                 (3) 
ƌh(xb,t)

ƌn̅
= 0                                                     (4) 

P= one the seepage surface  

Where hini is the initial water head, xb the 

boundary nodes, hb is the boundary water 

head, n̅is the outward normal vector along 

the boundary, and p is the pressure along the 

seepage surface which is an external 

boundary of the saturated zone. The solution 

of Eq. 1 yields the distribution of the soil-

water pressure field in the domain. Thereafter 

the seepage free surface and paths in the dam 

can be determined. 

2.3. GFF Model 

2.3.1. Feed-Forward Neural Networks  

Feed-forward networks have the following 

characteristics: 

1. Perceptrons are arranged in layers, with 

the first layer taking in inputs and the last 

layer producing outputs. The middle layers 

have no connection with the external world, 

and hence are called hidden layers.  
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2. Each perceptron in one layer is connected 

to every perceptron on the next layer. Hence 

information is constantly "fed forward" from 

one layer to the next and this explains why 

these networks are called feed-forward 

networks.  

3. There is no connection among perceptrons 

in the same layer. 

 
Fig. 2. Feed forward network. 

The intended scenarios for activity function 

and training algorithm in the GFF network 

are exactly similar to MLP networks. 

2.4. RBF (Radial Basis Function 

Network) Model 

In the field of mathematical modeling, a 

radial basis function network is an artificial 

neural network that uses radial basis 

functions (RBF) as activation functions. The 

output of the network is a linear combination 

of radial basis functions of the inputs and 

neuron parameters. Radial basis function 

networks have many usages, including 

function approximation, time series 

prediction, classification, and system control. 

They were first formulated in a 1988 paper 

by Broom head and Lowe, both researchers 

at the Royal Signals and Radar 

establishment.  

Radial basis function (RBF) networks 

typically have three layers: an input layer, a 

hidden layer with a non-linear RBF 

activation function and a linear output layer. 

The input can be modeled as a vector of real 

numbers. The output of the network is then a 

scalar function of the input vector, and is 

given by where is the number of neurons in 

the hidden layer, is the center vector for 

neuron, and is the weight of neuron functions 

in the linear output neuron. Functions that 

depend only on the distance from a center 

vector are radially symmetric about that 

vector, hence the name radial basis function. 

In the basic form all inputs are connected to 

each hidden neuron. The norm is typically 

taken to be the Euclidean distance (although 

the Mahalanobis distance appears to perform 

better in general) and the radial basis 

function is commonly taken to be Gaussian. 

The Gaussian basis functions are local to the 

center vector in the sense that i.e. changing 

parameters of one neuron has only a small 

effect for input values that are far away from 

the center of that neuron. Given certain mild 

conditions on the shape of the activation 

function, RBF networks are universal 

approximators on a compact subset of [2]. 

This means that an RBF network with 
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enough hidden neurons can approximate any 

continuous function on a closed, bounded set 

with arbitrary precision. The parameters are 

determined in a manner that optimizes the fit 

between the data. 

2.4.1. Training  

RBF networks are typically trained from pair 

of inputs and target values:  

x (t), y (t), t = 1, … , T                                   (5) 

by a two-step algorithm. In the first step, the 

center vectors Ci of the RBF functions in the 

hidden layer are chosen. This step can be 

performed in several ways; centers can be 

randomly sampled from some set of 

examples, or they can be determined using k-

means clustering. Note that this step is 

unsupervised. A third back-propagation step 

can be performed to fine-tune all of the RBF 

net's parameters [1].  

The second step simply fits a linear model 

with coefficients to the hidden layer's outputs 

with respect to some objective function. A 

common objective function, at least for 

regression/function estimation, is the least 

squares function:  

K(w) ≝  ∑ Kt
T
t=1 (w)                                     (6) 

Where, 

Kt(w) ≝ [y(t) − φ(X(t), w)]2                      (7)

The main structure of the RBF network 

consists of 3 layers, as in Fig. 3.  

 
Fig. 3. Hidden layer (The weight associated with the cluster center and the output function are usually 

Gaussian). 

2.4.2. Momentum Algorithm 

Momentum algorithms in neural networks 

and the applications for solving linear 

systems are discussed. In this algorithm, we 

can consider the weight change law so that 

the weight change in the repetition of n 

depends on the size of the weight change in 

pervious repetition (equation 8): 

ΔWji(n) = ηδiXji + αΔWji(n − 1)                (8) 

In which the amount of momentum α, like as 

0 ≤ α ≤ 1.  

