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Results of damage prediction in buildings can be used as a 

useful tool for managing and decreasing seismic risk of 

earthquakes. In this study, damage spectrum and C4.5 

decision tree algorithm were utilized for damage prediction 

in steel buildings during earthquakes. In order to prepare the 

damage spectrum, steel buildings were modeled as a single-

degree-of-freedom (SDOF) system and time-history 

nonlinear analysis was carried out to develop a set of SDOF 

structures. Then, damage index was used to prepare the 

damage spectrum. Data parameters required for training and 

evaluating the C4.5 decision tree algorithm were obtained 

from the results of damage spectra for steel structures and 

using Krawinkler damage index Also, two decision trees 

were trained based on quantitative indices. The first decision 

tree determined whether damage occurred in buildings or not 

and the second predicted severity of damage as repairable, 

beyond repair, or collapse. decision tree classification 

algorithm was used to predict damage to steel structures. 
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Damage prediction, 

Damage index, 

Steel buildings, 

Decision tree algorithm. 

 

1. Introduction 

Correct prediction of damage level is very 

useful in estimating seismic vulnerability of 

buildings. Results obtained from damage 

prediction in structures can be effectively 

used to manage earthquake-caused risks. 

Since equivalent single-degree-of-freedom 

(SDOF) systems have a considerable role in 

dynamic studies of structures, response of 

multi-degree-of-freedom structures in steel 

buildings can be investigated based on its 

equivalent SDOF response [1]. Different 

methods exist for damage prediction of 

equivalent SDOF systems. When analyzing 

the damage imposed on a structure after a 

destructive event, its exact estimation at each 

point seems to be impossible. Therefore, it is 

http://civiljournal.semnan.ac.ir/
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necessary to introduce some indices for 

evaluating damage rate on structural 

elements. Previous studies have proposed 

some damage indices as the parameters 

which determine damage level for structures. 

Results of studies have presented these 

indices as appropriate parameters for 

evaluating the damage imposed on structures, 

which has found widespread applications. 

Structural damage estimation is performed by 

considering usability of buildings, assumed 

damage function, and characteristics of the 

studied structure using different concepts and 

methods with physical interpretation 

capability[2]. Methods of defining a damage 

index at structural level are presented in 4 

general forms including strength need (within 

elastic and non-elastic regions) [3], ductility 

need, energy loss[4] , and stiffness reduction 

[5]. A useful method for damage prediction is 

to calculate damage index (DI); when it is 0, 

the structure will remain in the elastic mode 

and, if it is more than 1, the structure will 

completely collapse. [6] The main problem 

with most of these methods is use of 

numerical values, instead of non-numerical 

and qualitative values, for introducing 

damage level.  

Thus far, many functions have been proposed 

for determining structural damage mode after 

an earthquake[7]. Some of these functions 

are defined based on combined effects of 

maximum plastic displacement and plastic 

energy, among which is the model proposed 

by Baik et al. (1988) for damage evaluation 

in steel frames. This model utilizes Coffin - 

Manson relation, and Miner's rule in linear 

damage accumulation to achieve the behavior 

of structural elements [8]. 

In addition, Bozorgnia and Bertero proposed 

two modified damage indices for an SDOF 

non-elastic system. [6]. 

Dipasquale and Cakmak (1990) defined a 

maximum norm for a 1-D mode. This index 

is among the indices which are based on 

structural modal parameters. [9]. 

Damage index introduced by Ghobara et al. 

(1999) is adjusted by stiffness parameter and 

calculated by performing two pushover 

analyses. The first and second pushover 

analyses are performed before and after 

earthquake application to structures, 

respectively. This index is calculated based 

on structural stiffness before and after 

earthquake. [8] 

McCabe and Hall (1989) presented a damage 

index based on a hysteresis behavior and 

equivalent ideal behavior. [10]  

There are various types of damage functions; 

however, Krawinkler and Zohrei's damage 

index is often used for steel structures. 

Basic relation of Krawinkler index is shown 

in Eq. (1): 

D = ∑ 1
Nfi

⁄ = C ∑ (Δδpi)
cn

i=1
n
i=1                 (1) 

 

Where 

Nfi = xA−1(Δδpi)
−a = C−1(Δδpi)

−c          (2) 

n is the number of damage cycle and c, C, a, 

and A are structural damage parameters. Δδpi 

is plastic deformation in cycle i and D is 

damage rate. Nf is the number of cycles 

ending in failure. Also, the relation between 

the number of cycles ending in failure, Nf, 
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and plastic deformations is shown in Eq. (3) 

based on Manson-Coffin studies. [11]  

𝑁𝑓 = 𝐶−1(∆𝛿𝑝𝑖)
−𝐶                                     (3) 

 

When preparing damage spectra, a function 

must be defined for damage index; in this 

study, Krawinkler damage function was used. 

