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Chloride-induced corrosion is a key factor in the premature 

corrosion of concrete structures exposed to a marine 

environment. Fick's second law of diffusion is the dominant 

equation to model diffusion of chloride ions. This equation is 

traditionally solved by Finite Element Method (FEM) and 

Finite Difference Method (FDM). Although these methods 

are robust and efficient, they may face some numerical issues 

due to discretization process. This study solves the Fick's 

equation using the Element-Free Galerkin (EFG) method as 

well as traditional FEM and FDM. The results of these 

numerical methods are compared together, and validated 

with the analytical solution in special cases. The results show 

that the EFG method predicts the service life of the concrete 

structures, more accurately than the other methods, and 

exhibits the lowest displacement error and energy error for a 

constant diffusion coefficient problem. FDM can be 

performed very efficiently for simple models, and the 

displacement errors produced by this method do not differ 

considerably from the EFG results. Therefore, FDM could 

compete with the EFG method in simple geometries. FEM 

can be used with a sufficient number of elements while the 

convergence of the results should be controlled. However, in 

complicated models, FEM and especially the EFG method 

are much more flexible than FDM. 

Keywords: 
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1. Introduction 

Contamination of concrete with chloride ions 

is one of the main causes of the premature 

corrosion of reinforced concrete structures in 

a marine environment [1, 2]. The service life 

of these structures can be determined based 

on the initiation time of the corrosion of steel 

bars due to chloride penetration [2-5]. If the 

amount of chloride at the level of the steel 
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bars reaches a particular threshold value of 

chloride, the passive layer on the steel bar is 

destroyed and the corrosion process begins. 

In the other words, the initiation time is the 

time takes to penetrate sufficient chloride 

into the concrete cover thickness and initiate 

corrosion process [6]. Thus, reliable methods 

for predicting chloride ingress into concrete 

are required to prevent the deterioration of 

new structures and determine the condition 

of existing ones. Traditionally, numeric 

mesh-based methods such as Finite Element 

Method (FEM) [7] and Finite Difference 

Method (FDM) [8] are employed to model 

diffusion process. However, generating a 

mesh is not only computationally expensive, 

but it is also subject to a number of error 

sources, such as discontinuity of the field 

variable and locking derivation [9]. Thus, 

numerous mesh-free methods have been 

developed in the recent years for solving 

Partial Differential Equations (PDEs) [9]. 

Global domain discretization in MeshLess 

Methods (MLM) is performed based on a set 

of geometrically unconnected nodes instead 

of a mesh of discrete elements. Various types 

of meshless methods based on different 

formulations have been developed for 

different applications. Some of these methods 

are based on the global weak form. These 

weak form methods include Diffuse Element 

Method (DEM) [10], the Element-Free 

Galerkin method (EFG) [11], Reproducing 

Kernel Particle Method (RKPM) [12], 

Partition of Unity Finite Element Method 

(PUFEM) [13] and the Meshless Galerkin 

method based on Radial Basis Functions 

(MGRBF) [14-16]. Some other meshless 

methods e.g. the General Finite Difference 

Method (GFDM) with arbitrary mesh [17] 

and Finite Point Method (FPM) [18] have 

been developed based on the global strong 

form. In this paper, the EFG method is 

employed to solve the diffusion equation, and 

the results are compared to FEM, FDM and 

analytical method in special cases. 

2. Chloride Diffusion Model 

The diffusion of chloride ions is generally 

assumed to follow Fick's Second Law of 

diffusion [3] is presented in Eq. (1). 

2.
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where, C (in percentage) is the chloride 

content in concrete, D (in m
2
/s) is the 

chloride diffusion coefficient and t (in days) 

is the current exposure time. 

Farahani et al. [19] have presented an 

empirical model for the chloride diffusion 

coefficient of silica fume concrete in the tidal 

zone of a marine site located in Bandar 

Abbas, a port city in the southern region of 

Iran. This model, presented in Eq. (2) and Eq. 

(3), predicts the chloride diffusion coefficient 

based on time, temperature, silica fume 

content and water-to-binder ratio for the 

marine environments located in tidal zone of 

south side of Iran. 
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where, D (in m
2
/s) is the chloride diffusion 

coefficient, Dref (in m
2
/s), presented in Eq. 

