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Buckling restrained braces (BRBs) have a similar behavior under 

compression and tension loadings. Therefore, they can be applied 

as a favorable lateral load resisting system for structures. In the 

performance-based earthquake engineering (PBEE) framework, an 

intermediate variable called intensity measure (IM) links the 

seismic hazard analysis with the structural response analyses. An 

optimal IM has desirable features including efficiency, sufficiency 

and predictability. In this paper, the efficiency and sufficiency of 

some traditional, cumulative-based, and advanced scalar IMs to 

predict maximum interstory drift ratio (MIDR) demand on low- to 

mid-rise steel structures with BRBs, under near-fault ground 

motion records having forward directivity, are investigated. The 

results indicate that most of the IMs contemplated are not 

sufficient with respect to source-to-site distance (R), for predicting 

MIDR. It is also demonstrated that decreasing the strain hardening 

ratio decreases the efficiency of the IMs. In addition, IMM(λ=0.5) and 

Saavg are more efficient and also sufficient with respect to pulse 

period (Tp), for predicting MIDR demand on the low-rise steel 

BRB frames under near-fault ground motions, when compared 

with the other IMs. In the case of mid-rise structures, PGV and 

IMM(λ=0.33) are selected as optimal IMs. As a result of the higher 

efficiency and sufficiency of the selected optimal IMs, the 

obtained fragility curves calculated applying these IMs, are more 

reliable in comparison with the fragility curves calculated using 

other IMs. 
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1. Introduction 

 Assessing the risk to a structure from future 

earthquakes requires the estimation of both 

the probability of occurrence of future 

earthquakes (seismic hazard) and the 

resulting structural response. Currently, non-

linear dynamic analyses are being applied as 

a common strategy in order to evaluate the 

seismic demands on structures under 

earthquake excitations. Consequently, to 

have more reliable and realistic structural 

seismic assessments, it is necessary to 

https://dx.doi.org/10.22075/jrce.2018.14908.1278
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investigate the properties of ground motions 

that are strongly related to the structural 

response. According to performance-based 

earthquake engineering (PBEE) framework 

[1], an intermediate variable which links the 

seismic hazard and structural response 

analyses is termed intensity measure (IM) 

[2].Specifically, an IM demonstrates the 

strength of a ground motion and quantifies its 

effect on structures. The desirable features of 

an optimal IM are introduced as efficiency, 

sufficiency, and predictability [3,4]. 

Efficiency is the ability of an IM to predict 

the structural seismic response with small 

dispersion. In fact, efficiency of an IM 

express the positive interpretative power of 

the IM to predict the structural seismic 

response, and causes a reduction in the 

number of non-linear dynamic analyses 

required to achieve a given standard error 

[5]. The ability of an IM to render the 

structural response conditionally independent 

of the other ground motion characteristics 

such as magnitude (M), source-to-site 

distance (R), and in near-fault ground 

motions the period of pulse (Tp), is termed 

sufficiency. Predictability is defined when the 

IM has a reliable ground motion prediction 

equation (GMPE). In fact, applying an 

optimal IM increases the reliability of 

seismic performance assessments [6]. 

Forward directivity and fling step are two 

well-known phenomena which have been 

observed widely in pulse-like near-fault 

ground motions [7–10]. When the rupture 

propagates toward a site at a velocity close to 

the shear wave velocity, forward directivity 

occurs and causes a single large long-period 

two-sided pulse at the beginning of the 

record, which contains most of the input 

energy from the rupture process. Generally, 

the long-period pulse is expected to occur in 

the fault-normal direction at sites in the 

proximity of an active fault, where the 

rupture is propagating toward the site. Fling 

step is the permanent static displacement in 

the fault-parallel direction, for strike-slip 

faults, or in the fault-normal direction for 

dip-slip faults. Fling step generates a one-

sided velocity pulse [11]. As mentioned by 

Tothong and Cornell [7], the two-sided pulse 

caused by the forward directivity is more 

damaging than the one-sided pulse caused by 

the fling step. Put it differently, forward 

directivity may lead to severe damages to 

buildings at near-fault regions, when 

compared with fling step. Many studies have 

been conducted in order to inquire the 

seismic performance of structures under 

near-fault ground motions (e.g., [7–11]), and 

most of them showed that the structural 

responses are significantly affected by the 

period of the pulse (Tp) existing in these 

types of ground motions. 

Investigating the past earthquakes, such as 

1994 Northridge and 1995 Kobe events, 

proved that conventional concentric braces, 

under seismic loading, undergone large 

deformations in the post-buckling range, 

leading to large reversed cyclic rotation at the 

plastic hinges formed in the brace members, 

and in the connections at either end [12,13]. 

Therefore, this type of structures suffered 

extensive damage, and extensive repair cost 

and upgrading works were needed. As an 

alternative, buckling restrained braces 

(BRBs) can be used as an effective 

dissipating energy system in structures. As a 

result of their stable tension–compression 

hysteretic cycles, this type of braces has been 

studied and experimented by many 

researchers in the seismic protection and 

retrofitting of structures [14–16].  

In consonance with the definition of the 

optimal IM, application of an optimal IM for 



116 E. Javadi and M. Yakhchalian/ Journal of Rehabilitation in Civil Engineering 7-4 (2019) 114-133 

seismic performance assessment of structures 

increases the reliability of the assessments. 