2.4.3. Sigmoid Function  

Sigmoid functions are often used in artificial 

neural networks to introduce nonlinearity in 

the model. A neural network element 

computes a linear combination of its input 

signals, and applies a sigmoid function to the 

result. Derivatives of the sigmoid function 

are usually employed in learning algorithms.  

The non-linear transfer function, usually in 

the form of a sigmoid, is defined as follows:  

f (s) = (1 + exp(−s))−1                               (9) 
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y” output can be the result of the model or 

input of the next layer (in multilayer networks).  

2.4.4. Levenberg–Marquardt Algorithm 

(LM)  

In mathematics and computing, the 

Levenberg–Marquardt algorithm (LMA or 

just LM), also known as the damped least-

squares (DLS) method, is used to solve non-

linear least squares problems. These 

minimization problems arise especially in 

least squares curve fitting. The LMA is used 

in many software applications for solving 

generic curve fitting problems. However, as 

with many fitting algorithms, the LMA finds 

only a local minimum, which is not 

necessarily the global minimum. The LMA 

interpolates between the Gauss–Newton 

algorithm (GNA) and the method of gradient 

descent. The LMA is more robust than the 

GNA, which means that in many cases it 

finds a solution even if it starts very far off 

the final minimum. For well-behaved 

functions and reasonable starting parameters, 

the LMA tends to be a bit slower than the 

GNA. LMA can also be viewed as Gauss–

Newton using a trust region approach. The 

algorithm was first published in 1944 by 

Kenneth Levenberg [17,18] while working at 

the Frankford Army Arsenal. It was 

rediscovered in 1963 by Donald Marquardt 

[7].  

2.5. Datasets 

For using data mining methods such as 

neural networks, Fuzzy models, 

programming genetics etc. the proper data set 

is required. Three attributes are required for 

each data set [19].  

1) Reliablity, which means the data set should 

be real and accurate.  

2) The numbers of data should be sufficeint 

according to the size and complexity of the 

problem.  

3) Cover all aspects of the problem. 

In this study, to measure the amount of 

seepage and water hole pressure of dam 

body, No. 4 electric piezometer was used. In 

order to evaluate the capability of 2 models 

of ANN, a 6 years monthly statistical data 

(2007 to 2013 years) was carried out for 

analysis. First, the relationship between the 

appropriateness of the variation in the water 

height of reservoir and the water hole 

pressure changes, deteriorated piezometer 

were identified and the data was discarded. 

The dataset used in this range consists of data 

collected over a period of 10 to 14 days and 

includes 80 different reading and a total 864 

unique data, which is used in calculations. 

In many references, divide data into training 

and testing, the two methods are 80 to 20 and 

70 to 30 percent. The choice of each of these 

methods depends on the number of data and 

inputs, which is in this study, to train and test 

the proposed models, 80% (691 data) and 

20% (174 data) of the dataset were used, 

respectively. This pair of data has been 

selected randomly from all possible historical 

couples by main training time continuity. The 

reason for random selection is to provide 

adequate training information for all events 

in the historical time series. Using the 

validation data, we can examine the 

effectiveness of trained model. 

The relationship between the appropriateness 

of the variation in the water height of 

reservoir and the water hole pressure 

changes, deteriorated piezometer were 

identified and the data was discarded. 

Accordingly, the collected dataset was 

included 864 piezometric data. This 
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collection includes information on the 

location of the piezometer (X, Y, Z), the 

piezometer readings and the water level 

behind the dam. In order to developing the 

model, the piezometer reading data was 

combined with the water height behind the 

dam and the input of the time interval ratio 

was considered as: 

Data Rate (α) =  
Elevation n2−Elevation n1

Δ Data ( Time2− Time1)
(10) 

Due to the large amount of data to train 

models, tried to divide the training data into 

categories 150, 300, 450, 600 and 864 to 

train the model training, so that, the 

minimum amount of data would lead to 

appropriate results. The input and output 

variables used along with statistical 

parameters in the ANN model are presented 

in two sets of training and test data in table 2. 

