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In this research the effect of axial load on dynamic 
behavior of a simple frame, subjected to harmonic, seismic 
and earthquake excitation has been studied. The differential 
equations of motion have been considered for two types of 
small and large deformations. The method of multiple 
scales has been applied to solve the differential equations 
of motion with harmonic loading and for small and large 
deformations. Then, the steady state response near one-to-
one resonance condition has been studied and the effect of 
axial force in resonance and non-resonance conditions has 
been investigated, which has not been considered before. It 
is clear from the results that the dynamic behavior of the 
frame under axial load is completely different in resonance 
and non-resonance cases and the axial load has respectively 
descending and ascending effects on the responses in 
resonance and non-resonance conditions. The equations of 
motion under earthquake loading are also considered and 
the time history and the response spectrum of the model 
show that the axial load has increased the responses under 
earthquake excitation. Although white noise as a stochastic 
loading is applied to the model and, the results are 
approximated using the method of stochastic differential 
equations so, the mean value and covariance are calculated 
and the effect of axial force on them is investigated. 
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1. Introduction 

The study of axial load effect on the 

response of the structures and investigating 

the stability of the systems is one of the 

most important subjects in structural 

engineering. Considering axial load effect in 

dynamic behavior of the structures leads to 
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appear the nonlinearity in the differential 

equations of motion. In order to study these 

nonlinear differential equations the 

perturbation method has been used in this 

study. Most of the researchers study the 

effect of axial load and p-delta effects 

statically. Bagci [1] has presented the elastic 

stability analysis and buckling loads of 

beams, shafts and frames on elastic 

foundations. Moreover, Melaibari et al. [2] 

have studied Static stability of higher order 

functionally graded beams under variable 

axial load. Frame structural systems that 

include column and beam elements, are 

known as the most common structures in 

civil engineering. Lee et al. [3] have 

investigated large deflections of rectilinear 

frames under arbitrary discrete loads. 

Various studies have considered P-delta 

effects by modifying the stiffness matrix. 

Rutenberg [4] has evaluated the effect of p-

delta on plane frame structures with negative 

stiffness using nonlinear computer program. 

Moreover, Wilson and Habibullah [5] have 

represented an algorithm to incorporate the 

p-delta effects in the structural stiffness 

matrix for static and dynamic analysis. Also, 

some researchers interested in dynamic 

stability, and studied the behavior of the 

systems subjected to harmonic and seismic 

loading. According to Bolotin’s definition, 

the mechanical systems exhibit a specific 

dynamic stability of motion [6]. Instability 

effects of vertical motion of foundation on 

the 2D elastic frames have been studied by 

Zingone and Muscolino [7]. Dynamic 

stability of a rotating sandwich beam with 

magnetorheological elastomer core has been 

studied by Nayak et al. [8]. Sakar et al. [9] 

searched stability of frames with several 

spans under periodic forces. Aydınoğlu and 

Fahjan [10] have surveyed the p-delta effect 

on inelastic behavior of SDOF systems 

under seismic excitation. Lopez et al. [11] 

have represented a new seismic design 

method considering p-delta effects for 

framed structures under seismic excitation. 

Also the effect of axial force in dynamic 

analysis of structures is appeared in stiffness 

matrix, which has been attained by Chen 

[12] for a flexible beam with axial force. It 

is important to note that considering axial 

load by assuming large deflections for 

simple shear frames under harmonic 

excitation, results in nonlinear differential 

equations. So the method of multiple scales 

is applied to derive the response of the 

differential equations. Studying nonlinear 

differential equations by perturbation 

method and finding resonance conditions is 

an important section of this paper. Nayfeh 

and Balachandran [13] discussed on 

nonlinear modal interactions of 

harmonically excited structures among 

theoretical and experimental research. 

Afaneh and Ibrahim [14] have evaluated the 

nonlinear response of an initially buckled 

beam under harmonic excitation using 

multiple scales method. Also, the 

dynamically P-delta effects under 

earthquake and stochastic loading have been 

investigated in this paper. Moreover it is 

necessary to study structures under 

stochastic loading which leads to the 

stochastic differential equations because of 

the stochastic nature of the earthquake. 