(3), is the reference diffusion coefficient at 

the reference time (90 days), t (in days) is the 

current exposure time, tref is the reference 

time (90 days), Temp (in Kelvin) is the 

current temperature, Tempref is the reference 

temperature (307.3 K), m is the age factor (m 

= 0.24) representing the time dependence of 
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the chloride diffusion coefficient [20], U (in 

J.mol
-1

) is the activation energy of the 

diffusion process, R is the gas constant 

(8.314 J.mol
-1

.K
-1

), w/b is the water-to-binder 

ratio and SF (in percent) 

is the silica fume content as a replacement of 

Portland cement content in the concrete 

mixtures. The value of U/R ratio for the south 

of Iran is estimated 2948 K [21-23]. 

In this study, various proportions of the 

mixtures were produced by changing the 

water-to-binder ratios: w/b (0.35, 0.40, 0.45 

and 0.50) and the silica fume contents: SF 

(5%, 7.5%, 10% and 12.5%). The mixture 

proportions of these concrete mix designs are 

summarized in Table 1. 

Table 1. Concrete mixture composition [18]. 

w/b Ratio SF Content 

(%) 

Water  

(kg/m
3
) 

Cement  

(kg/m
3
) 

SF  

(kg/m
3
) 

Fine 

aggregates 

(kg/m
3
) 

Coarse 

aggregates 

(kg/m
3
) 

Superplasticizer 

(kg/m
3
) 

W1 0.35 SF1 5.0 140 380 20 931 968 - 

 0.35 SF2 7.5 140 370 30 931 968 6.0 

 0.35 SF3 10.0 140 360 40 906 968 6.4 

 0.35 SF4 12.5 140 350 50 929 964 4.8 

W2 0.40 SF1 5.0 160 380 20 833 1018 3.6 

 0.40 SF2 7.5 160 370 30 832 1017 3.2 

 0.40 SF3 10.0 160 360 40 830 1014 3.6 

 0.40 SF4 12.5 160 350 50 829 1012 3.8 

W3 0.45 SF1 5.0 180 380 20 810 990 1.2 

 0.45 SF2 7.5 180 370 30 808 998 2.0 

 0.45 SF3 10.0 180 360 40 807 985 1.8 

 0.45 SF4 12.5 180 350 50 806 983 2.0 

W4 0.50 SF1 5.0 200 380 20 793 991 0.8 

 0.50 SF2 7.5 200 370 30 784 959 1.2 

 0.50 SF3 10.0 200 360 40 820 1020 1.8 

 0.50 SF4 12.5 200 350 50 782 955 2.0 

 

3. Solving Diffusion Equation 

This section investigates the diffusion 

equation solution by FDM, FEM and EFG 

methods. The theory of each method is 

explained and formulated below: 

)50.0w/b35.0( 



4 A. Farahani and H. Taghaddos/ Journal of Rehabilitation in Civil Engineering 8-4 (2020) 01-14 

3.1. FDM 

FDM solves the diffusion equation by 

providing a grid of nodes. A comprehensive 

discussion of the FDM method can be found 

in reference [24]. 

Eq. (4) provides a solution of diffusion 

equation for one-dimensional (1D) problems, 

such as a plane sheet with thickness L. To 

ensure the stability of the procedure, the grid 

size should be small enough to satisfy Eq. 

(5). 
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where, the region space-time (x-t) is covered 

by a grid of rectangles of side δx, δt, and the 

value of the chloride concentration (C) at the 

grid point (x, t), with coordinate of (iδx, nδt), 

is denoted by Ci,n.  

This method can be easily extended for two-

dimensional (2D) cases by covering a 

rectangular space grid of side δx, δy at each 

time step, δt. Eq. (6) provides a solution of 

the diffusion equation for a 2D problem. 

Similar to the previous case, the grid size in 

Eq. (6) should satisfy the constraint defined 

in Eq. (7) to ensure stability. 
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where, the coordinate of a representative grid 

point (x, y) at time (t = nδt) is denoted by 

(iδx, jδy), and the value of C at such grid 

point is denoted by Ci, j,n. 

3.2. FEM 

A number of previous studies have proposed 

FEM algorithms to solve an advection 

(convection) diffusion equation [3, 24, 25]. 