Hence, studies for proposing and also 

selecting optimal IMs for predicting different 

engineering demand parameters (EDPs) in 

different structural systems are continued 

(e.g., see [4–8,17–23]). It is note-worthy to 

mention that another method for reliable 

seismic performance assessment of structures 

is using ground motion selection methods 

(e.g., see [24–26]). In this research, the 

efficiency and sufficiency of some 

conventional and advanced IMs for reliable 

prediction of maximum interstory drift ratio 

(MIDR) demand, as one of the most 

prevalent EDPs, on steel BRB frames under 

near-fault ground motions having forward 

directivity were investigated. Subsequently, 

optimal IMs for reliable seismic assessment 

of MIDR demand on the low- to mid-rise 

steel BRB frames were selected. 

2. Studied IMs 

In this study, in order to determine the 

optimal IM for reliable prediction of MIDR 

demand on BRB frames under near-fault 

pulse-like ground motions, peak IMs 

including peak ground acceleration (PGA), 

peak ground velocity (PGV), peak ground 

displacement (PGD), as traditional IMs, were 

considered. In addition, pseudo spectral 

acceleration at the fundamental period of the 

structures (Sa(T1)) as a traditional and the 

most prevalent scalar IM was taken into 

account. Moreover, two cumulative-based 

IMs that are Arias intensity (AI) [27] and 

cumulative absolute velocity (CAV) [28] 

were considered. These cumulative-based 

IMs are defined as follows: 

AI=
π

2g
∫ a(t)2dt

tf

0
                                          (1) 

CAV=∫ |a(t)|dt
tf

0
                                         (2) 

where tf is the total duration of ground 

motion; a(t) is the ground motion 

acceleration at time t, and g is the 

acceleration of gravity. In addition to the 

traditional and cumulative-based IMs, five 

advanced scalar IMs, described in the rest of 

this section, were pondered. Cordova et al. 

[18] proposed a two-parameter power-law 

form scalar IM to account for the period 

lengthening due to non-linear deformations. 

They used four moment resisting frames 

including three composite frames (composed 

of reinforced concrete columns and steel 

beams) and one steel frame. They 

demonstrated that applying an elastic spectral 

shape indicator in addition to Sa(T1) can 

result in an improved IM as: 

IMC=Sa(T1)× [
Sa(2T1)

Sa(T1)
]

0.5

                             (3) 

where Sa(2T1) is the spectral acceleration 

ordinate at the period two times T1. By using 

a set of single degree of freedom (SDOF) 

systems, Mehanny [19] applied an enhanced 

broad-range spectral shape-based power-law 

form to improve IMC, and developed a more 

efficient IM as follows:  

IMM=Sa(T1)× [
Sa(𝑅λT1)

Sa(T1)
]

0.5

                          (4) 

where λ is 0.5 or 0.33; and R is defined as the 

ratio of the lateral strength required to 

maintain the system elastic to the lateral 

yielding strength of system. In the present 

study, R was considered as: 

R=
Sa(T1)

g.Υ
                                                       (5) 

where Υ is the ratio of fully yielded strength 

of structure to seismic weight (Vy/W). The 

other well-known and advanced IM 

considered is INp that was proposed by 
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Bojórquez and Iervolino
 
[20]. They applied a 

set of structures including non-linear SDOF 

systems, reinforced concrete and steel 

moment resisting frames to propose INp. This 

IM applies Sa(T1) and a spectral shape proxy 

named Np as:  

INp=Sa(T1)Np0.4;       Np=
Saavg(T1…TN)

Sa(T1)
        (6) 

where Saavg(T1…TN) is the geometric mean 

of spectral acceleration ordinates over the 

period range of T1–TN, TN = 2T1. Eads et al.
 

[21] also applied the geometric mean of 

spectral acceleration ordinates over an 

increased period range (in comparison with 

INp) and proposed Saavg as a scalar IM. They 

deliberated nearly 700 moment resisting 

frame and shear wall structures. In fact, in 

order to consider both the higher mode and 

period elongation, they increased the period 

range. Saavg is defined as: 

Saavg = Saavg(α1T1 … αNT1)= 

= √∏ Sa(αjT)N
j=1

N
                                         (7) 

where α1 and αN are 0.2 and 3.0, respectively. 

In addition, SaavgM that is Saavg with a 

modified period range, i.e., 0.2T1–√RT1, was 

considered. A similar form of SaavgM was 

studied by Jamshidiha et al. [17]. They 

inquired the efficiency and sufficiency of 

SaavgM for collapse capacity prediction of 

steel moment resisting frames with fluid 

viscous dampers. Recently, Bojórquez et al. 

[22] contemplated six moment-resisting steel 

frames to ameliorate INp, and proposed IB, 
which accounts for higher mode effects. IB is 

defined as: 

IB=S(T1)Npb1 ∏ [RT1,Tmi
b2 ]i = # modes

i = 2 ; 

RT1,Tmi=
S(Tmi)

S(T1)
                                               (8) 

where S(T1) is a spectral parameter at T1, 
taken from any type of spectrum (i.e., 

acceleration, velocity or displacement). Tmi is 

the period of mode i of vibration of the 

structure. Similar to Bojórquez et al. [22], in 

this study b1 and b2 were assumed equal to 

0.4 and 0.2, respectively. Moreover, the 

pseudo acceleration response spectrum was 

applied to obtain S(T1) and S(Tmi), and only 

the second mode of vibration was considered 

to define RT1,Tmi. Table 1 presents the IMs 

considered in this study. According to the 

above-mentioned explanations, it can be 

inferred that investigating the efficiency and 

sufficiency of the advanced IMs for the 

prediction of structural seismic response of 

BRB frames has not been conducted yet. 