Table 2. Statistical parameters related to training and testing. 
Parameter Statistic Training 

data  

Test 

data 

X(m) Max 56 56 

Mean 28.86 26.19 

Min -34 -34 

Std Dev 24.47 28.88 

Y(m) Max 1400 1560 

Mean 1371 1524.67 

Min 1347 1500 

Std Dev 22.67 24.26 

Z(m) Max 320 320 

Mean 246.84 242.03 

Min 170 170 

Std Dev 74.99 74.98 

Date Rate Max 0.424 0.424 

Mean -0.011 -0.016 

Min -0.585 -0.585 

Std Dev 0.167 0.156 

Elevation Max 1406 1576.46 

Mean 1375 1548.46 

Min 1351 1520.69 

Std Dev 14.62 15.50 

P (kPa) Max 583.83 452.36 

 

Communication weights and the constants 

between intermediate the inlet layer also the 

middle layer to the output for the optimal 

model selected with 6 neurons in the middle 

layer is shown in table 3 and 4. By using 

these coefficients and constants, by 

identifying data normalization and the 

transfer function used in network, one can 

simulate the neural network and use it to 

estimate piezometric pressure only with 

simple calculations. 
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Table 3. ANN model communication weights. 
Hidden 

neurons 

Connection weights 

X (m) Y(m) Z(m) Date 

Rate 

Elevation Output 

1 -3.06 -2.21 -4.70 -3.37 -2.54 -0.04 

2 7.28 -1.49 0.00 0.04 0.29 -0.35 

3 -0.08 1.22 0.39 0.00 -0.11 -1.19 

4 -2.94 -0.03 0.29 0.22 0.96 0.89 

5 3.09 5.74 -4.57 -0.09 -0.74 -0.51 

6 -2.95 -3.51 0.00 0.03 -0.78 -1.05 

Table 4. Constants of the ANN model. 
Bias 

Hidden neurons  Output 

1 2 3 4 5 6  1 

3.738 1.883 -0.360 -0.284 0.931 -1.558   -2.450 

 

According to table 4, various statistical 

parameters consist of correlation coefficient 

(R2), root mean squared error (RMSE), 

average errors (Bias) and Dispersion 

indicators were used to evaluate the trained 

model. The results of this performance are 

shown in table 5. 

Table 5. Statistical Parameters. 
Definition Statistical Parameter 

R2 = (1 −
∑ (n

i=1 Mi − Pi)
2

∑ (Pi − P̅i)
2n

i=1

 Coefficient of determination 

RMSE = √
∑ (n

i=1 Pi − Mi)
2

n
 

Root Mean Square Error 

SI = √
1

n
∑

(Pi − Mi)
2

M̅

n

i=1

 

Scatter Index 

MBE =  
1

n
∑(Pi − Mi)

n

i=1

 
Mean Bias Error 
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Table 6. Evaluation ofproposed models by statistical parameters for various categories of training data. 
Number of Data R2 RMSE(kPa) Bias(kPa) SI% 

150 0.755 11.473 0.045 9.967 

        

300 0.905 12.190 0.033 9.351 

     

450  0.926 12.763 0.022 9.369 

     

600 0.925 13.481 0.016 8.871 

     

864 0.962 14.657 0.011 8.472 

     

 

Also, according to the results, the correlation 

coefficient (R
2
) increases from 0.9 (which is 

the appropriate indicator) as the data 

increases from 150 to 450. Hence, can be 

stated that the minimum data needed to train 

the models for presented and obtain the 

appropriate result is 300 data. However, 

given the 864 available training data and 

increase the power of model prediction, 

training was based on this number of data. 

After training the network and verifying it 

will be able to put out new data and provide 

an appropriate output. In Fig.4 the position of 

the No. 4 electric piezometer is shown 

schematically.  

 
Fig.4. Position of Boukan Shahid Kazemi dam electric piezometers. 

2.6. Evaluation Criteria 

In order to compare the models with each 

other and evaluate them, we need indicators 

that can judge the function of the models in 

the entire datasets compared with the 

experimental results. In this study, correlation 

coefficient (R
2
), mean absolute average error 

(MAE) and root mean square error (RMSE), 

NMSE, minimum and maximum absolute 

error were used serving this purpose.  



26 S. Emami et al./Journal of Rehabilitation in Civil Engineering 7-3 (2019) 15-32 

 

3. Results and Discussion  

3.1. Determining the best topology 

(number of training nodes and neurons, 

number of layers and appropriate 

function). 

The purpose of determining the network 

topology is to determine the best number of 

nodes, the number of hidden layers, the 

training and testing functions and ultimately 

the type of network.  