In the present study, the diffusion equation, 

without the additional term of advection, is 

solved by using FEM. Because, FEM is a 

base method of element-free methods, the 

effective stiffness matrix and the effective 

force vector are derived using a Galerkin 

weak form approach. 

The diffusion equation for a 1D problem can 

be represented in the Cartesian coordinate 

system by discretizing the domain into 1D 

smaller elements (1D mesh) and dividing the 

time interval [0, t] into a finite number of 

equal subintervals t . Therefore, the 

chloride content at the end of the nth time 

interval, denoted by 1nC , is derived 

according to Eq. (8).  

1n

effC P effK  (8) 

where, the terms Keff, 
1nC  and effP are the 

effective stiffness matrix, the difference 

between chloride content at the end of the 

n+1th and nth time intervals and the effective 

force vector, respectively. 

Similarly for 2D problems, the FEM 

discretizes a domain into small 2D mesh 

elements (e.g. triangle) and divides the time 

interval [0, t] into a finite number of equal 

subintervals t . 

3.3. EFG 

Similar to FEM, the EFG method also 

employs the Galerkin weak form 

formulation. However, the main difference is 

the formulation of the shape function. In 

contrary to the FEM that employ mesh to 
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discretize a domain, meshless methods such 

as EFG do not discretize the domain with 

elements. EFG employs Moving Least 

Square (MLS) technique, to generate the 

shape functions. The central idea of MLS is 

that a global approximation can be achieved 

by going through a “moving” process. 

Therefore, for each integration point, a list of 

nodes, including the integration points, is 

required. Then, all the non-zero contributions 

in the Galerkin equations are evaluated. The 

vectors are evaluated over a specified domain 

of influence and then assembled. The result is 

a local matrix for the integration points, 

which should be assembled into the global 

matrix. The solution of the problem is 

obtained by solving the global system of 

equations [26]. 

3.3.1. Galerkin Weak Form 

To summarize, applying the Galerkin method 

to the diffusion equation results in: 

1

T 0

n

eff
C P
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where, the terms Keff, 
1nC  , effP , G , q  

and   can be calculated. 

Eq. (9) indicates the general format of Eq. 

(8); these are used for the EFG shape 

functions. For the integration over the entire 

domain  , a background mesh must be used. 

To simplify the procedure and for the sake of 

comparison with FEM, the same FEM mesh 

is used as the background mesh. 

3.4. Analytical Solution (Constant 

Diffusion Coefficient) 

The analytical solution, in a 1D domain, can 

be obtained by using the variables separation 

method. To set the parameters, a constant 

diffusion coefficient, a domain with thickness 

of L and the following initial conditions (IC) 

and boundary conditions (BC) are assumed: 

IC: 0,0,0  tLxC ,  

BC: 0,,0,0  tLxxCC  (10) 

where, 0C  is the chloride concentration on 

the concrete surface (assumed to be 

constant). The closed form solution results in 

[2]: 
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Similarly, in a rectangular domain with side 

lengths of L and H, the following initial and 

boundary conditions are assumed: 

IC: 0,0,0,0  tHyLxC ,  

BC: 0,,0,,0,0  tHyyLxxCC  (12) 

This leads to the analytical solution of Eq. (1) 

for 2D problem as follows: 

















 







 


0 0
2

0
0 )(

)12(
sin

)12(
sin

16

m n

mn tF
H

ym

L

xn
A

C
CC





 (13) 

where, 
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It should be noted that application of this 

closed-form analytical solution is restricted 

to simple boundary and initial conditions. 

Accordingly, developing a numerical 

approach is necessary for real-life 

applications. 
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4. Results and Discussion 

The service life is defined as the length of the 

time elapsing before the chloride content 

reaches to the maximum limit of chloride on 

the surface of reinforcements. At this time, 

the corrosion initiation phase changes to 

corrosion propagation phase. The corrosion 

productions are increased on the 

reinforcements in the corrosion propagation 

phase, and then the cracks begin to form at 

the surface of concrete. Initially, to compare 

the actual error with the closed-form 

solution, a constant diffusion coefficient is 

assumed and the solutions of EFGM, FEM, 

FDM and analytical solution are compared. 

Subsequently, the service life for a practical 

problem can be investigated, using the 

diffusion coefficient as a function of time.  