3. Structural Models 

In this study, it was of interest to design three 

low- to mid-rise BRB frames in order to 

investigate the efficiency and sufficiency of 

the IMs for seismic assessment of this type of 

structures under pulse-like near-fault ground 

motions. The examined frames are 3-, 6-, and 

9-story 2-dimentional (2D) BRB frames 

extracted from 3-dimentional (3D) building 

frames with 3.6 m stories height, and bays 

width of 7.5 m. All BRBs in braced bays 

were used in chevron configuration. 

Table 1. Considered IMs. 
Considered IMs Developer 

PGA  

PGV  

PGD  

Sa(T1)  

AI Arias [27] 

CAV Benjamin [28] 

IMC Cordova et al. [18] 

IMM(λ=0.33) Mehanny [19] 

IMM(λ=0.5) Mehanny [19] 

INp Bojórquez and Iervolino [20] 

Saavg Eads et al. [21] 

SaavgM Jamshidiha et al. [17] 

IB Bojórquez et al. [22] 
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Figure 1 presents the plan and geometry of 

the considered structures. The examined 

frames were located in a high seismic site at 

California with site class D according to 

ASCE 7-10 [29]. The seismic parameters Ss 

and S1 were pondered 1.875 and 0.6, 

respectively; the importance factor (I) of 1, 

and the response modification factor (R) of 8 

were considered based on ASCE 7-10 [29].  

The gravity dead and live loads of 4.1 kN/m
2
 

and 1.5 kN/m
2
, respectively, for roof, and the 

gravity dead and live loads of 4.1 kN/m
2
 and 

2.5 kN/m
2
, respectively, for the other stories, 

were deliberated. 4.5 kN/m was applied as 

the dead load of curtain walls on the 

perimeter beams. The equivalent lateral force 

procedure based on ASCE 7-10 [29] and the 

load and resistance factors design (LRFD) 

load combinations of ASCE 7-10 [29] were 

applied for designing the structures. The 

specification for structural steel buildings 

(ANSI/AISC 360-10) [30], and seismic 

provisions for structural steel buildings 

(ANSI/AISC 341-10) [31] were applied for 

designing the structural elements as well. I- 

and H- shaped sections, with yield stress of 

Fy=345 MPa, were taken into account for 

beams and columns, respectively; and 

Fy=262 MPa was also contemplated for 

BRBs steel core. Moreover, all of the beam-

to-column, column-to-base, and brace 

connections were assumed pinned. Table 2 

depicts the fundamental periods, seismic 

response coefficients (Cs) and designed 

sections for structural members. 

 
Fig. 1. (a) Plan of 3-, 6- and 9-story BRB frames, and (b) the geometry of the 2D braced bays. 

4. Non-Linear Models and Dynamic 

Analyses 

For non-linear dynamic analyses, the 

structural models were generated with the 

OpenSees [32] software. In order to model 

the non-linear behavior of beams, columns, 

and yielding segments of braces, non-linear 

beam–column element with five integration 

points, using a fiber section with Steel02 [33] 

material model was applied. The parameters 

required for Steel02 material model were 

extracted from the study performed by 
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Guerrero et al. [34], and similar to their 

study, cyclic degradation was neglected. 70% 

of each brace work-point to work-point 

length was considered as yielding segment. 

Based on the study conducted by 

Mahdavipour and Deylami [35], decreasing 

the strain hardening ratio in BRBs, increases 

the residual drift demands of low- and 

medium-rise BRB frames, and the restoring 

ability of BRB frames reduces meaningfully. 

Therefore, as a result of the substantial 

effects of strain hardening ratio on the 

seismic performance of BRB frames, two 

strain hardening ratios (h) of 0.003 and 0.02 

were deliberated in this study for non-linear 

elements. The P-Δ effect was considered in 

analyses. In order to ponder the P-Δ effect of 

gravity frames, leaning column technique 

was devised through adding a gravity low 

lateral stiffness column that was linked to the 

main structure. Gravity loads of gravity 

frames were applied to the leaning column 

[36]. 5% Rayleigh damping was assigned to 

the first mode and the mode at which the 

cumulative mass participation exceeds 95%. 

Table 2. Fundamental periods, seismic response coefficients (Cs) and designed sections for structural 

members. 

No. of 

Stories 
T(s) Cs Story No. 

Sections 

BRB Beam Column 

3 0.543 

 1 Star BRB-4.5 IPE360 HE220B 

0.156 2 Star BRB-3.5 IPE330 HE220B 

 3 Star BRB-2.0 IPE300 HE220B 

6 1.061 

 1 Star BRB-5.0 IPE360 HE400B 

 2 Star BRB-5.0 IPE360 HE400B 

0.102 
3 Star BRB-4.5 IPE360 HE260B 

4 Star BRB-3.5 IPE360 HE260B 

 5 Star BRB-2.5 IPE300 HE220B 

 6 Star BRB-1.5 IPE240 HE220B 

9 1.547 

 1 Star BRB-6.0 IPE400 HE500M 

 2 Star BRB-5.5 IPE400 HE500M 

 3 Star BRB-5.5 IPE400 HE500M 

 4 Star BRB-5.0 IPE360 HE450B 

0.076 5 Star BRB-5.0 IPE360 HE450B 

 6 Star BRB-4.0 IPE330 HE360B 

 7 Star BRB-4.0 IPE330 HE360B 

 8 Star BRB-3.0 IPE300 HE280B 

 9 Star BRB-2.0 IPE300 HE280B 
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Fig. 2. Pseudo acceleration response spectra of the ground motion records (PGA=1.0g). 