These differential equations have been 

solved using the method represented by 

Sarkka and Solin [15]. An overwhelming 

works have devoted to the response of the 

mechanical systems to stochastic and 

random Excitation [16-24]. We should note 

that none of the works have been mentioned 

above investigated the p-delta effect under 

internal and external resonances and there 

are no searches about the behavior of the 

https://www.sciencedirect.com/science/article/pii/0045794981900882#!
https://www.sciencedirect.com/science/article/pii/0022460X82902656#!
https://www.sciencedirect.com/science/article/pii/0022460X82902656#!
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ayd%C4%B1no%C4%9Flu%2C+M+N
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Fahjan%2C+Y+M
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systems under stochastic excitation 

considering axial forces. In this paper the 

behavior of a simple shear frame under 

harmonic excitation while p-delta effects 

have been considered, has been evaluated in 

resonance and non-resonance cases in 

section 3. Also, the response of the frame 

under stochastic excitation has been 

investigated in section 4. In section 5 the 

dynamic effects of axial load under 

earthquake excitation is studied and the 

numerical examples have been presented in 

section 6 and the results have been 

compared with those acquired using 

multiple scales method.  

2. General equations of motion 

Consider a frame structural system with 

single floor and single span, as shown in the 

Fig. (1), excited by a harmonic or 

earthquake lateral force and axial forces 

acting on the columns. The mass of the 

system is intensive on the nodes as shown in 

figure. The equations of motion of the 

system in x and y directions considering 

axial force according to Chen [12] are as 

bellow 

1x x x
m x c x k x F                                       (1) 

0
y y y

m y c y k y                                       (2) 

where m is the mass of the system, 
x

k and ky 

are stiffnesses in x and y directions, c is the 

damping coefficient, F is the lateral force 

and 𝜙1 is a coefficient for considering the 

effect of axial force and is defined as 

follows 

3

1

( ) sin( )

12(2 2cos( ) sin( ))

x x

x x

k L k L

k L kL k L
 

 
                   (3) 

kx and ky are defined as follows 

3

0

12
xk

EI

L
                                                         (4) 

0

y

AE
k

L
                                                            (5) 

and the frequencies in x and y directions are 

,
yx

x y

x y

kk

m m
                                         (6) 

By assuming m= mx and my and substituting 

Eqs. (4)-(6) into Eqs. (1) and (2) and 

subsequently dividing by m,  the following 

simpler equations are obtained as follow  

1

22 x x x

F
x x x

m
                                         (7) 

22 0y y yy y y                                             (8) 

3. Harmonic excitation 

In this part, a uniformly valid solution of 

Eqs. (7) and (8) has been obtained using 

multiple scales method. Here we consider 

three types of analysis, small axial force and 

small deformation, small axial force and 

large deformation, and large axial force. 

First, we study the model with small axial 

force and small deformation. It is assumed 

that the lateral force is harmonic force, i.e. 

F=A.sin(ωt), where 𝜔 and A are excitation 

frequency and amplitude. The following 

non-dimensional variables are defined as  

, ,
y

y x

x x

t


 
 

      

0 0

,
x y

X Y
L L

                                                   (9) 

which L0 is the length of the column before 

deformation and because of considering 

small deformation in this section, the length 

of the column after deformation is assumed 
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to be equal to the length of the column 

before deformation. 

 
Fig. 1. Simple frame with rigid beam. 

Substituting the above terms into Eqs. (7) 

and (8) the non-dimensional differential 

equations are as bellow 

1 2

0

2 sin( )x

x

A
X X X

mL
 


                          (10) 

22 0y yY Y Y                                             (11) 

The Taylor series of 𝜙1 is 

1

2 4( ) ( )
1

10 8400

kL kL
                                          (12) 

which k is defined as 

P
k

EI
                                                          (13) 

P is the axial force and 𝑃𝑒 =
𝜋2𝐸𝐼

𝐿0
2 is the Euler 

critical axial load. Substituting Eq. (13) into 

Eq. (12) results in 

2
2 2 2 2

02

0

22

0

2 2

0 e e

P P
k L

P L P

L

L
k







                 (14) 

1

2 2
21 (

10 8400
)

e e

P P

P P


 
                                 (15) 

The fraction 𝑃/𝑃𝑒 is a dimensionless 

quantity, hereinafter referred to as the axial 

load ratio. 