It should be noted that due to the symmetry 

of the domain, half and a quarter of the 

models are considered in 1D and 2D 

problems, respectively. As a result, the 

Dirichlet boundary condition was applied 

only to one/two sides of the 1D/2D models, 

respectively, while the other sides follow the 

Neumann boundary conditions. 

4.1. 1D Problem 

In this example, the chloride ingress in a slab 

shown in Fig. 1 is investigated. The problem 

specifications are: Thickness =1000 mm, 

Cover = 50 mm, D = Dref for each design 

mixtures, and Ct = 0.07 % that is the 

threshold value of chloride by weight of 

concrete in the south of Iran [27, 28]. In 

order to simulate a constant diffusion 

coefficient, the constant, m, in Eq. (2) is set 

to zero, and the annual temperature history is 

assumed to be constant. 

 
Fig. 1. Cross-section of slab. 

In EFG calculations, the scaling parameter of 

the support domain (dmax) and the dilation 

parameter (Kch) are optimized by using 

displacement error (L2) and energy error (H1) 

defined as [2]: 
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where, C and C,i present the chloride content 

and its derivative, respectively. 

To calculate the results at 20 years, half of 

the slab is divided into 20 equal finite 

elements (21 nodes) and the same pattern of 

nodes is considered for FDM and EFG 

methods. The displacement error (L2) and 

energy error (H1) in EFG method at time = 

20 years with various dmax and Kch are shown 

in Figs. 2 and 3, respectively.  

 
Fig. 2. Q EFG L error estimation using 

exponential weight function (21 nodes). 
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Fig. 3. Q EFG H error estimation using 

exponential weight function (21 nodes). 

It can be concluded that the optimum dmax 

and Kch are equal to 2.5 and 4, respectively. 

The chloride content-depth and the chloride 

content-time diagrams are shown in Figs. 4 

and 5, respectively. 

 
Fig. 4. Chloride content-Depth in cover depth = 

50 mm (21 nodes). 

 
Fig. 5. Chloride content-Time at time = 20 years 

(21 nodes). 

As expected, by increasing the numbers of 

elements to 100, the numerical methods 

consistently converge to the analytical 

solution (EXACT) as indicated in Figs. 6 and 

7. 

 
Fig. 6. Chloride content-Depth in cover depth = 

50 mm (101 nodes). 

 
Fig. 7. Chloride content-Time at time = 20 years 

(101 nodes). 

The displacement and energy errors of FDM, 

FEM and EFG methods are compared with 

analytical solutions in Table 2. 

Table 2. Energy and displacement errors in 

example 1 at time=20 years. 
 Number 

of nodes 

FDM FEM EFG 

L2 

error 

(%) 

21 

0.0018712 0.0049642 0.0016721 

 101 8.843e-5 0.0021505 7.929e-5 

H2 

error 

(%) 

21 

0.195 0.34548 0.10422 

 101 0.010211 0.017116 0.0039869 
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To calculate the results at the corrosion 

initiation time, half of the slab is divided into 

20 and 100 equal elements. The results for 20 

elements are shown in Figs. 8 and 9. 

 
Fig. 8. Chloride content-Depth at corrosion 

initiation time (21 nodes). 

 
Fig. 9. Chloride content-Time in cover depth = 

50 mm (21 nodes). 

The corrosion initiation times obtained with 

different methods are compared in Table 3. 

Table 3. Initiation time in example 1. 
 Number 

of 

Nodes 

FDM FEM EFG Exact 

Initiation 

time 

(year) 

21 10.0833 10.25 10.5833 12.0833 

 101 12 12 12 12.0833 

 

There is no practical difference between the 

results obtained by different methods for 100 

elements. 

A non-consistent diffusion coefficient is also 

performed by considering the annual average 

temperature history [18] and setting the 

constant m to 0.24. As discussed above, no 

analytical solution is available for this 

problem. Therefore, in order to estimate the 

exact solution, the number of elements must 

be substantially increased. The results are 

evaluated at the corrosion initiation time of 

steel bars by dividing the half of the slab into 

20 and 100 elements, as depicted in Figs. 10 

and 11, for 20 elements. 

 
Fig. 10. Chloride content-Depth at corrosion 

initiation time (21 nodes). 