To perform non-linear dynamic analyses a set 

including 48 pulse-like near-fault ground 

motion records, having forward directivity 

effect, was applied. As a result of the forward 

directivity effect, these records contain a 

single large long-period two-sided pulse at 

the beginning of the record, which contains 

most of the input energy from the rupture 

process. The records have minimum useable 

frequencies of less than 0.2 Hz, and they 

were rotated to the fault-normal direction and 

taken from the PEER NGA database [37]. 

This ground motion record set was also used 

by Yakhchalian et al. [8]. The 5% damped 

normalized pseudo acceleration response 

spectra (PGA=1.0g) and their median 

spectrum are highlighted in Figure 2. 

To investigate the impact of efficiency and 

sufficiency of the IMs, non-linear dynamic 

analyses were performed applying the cloud 

method [2]. In agreement to this method, 

non-linear dynamic analyses are performed 

by using a set of ground motion records with 

associated IM values. The records are not 

scaled, or all records are scaled by a constant 

factor if the unscaled records are not strong 

enough to lead to the structural response 

level of interest. Generally, the set of IM 

values and the associated EDP values, 

obtained from the non-linear dynamic 

analyses, are similar to a rough ellipse and 

called cloud (e.g., see Figure 3). A regression 

can be applied to this cloud of data to 

calculate the conditional mean and standard 

deviation of lnEDP given IM as: 

ln EDP=a0+a1 lnIM+e                                (9) 

where a0 and a1 are the regression 

coefficients; and e is the regression residual. 

Therefore, the mean value (expected value) 

of lnEDP given a specified IM value 

(IM=im) can be calculated as: 

E[ln EDP|IM=im]=a0+a1 lnim                  (10) 

Assuming a constant variance for e for all the 

IM values, and Gaussian distribution for 

lnEDP|IM, the conditional probability of 

exceeding an EDP level y given IM=im can 

be obtained as: 
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GEDP|IM(y|im)=1-Φ (
ln y-(a0+a1 ln im)

√Var[e]
)          (11) 

where GEDP|IM(y|im) is the complementary 

cumulative distribution function (CCDF) of 

EDP|IM; Φ() is the cumulative distribution 

function (CDF) of standard Gaussian 

distribution; and Var[e] is variance of e [2]. 

Figure 3 shows an example for cloud data, 

i.e., MIDR versus PGA for the 6-story 

structure (with h=0.003). In this figure, STD 

represents standard deviation of e, i.e., 

√Var[e]. 

5. Efficiency of the IMs 

The ability of an IM to anticipate the 

structural response with low dispersion is 

called efficiency. The efficiency of scalar 

IMs for the prediction of MIDR can be 

evaluated through applying the conditional 

standard deviation of lnMIDR, σlnMIDR|IM. 

Using an efficient IM reduces σlnMIDR|IM, and 

consequently, increases the reliability of the 

seismic performance assessments of the 

structures. 

 
Fig. 3. A cloud of EDP|IM data (MIDR as EDP and PGA as IM). 

Having σlnMIDR|IM obtained by applying a 

scalar IM, the standard error (SE) [38] is 

defined as: 

SE=
σ

lnMIDR

√ns
                                                 (12) 

where ns is the number of seismic response 

analyses. Based on Equation 12, it can be 

inferred that with the same number of 

analyses, the use of a more efficient IM 

decreases the SE value. Thus, for reducing 

the number of analyses and increasing the 

reliability of structural seismic response 

assessments, efficiency is one of the 

desirable features of an optimal IM. 

In order to choose the most efficient IM for 

the prediction of MIDR demand, the values 

of σlnMIDR|IM obtained using different IMs 

should be compared. The IM that is able to 

predict the structural response (i.e., MIDR) 

with a lower dispersion can be selected as a 

more efficient IM. Figure 4 illustrated the 

comparison between the efficiency of four 

scalar IMs for predicting MIDR demand on 

the 3-story structure (with h=0.003). As 

shown in this figure, using Saavg leads to the 

lowest dispersion (i.e., σlnMIDR|IM =0.4304), 
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and therefore, it is more efficient than the 

other IMs.  

Table 3 exhibits the results of investigating 

the efficiency of the IMs for predicting 

MIDR demand on the structures considered 

(with two different strain hardening ratios). 

As it is evident in this table, IMM(λ=0.33), IMC, 

Saavg and IMM(λ=0.5) are the most efficient IMs 

for predicting MIDR demand on the 3-story 

structure (as a low-rise structure). It is also 

revealed that PGV among the traditional IMs, 

and IMM(λ=0.33), SaavgM, IB and IMM(λ=0.5) 

among the advanced IMs can be chosen as 

the most efficient IMs for predicting MIDR 

demand on the 6- and 9-story structures (as 

mid-rise structures). In fact, Sa(T1) as the 

most prevalent scalar IM cannot efficiently 

predict MIDR demand on the low- to mid-

rise BRB frames under near-fault ground 

motions, when compared with some of the 

IMs. As mentioned,  above, the effect of 

strain hardening ratio on the efficiency of the 

IMs was also inspected. According to Table 

3, it can be seen that by increasing the strain 

hardening ratio decreases the dispersion of 

the structural response prediction, whereas 

the order of the efficiency of the IMs does 

not changed.  

Table 3. Results of testing the efficiency of the IMs (i.e., σlnMIDR|IM) for predicting MIDR demand on the 

structures considered. 