Now two time variables T0 and T1 are 

introduced as𝑇0 = 𝜀0𝜏 and 𝑇1 = 𝜀1𝜏. They 

scale real time 𝜏 to fast and slow 

independent times, respectively and 𝜀 is a 

dimensionless parameter. Then, according to 

Nayfeh [25] and by using chain rule, the 

derivatives with respect to 𝜏 are transformed 

to the new variables as follow 

2

0 1 2

d
D D D

d
 


                                         (16) 

2
2 2

0 1 2 0 1 22

2

0 0 1

( )( )

2 ...

d
D D D D D D

d

D D D

   




    

  

          

(17) 

where 𝐷𝑘 = 𝜕/𝜕𝑇𝑘. Then, the 

approximations of the small parameters X 

and Y have been assumed as bellow 

2

0 1 2

2

0 1 2

...

...

X X X X

Y Y Y Y

 

 

   

   
                               (18) 

Since the motions in vicinity of the static 

position are assumed small and conventional 

structural systems experience little damping, 

it makes sense that the damping ratio and also 

the amplitude of the harmonic force and the 

axial load ratio can be ordered as 

, ,x x

e

P
A D P

P
                                     (19) 

Substituting Eqs. (15) - (19) into Eqs. (10) and 

(11) and then gathering and leveling out terms 

with like powers of ε, the following equations 

are obtained: 

0 2

0 0 0( ) : 0o D X X                                        (20)

1 2 2

0 1 1 0

0 1 0 0 0

1
( ) : sin( )

10

2 2 x

o D X X D P X

D D X D X

  



   

 

          (21) 

The general solution of Eq. (20) is as follows 

0 1 0( )exp( )xX A T iT cc                                     (22) 

where cc is the complex conjugate of the 

previous term. Substituting Eq. (22) into Eq. 

(20) gives 
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2
2

0 1 1 0 0

2

0 0

0 0 0

2 exp( ) ( ) ( )

2 ( ) ( )

( ( )

10

1

) ( )) 2
2

0

(

x x

x

x x

D X X iA iT PA exp iT Dsin

iA exp iT PA exp iT

iD
exp i T exp i T i A exp iT








     

   

    

  (23) 

which ′ shows the differentiation with 

respect to 𝑇0. Evaluating the second-order 

approximate solutions has shown that an 

external resonance can occur. The resonance 

conditions are complied with ratios, Ω ≈ 1, 

leads to the second-order approximate 

solution containing secular terms. By 

approaching the external excitation 

frequency, ω to ωx, external resonance 

condition will be provided. To describe the 

proximity of the excitation frequency to the 

external resonance conditions, the following 

detuning parameter, 𝜎, are defined 

1                                                         (24) 

Eliminating secular terms results in 

2

1(
10

2 ) 2 0
2

x x x x

iD
iA PA exp i T i A


               (25) 

The solution of Eq. (25) is as follow 

1
( )

2
x x xA a exp i                                             

(26) 

where ax is a complex constant. Substituting Eq. 

(26) into Eq. (25) and separating the real and 

imaginary parts we obtain 

2

( ) ( ) 0
2

( ) 0

2

2

0
x

x x x

D
P a sin

D
a a cos


 

 

  

   

                                 

(27) 

which 𝜆 is defined as 𝜆 = 𝜎𝑇1 − 𝛽𝑥. The 

steady state solution of the above equations 

is obtained by setting 𝑎𝑥
′ = 𝜆′ = 0. 

2
2 2

( / 2)

)
20

(

x

x

D
a

P


 



 

                                    (28) 

2

2
2 2

( 20 )

20

( )

2 ( )
x

x

P
DL

x cos t arctg

P







 



 

 

      (29) 

Eq. (29) shows that the effect of axial load 

on the lateral deformation in the external 

resonance case is similar to the effect of 

damping and helps to reduce the 

deformation. 