2. Damage spectrum and Damage 

attenuation relations of steel 

buildings 

In order to determine damage level of a 

structure, instead of calculating velocity or 

acceleration spectra, damage spectrum can be 

directly calculated. Damage spectrum is a 

nonlinear spectrum which is drawn by 

adjusting nonlinear parameters relating to 

SDOF structures, performing dynamic 

analysis under specific records, and 

measuring damage for each structure. A well-

defined damage index has a normal value; if 

a structure remains elastic, its value will be 0 

and, if there is a structural collapse potential, 

it will be 1. Calculation steps of damage 

spectrum are as follows: 

1- Selecting a series of SDOF systems with 

period T and specific strength, force-

displacement relation, and deformation; 

2- Selecting a record with specific soil 

situation; 

3- Performing nonlinear dynamic analysis; 

4- Calculating damage level using dynamic 

analysis response and appropriate damage 

index; and 

5- Drawing damage spectrum for different 

records. [6]  

In addition, the flowchart of damage 

spectrum and a sample of damage spectrum 

are shown in the following figure. 



 S. A. H. Hashemi et al./ Journal of Rehabilitation in Civil Engineering 3-1 (2015) 24-42 27 

Select first period  OF equivalent SDOF

Calculating Damage index(DI) 

Select ductile capacity for  equivalent SDOF 

Nonlinear Dynamic Analysis

Is the last 
period

stop

start

Record selection

No

Yes

Select  resistance Limit  for  equivalent SDOF 

 

Figure 1. Computation of damage spectrum 

Damage spectrum can be calculated by the 

above-introduced method. By selecting an 

appropriate function for damage reduction 

model, its coefficients are obtained using 

nonlinear multivariate regression method 

along with data from damage spectrum; then, 

they can be directly used to evaluate damage 

in different zones of a region and plan to 

reinforce them. Damage attenuation relations 

are in the form of acceleration and velocity 

attenuation relations: 

𝐷𝐼 = 𝑓(𝑀)𝑓(𝑅)                                         (4) 

in which damage is defined as a function of 

magnitude and distance. 

To obtain these coefficients for this function, 

regression analysis was performed. Main 

problem in developing relations is the range 

of damage value; if DI is more than 1, the 

building will be assumed to be completely 

collapsed. As a result, in theoretical terms, 

any value of more than 1 is considered an 

outlier in regression analysis. To solve this 

problem in this study, quality-based decision 

tree classification method replaced reduction 

relation for damage prediction. 
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3. Record characteristics for the 

applied earthquakes 

In this study, records from Building and 

Housing Research Center [12] were used. 

Since the number of records registered in 

Iran was more than 2000 and the number of 

reliable records in terms of geological 

characteristics was limited, 744 records were 

selected, 108 records of which were related 

to soil conditions and 634 belonged to rock 

conditions. Furthermore, in this study, 

seismic records with the magnitude of 4.5 to 

7 were used and the distance to the 

earthquake location was between 10 and 200 

km. Characteristics of the records used in this 

study are shown in Fig. 2. 

 

 

Figure 2. Distribution of the magnitude and distance of earthquake records 

4. Calculating damage index 

In this study, Eq. 1 was used to calculate 

damage index. Structural parameters used to 

prepare damage spectra are presented in 

Table 1. Also, damage index was calculated 

by performing 79110 and 14580 nonlinear 

dynamic analyses for rock and soft soil 

conditions, respectively. 

Table 1. Structural characteristics of steel buildings for making damage spectra 

 

Moreover, Table 2 shows damage levels of 

some samples of structures with determined 

structural parameters under the records with 

specific surface magnitude (M) and focal 

distance (R). In this table, 𝜇, Fy/w, T, and DI 

are ductility, ratio of base shear to weight, 

indicator of structural strength, structure's 

period, and damage obtained for the 

equivalent SDOF structure from Krawinkler 

damage function, respectively. In this article, 
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using the above-mentioned data and decision 

tree method, damage was classified based on 

structural characteristics and earthquake 

magnitude and distance to the site. [13]  

Table 2. Calculating damage index for the buildings with specific structural characteristics under the 

effect of different earthquake records 

 