IM 

 Structure 

 3-story  6-story  9-story 

 h=0.003 h=0.02  h=0.003 h=0.02  h=0.003 h=0.02 

PGA  0.6168 0.5563  0.6709 0.5667  0.7865 0.6948 

PGV  0.6351 0.5767  0.4588 0.4207  0.4372 0.3827 

PGD  0.8727 0.8003  0.7327 0.6645  0.6537 0.5846 

Sa(T1)  0.5927 0.5258  0.4794 0.4111  0.5360 0.4667 

AI  0.6048 0.5548  0.6130 0.5243  0.6800 0.6102 

CAV  0.7522 0.6942  0.6958 0.6115  0.6758 0.6146 

INp  0.4627 0.4073  0.4456 0.3857  0.4944 0.4335 

Saavg  0.4304 0.3862  0.4530 0.4009  0.4833 0.4363 

SaavgM  0.4863 0.4339  0.4190 0.3395  0.4424 0.3772 

IMC  0.4262 0.3784  0.4571 0.4057  0.5141 0.4570 

IMM(λ=0.5)  0.4483 0.4003  0.4299 0.3831  0.4549 0.4182 

IMM(λ=0.33)  0.4085 0.3581  0.3823 0.3260  0.4466 0.3876 

IB  0.4800 0.4251  0.4290 0.3633  0.4631 0.3992 

 

It is note-worthy to mention that the 

efficiency of an IM is gauged by the obtained 

dispersion of the structural capacity or 

response prediction using that IM. In 

addition, the severity of the non-linearity of 

the responses affects this dispersion. For 

example, Haselton and Deierlein [39] 

persuaded that the dispersion of collapse 

capacity of reinforced concrete special 

moment resisting frames (RC SMRFs) 

obtained based on Sa(T1) is approximately 

equal to 0.40. Yakhchalian and Ghodrati [6] 

manifested that under non-pulse-like ground 

motions the dispersion of MIDR demand on 

RC SMRFs obtained based on different IMs 

can vary between 0.20 and 0.55, depending 

on the structural height and the severity of 

the non-linearity of the responses. In the 

present study, as a result of using the near-

fault records that are more severe than far-

fault records, the obtained dispersions based 

on different IMs vary between 0.32 and 0.87. 
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Knowing that an optimal IM should also be 

sufficient, the sufficiency of the considered 

IMs is explored in the next section. 

6. Sufficiency of the IMs 

6.1. Sufficiency with respect to M and R 

The sufficiency of a scalar IM for predicting 

the structural response means that the 

distribution of the structural response 

obtained based on the IM is independent of 

ground motion characteristics, such as 

earthquake magnitude (M), source-to-site 

distance (R), and in near-fault ground 

motions, pulse period (Tp) [3,7,17,21,23]. 

Since a finite number of analyses are used in 

order to obtain the distribution of the 

structural response, sufficiency is one of the 

main features of an optimal IM. In fact, if the 

obtained distribution is dependent on the M, 

R and Tp values of the ground motion records 

used, then, the distribution will be biased if 

the distribution of the M, R and Tp of the 

ground motion records applied in the 

structural response analyses is not the same 

as that of the ground motions that will occur 

at the site in the future [3,4]. Using a 

sufficient IM can decouple the seismic 

hazard and structural response analyses. 

 
Fig. 4. Comparison of the efficiency of some scalar IMs for predicting MIDR demand on the 3-story 

structure: (a) PGV; (b) Sa(T1); (c) Saavg; (d) IMM(λ=0.5).

In order to inquire the sufficiency of the IMs 

with respect to M and R for predicting 

MIDR, linear regression can be used between 

the regression residuals obtained from 

Equation 9 and these ground motion 

characteristics as: 

E[ e]=b0+b1 x                                            (13) 
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where E[e] is the expected value of e; b0 and 

b1 are the estimated coefficients of the linear 

regression; and x is M or the natural 

logarithm of R (lnR). Because the linear 

regression is based on a finite number of 

observations, testing the statistical 

significance of b1 is essential. Therefore, 

assuming a student’s-t distribution for b1, the 

F-test can be applied to test the statistical 

significance of b1 [40]. Generally, a p-value 

of less than 0.05 obtained from the F-test 

proves that b1 is statistically significant, 

which means the insufficiency of the IM, 

applied in order to obtain the structural 

response distribution, with respect to x [3,4]. 

Figure 5 displays the results of testing the 

sufficiency of four IMs with respect to M for 

predicting MIDR demand on the 3-story 

structure (with h=0.003). In this figure, Res 

represents the regression residual obtained 

from Equation 9. As demonstrated in this 

figure, PGV cannot predict MIDR demand on 

the 3-story structure independent of M, 

because the obtained p-value is less than 

0.05. In other words, PGV is insufficient with 

respect to M for predicting MIDR demand on 

the 3-story structure. 

 
Fig. 5. Testing the sufficiency of four IMs with respect to M for predicting MIDR demand on the 3-story 

structure: (a) PGV, (b) Sa(T1), (c) Saavg, and (d) IMM(λ=0.5). 

Table 4 the results of testing the sufficiency 

of the IMs with respect to M for predicting 

MIDR demand on the structures considered. 

It can be seen that all the IMs are sufficient 

with respect to M for predicting MIDR 

demand on the structures considered, except 

PGV, AI, and CAV that are insufficient (i.e., 

p-values<0.05) for predicting MIDR demand 

on the 3-story structure as a low-rise 

structure.  