3.1. Small axial force and large 

deformations 

In this section the deformation of the system 

is assumed to be large, so as it can be seen 

from Fig. (2) that the length of the columns 

changed after deformation and it can be 

calculated by considering lateral and axial 

deformation of the column. By using the 

perturbation method the nonlinear 

differential equations considering large 

deformations have been solved. The length 

of the column after deformation is as 

follows 

2 2 2

0

2 2

0

0 0

( )

(1 ( )) ( )

L L y x

y x
L L

L L

  

  

                               (30) 

 
Fig. 2. Deformation of the frame with rigid 

beam. 

which l is defined as 
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2 2

0 0

(1 ( )) ( )
y x

l
L L

                                       (31) 

The differential equation in the x direction is 

1 33

0

1
2 sin( )

12
x x

EI
x

m

A

L
x x t

l m
                     (32) 

The 𝜙1 coefficient depends on the length of 

the column, so it must be modified 

considering the deformation and changing 

the length of the column.  

1

2 4

0 0

2 4

0 0

2 4
2 4

2

0

4

0

( ) ( )

10 84

(

1

) ( )
1

10 84

00

00

L L

L L

kL k

kL kL

L
l l

 











                          (33) 

2 2
2 2 4

1
10 840

1 ( )
0e e

P P
l l

P P


 
                              (34) 

The differential equation in the x direction 

after substituting Eq. (34) and subdividing 

the equation by l is  

2

0

2
2

3

2

10 8400

sin( )

1 1
2 ( ( ) )x

x

e e

A

P P
X X l X

l P l P

mL











   



            (35) 

The stiffness in the y direction is also 

modified as follow 

0

0 0

1
y

LAE AE
k

L L L l
                                           (36) 

The differential equation in the y direction 

after substituting Eq. (36) and subdividing 

the equation by l is  

2

2 0
y

yY Y y
l




                                           (37) 

The parameters 𝑙−1, 𝑙−3 and 𝑙 are estimated 

by their Tailor series as bellow 

1 2 2

3 2 2

2 2

1
1 ( 2 )

2

3
1 ( 2 )

2

1
1 ( 2 )

2

l X Y Y

l X Y Y

l X Y Y











   

   

   

                                (38) 

After substituting Eqs. (38) into Eqs. (32) 

and (37) and using multiple scales method to 

solve the equations in x and y directions and, 

then leveling out terms with like powers of ε, 

the following differential equations are acquired 

as 

0 2

0 0 0

0 2

0 0

2

0

( ) : 0

( ) : 0y

o D X X

o D Y Y



 

 

 

                                        (39) 

1 2 2

0 1 1 0

3
20

0 1 0 0 0 0 0 0 0

1 2

0 1 1 0 1 0 0 0

2 2 3

0 0 0 0

2

2 2 2

1
( ) : sin( )

10

3 3
2 2 3

2 2

( ) : 2 2

1 1

2 2

y

y

y

y

x

y

o D X X D P X

X
D D X D X X Y X Y

o D Y Y D D Y D Y

X Y Y Y

  



 

   





   





 

  

 

      (40) 

The solutions of Eqs. (39) are as follows 

0 1 0

0 1 0

( )exp( )

( )exp( )

x

y y

X A T iT cc

Y A T i T cc

 

 
                                (41) 

Substituting Eqs. (41) into Eqs. (40) gives 

2 2

0 1 1 0 0

0 0 0

1

22

0 0 0

1

22

0 0

( ) 1/10 ( ( ) ( ))

2 ( ) 2 ( ) 2 ( )

3
2 ( ) (3 ( ) 3 ( ))

2

3
( ( (1 2 ) ( (1 2 ))

2

2

xx

x
xx x x

x
x xx x

yx y y x y

x y

D X X Dsin p A exp iT A exp iT

dA
i A exp iT i A exp iT i exp iT

dT

d A
i exp iT A A exp iT A A exp iT

dT

A A exp iT A A exp iT

A A

 

 

     

   

    

     

 2

0 0

0

( ) ( (1 2 ))

2 ( )))

y x y y

x yy

A exp iT A A exp iT

A A A exp iT NST

   

  

(42) 

2

0 1 1 0 0

1 1

0 0

22

0 0

2

0 0

2

2

2

2 ( ) 2 ( )

2 ( ) 2 ( )