 
Fig. 11. Chloride content-Time in cover depth = 

50 mm (21 nodes). 
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The corrosion initiation times obtained with 

different methods are compared in Table 4.  

Table 4. Initiation time in example 1. 
 Number of 

Nodes 
FDM FEM EFG 

Initiation 

time (year) 
21 22 22.4167 23.5833 

 101 27.6667 27.75 27.6667 

 

The results show that the EFG solution is the 

most accurate between different models. It 

should be noted that the EFG procedure is 

more straightforward in comparison to other 

methods. The EFG solution is a simple 

approach to implement as well as being 

computationally inexpensive. 

4.2. 2D Problem 

In this section, the chloride ingress in a 

column depicted in Fig. 12 is investigated. 

The problem specifications are: Cover = 50 

mm, D = Dref for each design mixture, and Ct 

= 0.07 % (by mass of concrete) that is the 

threshold value of chloride for south side of 

Iran [22, 26]. 

 
Fig. 12. Cross section of column. 

First, the results at 20 years were calculated 

assuming constant diffusion coefficient (m = 

0) and constant 27 
o
C annual temperature in a 

marine site located in Bandar Abbas. In 

FEM, a quarter of the column section is 

divided into 328 triangular elements, (with 

185 nodes), and the same number of nodes 

are used in the EFG method. In FDM, a 

structural 11×11 grid with 121 nodes is used 

(Fig. 13 a, Fig. 13 b). 

 
(a) 

 
(b) 

Fig. 13. a. A quarter of the column section;  

b. Triangular elements 

The same 1D optimized values of 2.5 and 4 

are chosen for dmax and kch , respectively. The 

calculated chloride profile on the quarter of 

the column section at 20 years and the 

chloride profile on the reinforcement at the 

duration of 20 years are shown in Fig. 14 a to 

Fig. 14 d.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14. Chloride content-Depth at time=20 years 

with analytical method, EFG, FEM, and FDM 

methods (185 nodes): a Analytical method; b 

EFG method; c FEM method; d FDM method. 

By increasing the number of elements and 

nodes to 1312 and 697, respectively, and 

refining the rectangular grid to a 25×25 mesh 

with 676 nodes in FDM, all numerical 

solutions converge to the analytical solution 

as shown in Fig. 15 a and Fig. 15 b. 

The displacement errors of the FDM, FEM 

and EFG methods are compared in Table 5.  

Table 5. Displacement error in Example 2 at 

time=20 year. 
 Number of 

Nodes 
FDM FEM EFG 

L2 error 

(%) 
185 0.0074 0.0144 0.0074 

 
697 

9.8107e-

4 
0.0048 0.0027 

 

Because of using rectangular type of mesh in 

FDM, the displacement error in FDM is less 

than the EFG method and FEM that used 

triangular mesh. This results in some 

calculation errors in determining the L2 error 

is due to use of rectangular Gaussian points. 

When using rectangular mesh, the L2 error 

for EFG method becomes 0.00083 instead of 

0.0027. Although the L2 error is lower in the 

case of a rectangular mesh, this does not 

necessarily indicate that the rectangular mesh 

is more accurate than the triangular mesh. It 

should be noted that when transferring the 

results from triangular nodes to rectangular 

nodes in the calculation of the L2 error, some 

errors can be introduced into the solution. 

The results of the corrosion initiation time of 

steel bars are also shown in Fig. 15 c and Fig. 

15 d. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 15. Chloride content-Time in cover depth = 

50 mm, Rectangular Mesh: a 185 nodes; b 697 

nodes; Triangular Mesh: c 185 nodes; d 697 

nodes. 

The corrosion initiation time obtained using 

different methods are compared in Table 6. 

Table 6. Corrosion initiation time in Example 2. 
 Number 

of 

Nodes 

FDM FEM EFG Exact 

Corrosion 

initiation 

time 

(year) 

185 2.9167 3.75 5.5833 9 

 697 7.75 7.5833 7.3333 9 

 

Finally, a non-consistent diffusion coefficient 

problem using the annual average 

temperature history of Bandar Abbas, Iran 

[19] and m = 0.24 is re-considered. As it is 

described in 1D, there is no available 

analytical solution, while the exact solution 

can be estimated by increasing the number of 

elements. 