Figure 6 illustrates the results of testing the 

sufficiency of four IMs with respect to R for 
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predicting MIDR demand on the 3-story 

structure (with h=0.003). As shown in this 

figure, PGV is sufficient with respect to R for 

predicting MIDR demand on the 3-story 

structure (i.e., p-value>0.05), whereas the 

other IMs are not. 

Table 4. Results of testing the sufficiency of the IMs with respect to M for predicting MIDR demand on 

the structures considered. 

IM 

Structure 

3-story 6-story 9-story 

h=0.003 h=0.02 h=0.003 h=0.02 h=0.003 h=0.02 

PGA 0.7449 0.6193 0.0817 0.1322 0.0676 0.0535 

PGV 0.0332 0.0200 0.4504 0.3107 0.9445 0.6722 

PGD 0.3871 0.3556 0.3605 0.3636 0.2195 0.1719 

Sa(T1) 0.5686 0.6727 0.2906 0.4871 0.6270 0.7037 

AI 0.0176 0.0114 0.9081 0.6477 0.7433 0.6605 

CAV 0.0134 0.0117 0.2396 0.1582 0.2367 0.3177 

INp 0.7905 0.9554 0.6136 0.9101 0.9385 0.9245 

Saavg 0.1206 0.0668 0.7253 0.4786 0.4122 0.3267 

SaavgM 0.5953 0.4481 0.4824 0.7982 0.1364 0.3001 

IMC 0.3226 0.2044 0.9862 0.7119 0.6443 0.5492 

IMM(λ=0.5) 0.1734 0.1015 0.3875 0.2213 0.1959 0.1458 

IMM(λ=0.33) 0.8601 0.9468 0.8178 0.4711 0.7431 0.5296 

IB 0.9278 0.9054 0.5135 0.8135 0.7061 0.9012 

 
Fig. 6. Testing the sufficiency of four IMs with respect to R for predicting MIDR demand on the 3-story 

structure: (a) PGV, (b) Sa(T1), (c) Saavg and (d) IMM(λ=0.5)
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Table 5 shows the results of testing the 

sufficiency of the IMs with respect to R for 

predicting MIDR demand on the structures 

considered. It can be seen that only PGV can 

predict MIDR demand on the three structures 

independently of R. It is note-worthy to 

mention that PGV does not have a higher 

efficiency for predicting MIDR demand on 

the 3-story structure, in comparison with the 

other IMs, whereas it has an acceptable 

efficiency for the 6- and 9-story structures. It 

can therefore be inferred that most of the IMs 

(including advanced scalar IMs) cannot 

predict MIDR demand on the structures 

independently from R, under near-fault 

pulse-like ground motions. 

Table 5. Results of testing the sufficiency of the IMs with respect to R for predicting MIDR demand on 

the structures considered. 

IM 

Structure 

3-story 6-story 9-story 

h=0.003 h=0.02 h=0.003 h=0.02 h=0.003 h=0.02 

PGA 0.0089 0.0135 0.0005 0.0014 0.0005 0.0001 

PGV 0.7569 0.8808 0.7629 0.9915 0.4949 0.4858 

PGD 0.0131 0.0158 0.0280 0.0414 0.0176 0.0214 
Sa(T1) 0.0022 0.0032 0.0010 0.0044 0.0024 0.0010 

AI 0.0728 0.0988 0.0061 0.0167 0.0045 0.0015 
CAV 0.0414 0.0518 0.0070 0.0164 0.0045 0.0021 

INp 0.0059 0.0094 0.0031 0.0126 0.0090 0.0052 
Saavg 0.0334 0.0540 0.0672 0.1606 0.0652 0.0496 

SaavgM 0.0122 0.0195 0.0339 0.0997 0.2133 0.1995 
IMC 0.0191 0.0314 0.0238 0.0685 0.0248 0.0164 

IMM(λ=0.5) 0.0431 0.0673 0.0430 0.1171 0.0522 0.0467 
IMM(λ=0.33) 0.0112 0.0183 0.0105 0.0414 0.0291 0.0216 

IB 0.0042 0.0068 0.0026 0.0107 0.0123 0.0075 
 

6.2. Sufficiency with respect to Tp 

To investigate the sufficiency of the IMs with 

respect to Tp, moving average curve can be 

applied [41]. The potential bias due to Tp 

(BTp), in structural response prediction, can 

be expressed by the total area between the 

moving average curve and the zero residual 

line. In fact, this area is a proxy for the effect 

of Tp that is unaccounted for by the IM. 

Therefore, an IM is more sufficient with 

respect to Tp than other IMs, when the BTp 

value obtained applying the IM is lower than 

those of the other ones.  

Figure 7 illustrates the results of 

investigating the sufficiency of four IMs with 

respect to Tp for predicting MIDR demand on 

the 3-story structure (with h=0.003). As 

demonstrated in this figure, applying 

IMM(λ=0.5) leads to the lowest area between the 

moving average curve and the zero residual 

line (i.e., BTp=area=1.811), and therefore, 

IMM(λ=0.5) has a higher sufficiency with 

respect to Tp, in comparison with the other 

IMs.  
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Fig. 7. Testing the sufficiency of four IMs with respect to Tp for predicting MIDR demand on the 3- story 

structure: (a) PGV, (b) Sa(T1), (c) Saavg, and (d) IMM(λ=0.5). 