5. Classifying values of damage 

index 

According to the initial definition of damage 

index, if DI value exceeds 1, the structure is 

assumed to be completely collapsed. In other 

words, DI of more than 1 shows collapse of 

the building. Thus, DI values of more than 1 

in the regression analysis of reduction 

relations, which defines the relationship 

between characteristics of land movement, 

structural characteristics, and damage, are 

considered outliers. To overcome this 

problem, non-numerical and qualitative 

interpretations based on decision tree 

method, instead of numerical quantities, were 

applied to study damage prediction. [2]  

Qualitative values for the building are given 

in Table 3. If DI is less than and equal to 0.4, 

the damage to the structure will be repairable 

and the building is slightly damaged. If DI 

lies between 0.4 and 1, the damage will be 

beyond repair and high damage is made to 

the building in terms of repair costs; even 

some parts of the building are destroyed 

during the earthquake. DI of larger than 1 

indicates that the building is completely 

collapsed and cannot be occupied. These 

three classes of building conditions are very 

important for security management of the 

society and damage prediction algorithm in 

this study. Table 3 demonstrates some 

samples of damage classification based on 

performance level. 

Table 3. Some samples of damage classification of the structures with specific structural parameters 

under different earthquake records 

Damage class 𝑻 
𝑭𝒚

𝑾
 𝜇 R(km) M instance 

Beyound repair 

collapse 

collapse 

No damage 

Repairable 

0.1 

0.1 

0.6 

0.1 

0.2 

0.15 

0.05 

0.2 

0.05 

0.1 

2 

5 

2 

2 

3.5 

10 

13 

11 

62 

145 

5.7 

4.6 

6.2 

5.3 

5.9 

𝐼1 

𝐼2 

𝐼3 

𝐼4 

𝐼5 

 

DI 𝑻 
𝑭𝒚

𝑾
 𝜇 R(km) M 

0.7 

47 

1.14 

0 

0.21 

0.1 

0.1 

0.6 

0.1 

0.2 

0.15 

0.05 

0.2 

0.05 
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2 

2 

3.5 

10 

13 

11 

62 

145 
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4.6 
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5.3 

5.9 



30 S. A. H. Hashemi et al./ Journal of Rehabilitation in Civil Engineering 3-1 (2015) 24-42 

In this study, a set of data, including 

earthquake parameters and structural 

characteristics, was considered as input data. 

To identify structural vulnerability, decision 

tree algorithm was applied as the predictor 

algorithm. Characteristics and distribution of 

this set of input data used for training the 

decision tree algorithm are shown in Figs. 3-

6.  

 

 

             

 

 

Figure 3. Distribution of 5 input characteristics of decision trees based on two outputs of damage and No 

damage for rock conditions 
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Figure 4. Distribution of 5 input characteristics of decision trees based on two outputs of damage and No 

damage for soil conditions 

 

1

10

100

1000

10000

0.1 0.2 0.4 0.6 0.8 1 2 3

N
u

m
b

e
r 

o
 f

 I
n

s
ta

n
c

e
s

 

period (sec) 

No Damage  Damage

1

10

100

1000

10000

100000

2 3.5 5

N
u

m
b

e
r 

o
f 

In
s
ta

n
c
e
s

 

Ductility 

No Damage  Damage

1

10

100

1000

10000

100000

N
u

m
b

er
 o

 f
 In

st
an

ce
s 

Site to source distance  (km) 

No Damage  Damage

1

10

100

1000

10000

100000

0.05 0.1 0.15 0.2 0.3

N
u

m
b

er
 o

 f
 In

st
an

ce
s 

Fy/w 

No Damage  Damage

1

10

100

1000

10000

100000

N
u

m
b

e
r 

o
f 

In
st

an
ce

s 

Magnitude  (Ms) 

No Damage Damage



32 S. A. H. Hashemi et al./ Journal of Rehabilitation in Civil Engineering 3-1 (2015) 24-42 

                

 

    

 

 

 

Figure 5. Distribution of 5 input characteristics of decision trees based on three outputs of repairable 

damage, beyond repair damage, and total collapse for soil conditions 
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Figure 6. Distribution of 5 input characteristics of decision trees based on three outputs of repairable 

damage, beyond repair damage, and total collapse for rock conditions 
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An example of a decision tree is presented in 

Fig. 7. In this figure, it is obvious that a 
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Figure 7. An example of a decision tree 
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damaged groups. Finally, during the second 

phase, damage was classified into three 

repairable, beyond repairable, and complete 

collapse classes. Each pair of decision trees 

was developed for both soil and rock 

conditions. [2].Decision trees for soil and 

rock conditions were generated using WEKA 

software [16]. 