1
( ( ( 2)) 2 ( )

2

( ( 2)) 2 ( ))

1
(3 (

2

yy

y y y y

yy y y y y y y

x xy y y y x y

y yx y x y

yy

y

xy y

dA d A
D Y Y i exp i T i exp i T

dT dT

i A exp i T i A exp i T

A A exp iT A A A exp i T

A A exp iT A A exp i T

A A A exp i T

 

        

      

     

      

  



2

0 0) 3 ( ))yy yA A exp i T NST   

(43) 
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which NST are non-secular terms. The second-

order approximate solutions show that both 

internal and external resonances can occur 

simultaneously. The resonance conditions are 

complied with ratios, 𝛺𝑦 = Ω = 1, result in the 

reduced second-order approximate solution 

containing secular terms. The internal resonance 

condition is provided by approaching the natural 

frequency in the horizontal direction, i.e. ωx, to 

the natural frequency in vertical direction, ωy. 

Also in the external resonance situation, the 

excitation frequency, ω, is close to ωx. To 

explain how the frequencies are close to the 

resonance condition, detuning parameters are 

defined as follow 

1

2

1 11

1

2 y y 



      

  

                                 (44) 

where σ1 and σ2 are the detuning parameters for 

internal and external resonances, respectively. 

The solution of Eqs. (42) and (43) leads to the 

following equations 

1
( )

2

1
( )

2

x x x

y y y

A a exp i

A a exp i









                                            

(45) 

Substituting Eq. (45) into Eqs. (42) and (43) and 

separating the real and imaginary parts leads to a 

system of autonomous ordinary differential 

equations in polar form 

2

2 1

1

2 3 2 2

2 1

1

2 2

1

1

2 2 2 2 2 3

1

1

3
( ) ( ) 0

2 16

1 9 3 3
( ) ( ) 0

2 20 16 8 16

1
( ) 0

16

1 1 3
( ) 0

8 16 16

x
x x x y

x
x x x x y x y

y

y y y y y y x

y

y y y y x y y x y y

da D
cos a a a sin

dT

d D
a sin p a a a a a a cos

dT

da
a a a sin

dT

d
a a a a a cos a

dT

  


  

 




    

     

    

       

(46) 

which 𝜆1 and 𝜆2 are defined as follow 

1 1 1

2 1 2

2 2 2y x

x

T

T

   

  

  

 

                                            

(47) 

Steady state solution of Eqs. (46), by setting 
𝑑𝑎𝑥

𝑑𝑇1
= 0,

𝑑𝑎𝑦

𝑑𝑇1
= 0,

𝑑𝜆1

𝑑𝑇1
= 0 and 𝑑𝜆2/𝑑𝑇1 = 0 

leads to the following equation  

62 2
4 2

2 2 4 2 2 2

2 2

81 99
0 ( )

256 160 8

1 1
( ) 0

400 1

4

0

x
y x

x x

aD p
a a

a p p



    

     

     

             (48) 

By solving Eq. (48) in section 4 and comparing the 

results with exact solution of equations of motion, 

the accuracy of the perturbed solution is 

investigated. 

3.2. Large axial force 

In this part, the effect of large axial load 

ratio, disregarding whether the deformations 

are big or small, is investigated and it is 

assumed that 𝑃/𝑃𝑒 is closely near 1, so after 

substituting this relation into Eq. (10) and 

using multiple scales method to solve the 

resulted differential equation and then 

leveling out terms with like powers of ε, the 

differential equations are acquired as follow  

2 4
0 2

0 0 0( ) : (1 ) 0
1 84000

o D X X
 

     

2 4
1 2

0 0 1

4
2 0

0 1 0 0

( ) : (1 )
10

1
( ) 2

10 4200

8400
o D X X

X p
Dsin D D X X p

 



 

  





   

             (49) 

Because of the small quantity of (1 − 𝜋2/10 −

𝜋4/8400) it can be equal to 𝜀 

2 4

8
1

1 400 0


 
                                               (50) 

Substituting Eq. (50) into Eq. (49), the result of 

solving the first order equation is as follow 

0 0X AT B                                                     (51) 

Substituting Eq. (51) into Eq. (49) results in  
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2 2 3