Table 6 presents the results of testing the 

sufficiency of the IMs with respect to Tp for 

predicting MIDR demand on the structures 

considered. As it is evident, PGD has the 

lowest sufficiency with respect to Tp for 

predicting MIDR demand on the structures, 

in comparison with the other IMs. In 

addition, none of the IMs has the highest 

sufficiency with respect to Tp for the three 

structures considering the two strain 

hardening ratios. It can be also observed that 

by increasing the height of structure, the 

sufficiency of the conventional IMs (i.e., 

PGA, PGV, PGD, and Sa(T1)) and 

cumulative-based IMs (AI and CAV) with 

respect to Tp for predicting MIDR demand on 

the structures, increases. It should be 

mentioned that most of the advanced IMs are 

more sufficient than the conventional and 

cumulative-based IMs. In the case of the 3-

story structure (as a low-rise structure), 

IMM(λ=0.5) and Saavg can be selected as the 

most sufficient IMs with respect to Tp for 

predicting MIDR demand. For the 6- and 9- 

story structures (as mid-rise structures), 

Sa(T1) and PGV are respectively the most 

sufficient IMs with respect to Tp, among the 

conventional and cumulative-based IMs. It is 

also shown that IMM(λ=0.33), INp and IB can be 

selected as the most sufficient IMs with 

respect to Tp for predicting MIDR demand on 

the 6- and 9-story structures, considering the 

two strain hardening ratios. 
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Table 6. Results of testing the sufficiency of the IMs with respect to Tp for predicting MIDR demand on 

the structures considered. 

IM 

Structure 

3-story 6-story 9-story 

h=0.003 h=0.02 h=0.003 h=0.02 h=0.003 h=0.02 

PGA 3.2727 3.2342 1.9984 1.4548 1.3834 1.3840 

PGV 7.8658 7.4823 1.8087 1.9850 0.5415 0.6775 

PGD 10.1338 9.4700 4.3174 4.0392 2.7456 2.4348 

Sa(T1) 2.9869 2.7756 1.1414 0.7147 0.7137 0.5770 

AI 5.0306 4.9072 1.2425 1.0569 1.0097 0.9884 

CAV 8.2008 7.7938 2.1123 2.2077 1.2030 0.9282 

INp 2.3034 1.9998 0.7128 0.5713 0.6261 0.4592 

Saavg 2.0166 2.0972 0.7503 1.0473 0.9209 0.8665 

SaavgM 2.3158 1.9869 1.1640 0.7131 1.1911 0.7754 

IMC 2.0893 2.1581 0.7743 1.0411 0.7987 0.6957 

IMM(λ=0.5) 1.8113 1.7054 0.8071 1.1059 0.9560 0.9708 

IMM(λ=0.33) 2.8513 2.4702 0.4406 0.6330 0.5906 0.5137 

IB 2.3116 2.0255 1.0220 0.5612 0.5481 0.3426 

7. Selection of optimal IMs 

Knowing that an optimal IM requires to be 

efficient and sufficient to accurately 

anticipate the seismic response of structures, 

in the previous sections, efficiency and 

sufficiency of the IMs deliberated were 

investigated. As the results show, it is 

unlikely possible to find an IM that is the 

most efficient and also sufficient for the three 

structures. Consequently, the results are 

divided into two parts belonging to low- and 

mid-rise structures.  

In the case of the 3-story structure (as a low-

rise structure), it was depicted that 

IMM(λ=0.33), IMC, Saavg and IMM(λ=0.5) are the 

most efficient IMs for predicting MIDR. The 

results of testing the sufficiency of the IMs 

showed that these IMs are sufficient with 

respect to M. In addition, it was also shown 

that IMM(λ=0.5) and Saavg can be selected as the 

most sufficient IMs with respect to Tp. 

Investigating the sufficiency of the IMs 

showed that PGV and AI are the only 

sufficient IMs with respect to R, considering 

both the strain hardening ratios. Put it 

differently, due to their lower efficiency and 

sufficiency with respect to Tp, PGV and AI 

cannot be selected as optimal IMs. Therefore, 

IMM(λ=0.5) and Saavg due to their higher 

efficiency and sufficiency with respect to Tp, 

were selected as optimal IMs for predicting 

MIDR demand on the low-rise steel BRB 

frames under near-fault ground motions. As a 

result of the insufficiency of IMM(λ=0.5) and 

Saavg with respect to R, to have a reliable and 

realistic prediction of MIDR demand on low-

rise steel BRB frames by using these IMs, 

ground motion record selection for 

conducting non-linear dynamic analyses is 

require to be performed pondering R to be 

compatible with the results of probabilistic 

seismic hazard analysis. 

In the case of the 6- and 9-story structures (as 

mid-rise structures), it was shown that PGV 
among the traditional and cumulative-based 

IMs, and IMM(λ=0.33), SaavgM, IB and IMM(λ=0.5) 

among the advanced IMs can be selected as 

the more efficient IMs than the other ones. 

Investigating the sufficiency of the IMs for 

the mid-rise structures demonstrated that all 
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the IMs are sufficient with respect to M. In 

addition, only PGV is sufficient with respect 

to R. It is note-worthy to mention that PGV 

has an acceptable efficiency for the mid-rise 

structures. Investigating the sufficiency of 

the IMs with respect to Tp displayed that 

Sa(T1) and PGV are the most sufficient IMs 

with respect to Tp among the traditional and 

cumulative-based IMs. In the case of the 

advanced IMs, it was also exhibited that 

IMM(λ=0.33), INp and IB can be selected as the 

most sufficient IMs with respect to Tp, 

considering both the strain hardening ratios. 