For this purpose, regression coefficient and 

error analysis were used.  

In this section, the best chosen topology 

along with comparison graphs of observed 

and predicted values and the regression and 

error analysis tables for No.4 electric 

piezometer are presented.  

In table 7, analysis of the error between the 

measured and predicted values which has 

been studied for No.4 electric piezometer is 

presented.  

The best topology in this case is linear 

sigmoid tangent function with 1000 

repetitions. 

Table 7. Error Analysis between measured and predicted values of No. 4 electric piezometer. 

Values  Criterion 
6.982110 MSE 
1.587228 NMSE 
2.640323 MAE 

3.9512691 Min Abs Error 
0.101874 Max Abs Error 

0.95844112 R2 

Figure 5, clearly illustrates the above mentioned. 

 

Fig. 5. Comparison between observed and predicted values of the No. 4 electric piezometer with the best 

ANN topology. 

3.2. Determining the best hidden layer 

An error analysis method was used to select 

the best hidden layer with different function. 

The layer with the lowest error is selected as 

the best layer. In this study, the network with 

the sigmoid activity function and one hidden 
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layer yielded the most accurate result (table 8).  

Table 8. Error Analysis between measured and predicted values of No. 4 electric piezometer, sigmoid 

function. 
Values  Criterion 

MSE 1 hidden layer  2 hidden layer 3 hidden layer 

1.311258 3.982612 1.118929 

NMSE 0.241968 0.254226 0.201178 

MAE 0.947891 1.446697 0.829641 

Min Abs Error 0.111467 0.028117 0.232968 

Max Abs Error 2.293283 4.219126 2.232989 

r 0.901897 0.871789 0.850914 

 
Fig. 6. Comparison of measured and predicted values of No. 4 electric piezometer, Linear sigmoid 

function with a hidden layer. 

The results show the strength and accuracy of 

the ANN in predicting seepage from the dam 

body with a low predictive error and 

regression coefficient between the measured 

and predicted values more than 90%. 

There were also different network topologies 

which are presented in table 8 ordered by 

their priorities. 

Table 9. Error analysis of measured and predicted values for No. 4 electric piezometer. 
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Pizometer The best Training 

function 
The Number 

of Layer 
The Number 

of Training 

Nodes 

Regression 

Coefficient 

Electric 

Piezometer 
Tangent Linear 

Sigmoid 
1 1000 0.9317 

Electric 

Piezometer 
Linear Sigmoid 2 5000 0.9309 

 

3.3. Comparison of RBF and GFF Models 

in Predicting Seepage from Dam Body  

The design of an ANN involves selecting the 

number of hidden layers and processor 

elements (neurons) for hidden layers, which 

is a trial and error process to obtain the best 

possible result for output.  

3.3.1. Results from Training and Testing 

of ANN Model  

In this study, water height parameters in 

reservoir were investigated as input variables 

in different networks. The output parameter 

in all networks was seepage from the dam 

body.  

The number of 1000 cycles and the number 

of one hidden layer for the seepage parameter 

from the dam body were considered as 

appropriate ones.  

The best results for each ANN models are 

presented in table 10.  

Correlation of observed and predicted values 

with GFF and RBF models is shown in 

figures 7 and 8. 

Table 10. Comparison of different networks in prediction of seepage from dam body. 

Network Testing 

Stage 
Network Training 

Stage 
Training 

Algorithm 
Transfer 

Function 
Network 

Type 

R2 RMSE R2 RMSE 

0.88 33.12 0.79 0.038 momentum SigmoidAxo

n 
RBF 

0.78 39.71 0.76 0.041 momentum SigmoidAxo

n 
GFF 
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Fig.7. Correlation of observed and predicted values with GFF model. 

 
Fig.8. Correlation of observed and predicted values with RBF model. 

As it is shown in the above figures, the RBF 

model has a better performance than the GFF 

model in predicting the seepage value from 

dam body. 

According to the above diagrams, after 

comparing the results of RBF and GFF 

models, the RBF network (radial base 

function) with the discharge and reservoir 

water height parameters as the input is 

known as the best network.  

The correlation coefficient obtained was 0.81 

and the RMSE was 33.12. 

3.4. Selecting the Best Model  

Piezometer data (electric piezometer) was 

trained and tested by RBF and GFF neural 

network with different training algorithms, 

neurons and with 1 and 2 hidden layer. After 

applying different patterns and training the 

network, the best pattern was chosen from 

selected patterns. 