 

 

7. Performance of decision tree 

algorithms 

Purpose of generating a decision tree is to 

provide a decision-making tool for predicting 

future results in a precise way. Performance 

of a decision tree is evaluated based on the 

validity of classified records. As shown in 

Table 5, performance of a decision tree is 

generally presented as a 2×2 matrix called 

confusion matrix. The rows of this matrix are 

related to real results, while the columns 

show the results obtained from the 

classification of each class. In the field of 

artificial intelligence, confusion matrix refers 

to the matrix which demonstrates the 

performance of the related algorithms. 

Although this presentation is typically used 

for supervised learning algorithms, it is used 

in unsupervised learning algorithms as well. 

When this matrix is used in unsupervised 

learning algorithms, it is usually called 

matching matrix. Each column in the matrix 

presents an example of the predicted value, 

while each row contains an actual (correct) 

sample. The matrix is called so, because it 

enables researchers to observe error and 

conflict in the results. In the fields other than 

artificial intelligence, this matrix is usually 

called contingency or error matrix. Elements 

of this matrix indicate how the decision tree 

could predict a correct result. An exact 

decision-making tool must contain large 

numbers on the main diagonal and small 

numbers close to zero on the secondary. 

Tenfold cross-validation technique is used to 

evaluate decision trees. In this technique, 

data are classified into 10 random parts. In 

each time interval, 90% of the data are given 

to the training tree, the remaining 10% are 

kept, and this process is repeated for 10 

times. Generally, error of the decision tree is 

calculated by taking the average of errors for 

10 steps. [14] Tables 4 to 7 show the 

confusion matrix for each decision tree 

developed by tenfold cross-validation 

technique. As is clear in Tables 4 and 5, 91 

and 95% prediction accuracy were related to 

damage and non-damage phases for rock and 

soil conditions, respectively. For the second 

phase, in which damage level was classified 

into repairable, beyond repair, and total 

collapse, validity of the classification for 

rock and soil conditions was 81and 82%, 

respectively, as shown in Tables 6 and 7. 
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Table 4. Confusion matrix for damage and no-damage classes for soil 

 

Table 5. Confusion matrix for damage and no-damage classes for rock 

 

Table 6. Confusion matrix for repairable, beyond repair, and collapse classes for soil 

 

Table 7. Confusion matrix for repairable, beyond repair, and collapse classes for rock 
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8. Validity of decision trees 

Damage results obtained from time-history 

nonlinear analyses and decision trees for 

three buildings with different structural 

characteristics were compared with each 

other. Time-history nonlinear analyses were 

carried out considering different Fy/W ratios 

(0.3, 0.2, 0.15, 0.10, 0.05) and different 

ductility capacities (Ordinay(2), 

Intermediate(3.5), Special(5)). Buildings 

were modeled using OpenSees software[18] 

and their damage values were calculated by 

analyzing the results and using Krawinkler 

damage function [11] and Matlab 

programming [17]. Furthermore, damage 

values were calculated using the decision 

trees developed in this article. Temban record 

with the magnitude (M) of 6.2 and distance 

(R) of 10.8 km from the site were used to 

calculate damage in both methods. This 

earthquake record was applied to 30 

buildings with different structural 

characteristics and number of stories and 

results of these two methods were compared 

with each other, as shown in Tables 8-9 and 

Figs. 8-10. According to the comparison, the 

obtained results from decision tree algorithm 

were more acceptable than the time-history 

analyses. 

 

 

Table 8. Characteristics of the used buildings and validation of the results based on damage- No damage 

classes 
Decision tree 

algoritm result 

Time history 

analysis result 

Period 

(sec) 
Ductility Fy/w 

No. of 

Story 
No. of Structure 

Damage Damage 0.4 Ordinary 0.05 2 Structure 1 

Damage Damage 0.4 Ordinary 0.1 2 Structure 2 

Damage Damage 0.4 Ordinary 0.15 2 Structure 3 

Damage No Damage 0.4 Ordinary 0.2 2 Structure 4 

No Damage No Damage 0.4 Ordinary 0.3 2 Structure 5 

Damage Damage 0.4 Intermediate 0.05 2 Structure 6 

Damage Damage 0.4 Intermediate 0.1 2 Structure 7 

No Damage No Damage 0.4 Intermediate 0.15 2 Structure 8 

No Damage No Damage 0.4 Intermediate 0.2 2 Structure 9 

No Damage No Damage 0.4 Intermediate 0.3 2 Structure 10 
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Damage Damage 0.4 Special 0.05 2 Structure 11 