Using geometric modeling similar to the last 

case, the results of the corrosion initiation 

time of steel bars are evaluated in Fig. 16 a 

and Fig. 16 b.  

 
(a) 

 
(b) 

Fig. 16. Chloride content-Time in cover depth = 

50 mm: a 185 nodes; b 697 nodes. 
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The corrosion initiation times of the steel 

bars, calculated by different methods, are 

compared in Table 7. 

Table 7. Initiation time in Example 2. 
 Number 

of Nodes 
FDM FEM EFG 

Corrosion 

initiation time 

(year) 

185 4.3333 6 10.0833 

 
697 15.5833 15.25 14.5 

 

Fig. 17 and Table 7 indicate that the EFG 

method error is lower than the other methods 

when 185 nodes are used for solving the 

problem. Comparing the discussed different 

methods indicates that the corrosion initiation 

time predicted by EFG method is much 

closer to the actual corrosion initiation time. 

All methods converge to the exact solution 

by increasing the number of nodes.  

 
Fig. 17. Initiation time-Design mixture in cover 

depth = 50 mm (697 nodes). 

Furthermore, comparing the necessary 

computing time to solve the 2D equation 

(Table 8) using different approaches shows 

that FDM is the fast computational approach 

among the other mentioned methods. 

The results above discussed were obtained 

from a mixture design with a 0.40 water-to-

binder ratio and a concrete using 7.5% silica 

fume content as a replacement of Portland 

cement. 

Table 8. Computing time for a 2D non-constant 

D problem in Example 2. 
 Number of 

Nodes 
FDM FEM EFG 

Computing 

time (s) 
185 0.1700 1.9300 1.8890 

 697 0.3440 32.9040 14.9140 

 

Below, the EFG, FEM and FDM outcomes 

are compared with each other for all mixture 

designs with the water-to-binder ratios, 

including 0.35 (W1), 0.40 (W2), 0.45 (W3) 

and 0.50 (W4), and substitution of the silica 

fume content in concrete, including 5 % 

(SF1), 7.5 % (SF2), 10 % (SF3) and 12.5 % 

(SF4). Fig. 17 shows the corrosion initiation 

time of silica fume concrete for a covering 

depth of 50 mm. This estimate is based on 

the proposed diffusion model. The threshold 

chloride value in the south of Iran is 

supposed to be 0.07 % by weight of concrete 

[29]. The results indicate that the use of silica 

fume as a replacement of Portland cement in 

concrete can increase the corrosion initial 

time. Additionally, due to the low 

permeability of concrete in a lower w/b ratio, 

superior corrosion resistance can be obtained. 

Thus, the most effective way to decrease the 

chloride diffusion in concrete is reducing the 

w/b ratio and increasing the silica fume 

replacement in concrete. 

5. Conclusion 

In this paper, FDM, FEM and EFG methods 

were adopted to solve Fick's Second Law by 

using the diffusion model as a function of 

temperature, time, water-to-binder ratio and 
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silica fume content, and the reference 

diffusion coefficient. In the first step, the 

scaling parameter of support domain (dmax) 

and the weight function's dilation parameter 

(Kch) were optimized by minimizing the 

displacement error (L2) and energy error 

(H1). Then, by applying these parameters to 

the EFG method, the results were compared 

with those obtained by FDM, FEM, and 

available analytical solution. It was shown 

that the EFG method predicts the service life 

more accurately than the other methods, and 

exhibits the lowest displacement error and 

energy error for a constant diffusion 

coefficient problem. FDM can be performed 

very efficiently for simple models, and the 

displacement error produced by this method 

does not differ considerably from the EFG 

results. Therefore, FDM could compete with 

the EFG method in simple geometries. FEM 

can be used with a sufficient number of 

elements while the convergence of the results 

should be controlled. However, in 

complicated models, FEM and especially the 

EFG method are much more flexible than 

FDM. 

For practical problems where the diffusion 

coefficient is inconsistent, having an 

insufficient number of elements leads to a 

considerable number of errors, especially in 

2D conditions. The EFG method is found to 

be less sensitive as compared to other 

investigated numerical methods. 

These methods for solving the partial 

differential equations of chloride diffusion 

are the parabolic initial boundary value 

problems, and may be applied for other 

similar physical phenomena, such as soil 

consolidation, heat transfer, etc. 
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