Selecting criterion is the network that has the 

best training and provides satisfactory 

results.  

Of course, in choosing a network, we need to 

be careful about occurrence of the 

preprocessing phenomenon, because in tests 
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which the error approaches zero, network 

generalization will be unacceptable.  

The results of this section for Boukan Shahid 

Kazemi dam are presented in table 11. After 

applying the test set to the selected networks, 

the generalization of the networks was 

examined and finally the network that 

showed the best generalization in the test 

setup, were considered as an optimal network 

for the existing data series from seepage of 

dam body. 

According to the results presented in table 5, 

the GFF network with the Conjugate 

Gradient training and 8 hidden layers and 

RBF model with Levenberg-Marquardt and 4 

hidden layers has got the best results. Also, in 

this study, the RBF model with Levenberg-

Marquardt training was chosen as the best 

network according to R
2
 and MSE. 

Table 11. Selected test pattern among suggested patterns for Boukan Shahid Kazemi dam. 

Type of 

Networ

k 

Kind of 

Network 

Training 

The 

Number of 

First 

Hidden 

Layer 

Neurons 

The Number 

of Second 

Hidden Layer 

Neurons 

Test Set 

R
2 

Verificatio

n MSE 
Verificatio

n Set R
2 

GFF Momentum 4 - 0.874 0.0976 0.83 

8 10 0.873 0.0825 0.82 

Conjugate 

Gradient 
8 - 0.915 0.056 0.88 

5 8 0.869 0.06 0.86 
9 10 0.9 0.059 0.87 

Levenberg 

Marquardt 
2 - 0.965 0.057 0.87 

2 4 0.98 0.063 0.86 

RBF Momentum 5 - 0.9 0.0518 0.89 

6 - 0.898 0.0464 0.9 

8 - 0.896 0.0389 0.92 

4 4 0.895 0.071 0.83 
Conjugate 

Gradient 
5 - 0.915 0.0415 0.91 

10 - 0.9 0.034 0.92 

5 8 0.926 0.0478 0.88 
6 5 0.91 0.0565 0.86 

 

Levenberg 

Marquardt 

4 - 0.999 0.0437 0.92 

5 - 0.999 0.0337 0.95 

5 5 0.998 0.055 0.88 

7 9 1 0.0748 0.87 
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3.5. Comparison of optimization methods 

In this study, the efficiency of the RBF 

(radial basis function network) model was 

compared with the results of the Nourani et. 

al. (2012) study, which investigated seepage 

from dam with ANN model. Comparison of 

RBF model with single network showed that 

the RBF model with the correlation 

coefficient (R
2
) 0.81 gave better results, 

while the correlation coefficient (R
2
) value of 

single network model is 0.798. 

4. Conclusion 

In this research, piezometric pressure was 

simulated in Boukan Shahid Kazemi’dam 

using artificial neural networks (ANNs) 

(Comparison between RBF and GFF 

models). This simulation was performed 

based on the dataset from electric 

piezometers (vibrating curvature) applied in 

the dam body. In this study, the accuracy of 

piezometers and their data has been checked 

before using those data. 

Test result of suggested models of this paper 

showed that in finding the purpose of the 

problem, the introduced models perform 

successfully and operate in high speed. In 

this study, 1000 cycles for the seepage 

parameter of dam body was chosen as the 

appropriate one using trial and error 

technique. After running the models, the 

result showed that the artificial neural 

network RBF model (radial function) has 

better performance compare with the GFF 

model in predicting the seepage value of the 

dam. According to the obtained diagrams and 

after comparing the results of different 

networks, the radial base function (RBF) 

model with the discharge flow into the lake 

of dam and the height of water as inputs was 

known as the best network.  

This network contained one hidden layer. 

The obtained R
2
 was 0.81and the RMSE was 

33.12. The results from running the proposed 

models in the MATLAB software have 

proved the capability of ANN in predicting 

the seepage from dam body.  

Also, the results show the superiority of the 

RBF model compared with the other 

proposed model (GFF). The results indicate 

that RBF model provides very acceptable 

results for predicting seepage values from the 

dam body. Due to the differences in 

geometric and physical characteristics of 

embankment dam, in this study, such 

characteristics were not considered as inputs 

and only the seepage of Boukan Shahid 

Kazemi’s dam was investigated. 
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