No Damage No Damage 0.4 Special 0.1 2 Structure 12 

No Damage No Damage 0.4 Special 0.15 2 Structure 13 

No Damage No Damage 0.4 Special 0.2 2 Structure 14 

No Damage No Damage 0.4 Special 0.3 2 Structure 15 

Damage Damage 0.8 Ordinary 0.05 5 Structure 16 

Damage Damage 0.8 Ordinary 0.1 5 Structure 17 

No Damage No Damage 0.8 Ordinary 0.15 5 Structure 18 

No Damage No Damage 0.8 Ordinary 0.2 5 Structure 19 

No Damage No Damage 0.8 Ordinary 0.3 5 Structure 20 

No Damage No Damage 0.8 Intermediate 0.05 5 Structure 21 

No Damage No Damage 0.8 Intermediate 0.1 5 Structure 22 

No Damage No Damage 0.8 Intermediate 0.15 5 Structure 23 

No Damage No Damage 0.8 Intermediate 0.2 5 Structure 24 

No Damage No Damage 0.8 Intermediate 0.3 5 Structure 25 

No Damage No Damage 0.8 Special 0.05 5 Structure 26 

No Damage No Damage 0.8 Special 0.1 5 Structure 27 

No Damage No Damage 0.8 Special 0.15 5 Structure 28 

No Damage No Damage 0.8 Special 0.2 5 Structure 29 

No Damage No Damage 0.8 Special 0.3 5 Structure 30 
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Table 9. Characteristics of the buildings used in this study and validation based on three damage classes 

(repairable, beyond repair, and total collapse) 

Decision tree 

algoritm result 

Time history 

analysis result 

Period 

(sec) 

Ductility Fy/w No. 

of 

Story 

No. of 

Structure 

Collapse Collapse 0.4 Ordinary 0.05 2 Structure 1 

Collapse Collapse 0.4 Ordinary 0.1 2 Structure 2 

Collapse Collapse 0.4 Ordinary 0.15 2 Structure 3 

Beyond repair - 0.4 Ordinary 0.2 2 Structure 4 

Collapse Collapse 0.4 Intermediate 0.05 2 Structure 6 

Collapse Collapse 0.4 Intermediate 0.1 2 Structure 7 

Collapse Collapse 0.4 Special 0.05 2 Structure 11 

Collapse Collapse 0.8 Ordinary 0.05 5 Structure 16 

Collapse Collapse 0.8 Ordinary 0.1 5 Structure 17 

 

  
a                                                                                                       b 

Figure 8. Comparison results of damage for a 2-story building obtained from a) decision tree algorithm, 

and b) time-history nonlinear analyses related to the first phase of classification (damage, non-damage) 
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a                                                                                                   b 

Figure 9. Comparison results of damage for a 5-story building obtained from a) decision tree algorithm, 

and b) time-history nonlinear analyses related to the first phase of classification (damage, non-damage) 

 

        
a                                                                                                   b 

Figure 10. Comparison results of damage for a 2-story building obtained from a) decision tree algorithm, 

and b) time-history nonlinear analyses related to the second phase of classification (repairable, beyond 

repair, and total collapse) 
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9. Conclusion 

In this study, decision tree classification 

algorithm was used to predict damage to steel 

structures. Input and output parameters 

required for training and evaluating the 

decision-making tree algorithm were 

obtained from the results of damage spectra 

for steel structures and using Krawinkler 

damage index. Input parameters for 

algorithm training included structural 

characteristics like strength, ductility, and its 

period. Also, characteristics of earthquake 

record were magnitude and distance to the 

site. The output parameter was also in two 

phases. The first phase indicated damage or 

no damage conditions of the structure, while 

the second phase showed damage type. In 

order to evaluate this approach, results of the 

damage classification obtained from decision 

tree algorithm were compared with those 

obtained from time-history analysis. 

Accuracy of the applied method in this study 

was directly related to that of the data used to 

train the network. Since there are some 

insignificant and outlier data in teaching 

damage prediction patterns, such as larger 

than 1 damage, this article utilized data 

classification method, which was structural 

damage in this article. The results were 

presented as qualitative damage prediction 

based on tree classification algorithm. 
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