Therefore, PGV can be selected as an optimal 

IM that has acceptable efficiency and 

sufficiency with respect to M, R, and Tp for 

predicting MIDR demand on the mid-rise 

steel BRB frames under near-fault ground 

motions. It should be noted that, the 

advanced IM IMM(λ=0.33) due to its acceptable 

efficiency and sufficiency with respect to M 

and Tp can also be selected as an optimal IM 

for predicting MIDR demand on the mid-rise 

steel BRB frames under near-fault ground 

motions. We also should mention that, due to 

the insufficiency of IMM(λ=0.33) with respect to 

R, to have a reliable prediction of MIDR 

demand by using IMM(λ=0.33), ground motion 

record selection needs to be performed 

considering R to be compatible with the 

results of probabilistic seismic hazard 

analysis. 

As mentioned previously, applying optimal 

IMs makes the structural seismic response 

assessments more reliable. For example, in 

the case of the 3-story structure (with a strain 

hardening ratio of 0.003), using Sa(T1) as a 

traditional IM and IMM(λ=0.5) as an optimal IM 

results in dispersions of 0.593 and 0.409 in 

the prediction of MIDR demand, 

respectively. Regarding Equation 12, using 

IMM(λ=0.5) instead of Sa(T1) can lead to a 

reduction of 31% in SE. Furthermore, the 

acceptable sufficiency of IMM(λ=0.5) with 

respect to M and Tp makes the assessments 

independent of M and Tp of the ground 

motion records used.  

 
Fig. 8. Fragility curves obtained by Sa(T1) and IMM(λ=0.5) for the 3-story structure: (a) Sa(T1), (b) IMM(λ=0.5).

One of the most prevalent applications of 

IMs in the PBEE is the calculation of the 

fragility curve for a structure, which proves 

the probability of exceedance from a specific 

value of an EDP, or a considered limit state 

(e.g., see [42–44]). Figure 8 portrayed the 

fragility curves obtained by Sa(T1) and 

IMM(λ=0.5), using Equation 11, for the 3-story 

structure (with h=0.003). Due to the higher 

efficiency and sufficiency of IMM(λ=0.5) than 

Sa(T1), it can be concluded that the fragility 

curves obtained by IMM(λ=0.5) are more 

reliable than those obtained by Sa(T1). 
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It is worth mentioning that, this study 

focused on the investigation of the efficiency 

and sufficiency of the IMs for predicting 

MIDR demand on the steel BRB frames 

under near-fault ground motions. On that 

account, an inquiry for selecting optimal IMs 

for collapse capacity prediction of the 

considered structures can be conducted as a 

future work. Moreover, the results of this 

study were obtained in consonance with an 

investigation on three regular steel BRB 

frames. Thus, the efficiency and sufficiency 

of the IMs may significantly vary if irregular 

structures are considered. 

8. Conclusions 

In this study, the efficiency and sufficiency of 

13 IMs including traditional IMs, 

cumulative-based IMs (i.e., AI and CAV), 

and advanced IMs for predicting MIDR on 

the low- to mid-rise steel BRB frames under 

near-fault ground motions (having forward 

directivity) were investigated. To this end, 

three structures including 3-, 6- and 9-story 

steel BRB frames considering two strain 

hardening ratios for steel material model in 

each structure were deliberated. The results 

proves that Sa(T1) as the most prevalent 

scalar IM cannot efficiently and sufficiently 

predict MIDR demand on the low- to mid-

rise steel BRB frames under near-fault 

ground motions, when compared with some 

of the IMs considered. It was also 

demonstrated that, most of the IMs 

(including advanced scalar IMs) are 

insufficient with respect to R for predicting 

MIDR demand on the structures under near-

fault pulse-like ground motions. In addition, 

investigating the effect of strain hardening 

ratio on the efficiency and sufficiency of the 

IMs revealed that increasing the strain 

hardening ratio decreases the dispersion in 

the structural response prediction (i.e., 

increases the efficiency), whereas the order 

of the efficiency of the IMs does not change. 

However, the order of the sufficiency of the 

IMs can alternate when the strain hardening 

ratio varies. it is note-worthy to mention that, 

most of the advanced IMs are more sufficient 

with respect to Tp than the conventional and 

cumulative-based IMs. 

The results revealed that it is unlikely 

possible to find an IM that is the most 

efficient and also sufficient for the three 

structures. On that account, the conclusions 

are divided into two parts belonging to low- 

and mid-rise structures. In the case of the 3-

story structure (as a low-rise structure), due 

to the higher efficiency and sufficiency of 

IMM(λ=0.5) and Saavg with respect to Tp, they 

were selected as optimal IMs for predicting 

MIDR demand on the low-rise steel BRB 

frames under near-fault ground motions. It 

should be noted that, as a result of the 

insufficiency of IMM(λ=0.5) and Saavg with 

respect to R, to have a reliable and realistic 

prediction of MIDR demand on low-rise steel 

BRB frames by using these IMs, ground 

motion selection for conducting non-linear 

dynamic analyses require to be performed 

contemplating R to be compatible with the 

results of probabilistic seismic hazard 

analysis. In the case of the 6- and 9-story 

structures (as mid-rise structures), PGV and 

IMM(λ=0.33) were selected as optimal IMs for 

predicting MIDR demand on the mid-rise 

steel BRB frames under near-fault ground 

motions. As a result of the insufficiency of 

IMM(λ=0.33) with respect to R, to have a 

reliable prediction of MIDR demand on the 

mid-rise steel BRB frames by using 

IMM(λ=0.33), ground motion selection is 

required to be performed considering R to be 

compatible with the results of probabilistic 

seismic hazard analysis. 
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