0 1 0 0

4 3
30

0 1 0 0

4
2

0 0

1
( ) ( ) ( )

20

( ) 3
2 ( ) ( )

16800 2

1
( ) ( )

10 4200

D X AT B Dsin AT B

AT B
D D AT B AT B

AT B p AT B p

 






      


    

    

   (52) 

Solving Eq. (52) is possible by using the 

bellow initial condition 

(0) 0, (0) 0X X                                            (53) 

The lateral deformation of the system is 

then, acquired as bellow 

2

0 0

( )
x x

A A
X t sin t

mL mL 
  

 
                     (54) 

4. Stochastic excitation 

Since the earthquake can be accounted as 

stochastic loading, by the method of 

stochastic differential equation we can 

achieve an approximate solution of the 

differential equation of motion of the frame. 

The equation of motion of the frame under 

stochastic loading is as follows 

2

2 (1 ) ( )
10

x

e

P
x x x w t

P


                              (55) 

which 𝑤(𝑡) is a Gaussian white noise. 

Gaussian white noise is a weakly stationary 

process that is delta-correlated and zero 

mean. The above differential equation is 

written in state-space model as bellow 

1 12

2 2

0 1
0

( )
(1 ) 2 1

10
x

e

x x
w tP

x x
P




 
      

                

          (56) 

( )
dx

Fx Lw t
dt

                                                 (57) 

The steady state solution of the above SDE is 
( )

( ) 0
dm t

Fm t
dt

                                          (58) 

( ) ( ) 0T TdR
FR t R t F LQL

dt
                           (59) 

which m is the mean value vector, R is the 

covariance matrix and 𝑄 is the spectral 

density of 𝑤(𝑡). By solving the above 

matrix equations 

0

0
m

 
  
 

                                                           (60) 
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4 (1 )
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0
4

e

q
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q






 
 
 

  
 
 
  

                                      (61) 

The general solution of the above equation 

is as bellow 

11 12

21 22

( ) ( )
( )

( ) ( )

R t R t
R t

R t R t

 
  
 

                                      (62) 

( ) ( ) T TdR
FR t R t F LQL

dt
                                (63) 

11 12

21 22

( ) ( )

( ) ( )

R t R t a bd

R t R t c ddt

   
   
  

                            (64) 

which a, b, c and d are defined as bellow 
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a R R

P
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d q R R R

P P
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 


 

   

  
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        (65) 

By solving the differential Eqs. (64) the 

equations of R11, R12, R22 and R21 which are 

the covariance matrix elements are obtained. 

 

Table 1. Characteristics of the models 
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Model       h(cm)        m(kg)           A(cm
2
)            E(kg/cm

2
)               I(cm

4
)                   ξx                P                                    

     1           400            200               400                 2× 106               1.333×10
4
              0.05            0.02                          

 

 

      2           400           2500               50                  2× 106                6.65×10
5
               0.05            0.02               

 

Table 2. Characteristics of the earthquakes 

Field Earthquake 

Name 

Magnitude Station 

Name 

Year Ys30 PGA Rup(km) RSN 

Far BAM 6.6 Abaragh 2003 412.23 0.77g 47.18 4037 

KOBE 6.9 Chihaya 1995 609 0.52g 49.91 1102 

MANJIL 7.37 Qazvin 1990 302.64 0.89g 49.97 1636 

NORTHWEST 5.9 Xiker 1997 341.56 0.2g 52.36 1749 

SOUTHERN 

CALIFORNIA 

6 San Luis 

Obispo 

1952 493.5 0.22g 73.41 17 

TABAS 7.35 Ferdows 1978 302.64 0.41g 91.14 140 

TOTTORI 6.61 HRS003 2000 335.55 0.55g 65.81 3872 

Near BAM 6.6 Bam 2003 487.4 3.74g 1.7 4040 

KOBE 6.9 KJMA 1995 312 3.42g 0.96 1106 

MANJIL 7.37 Abbar 1990 723.95 2.51g 12.55 1633 

NORTHWEST 6.1 Jiashi 1997 240.09 1.19g 17.73 1752 

SANFERNADO 6.61 Pacoima 

Dam 

1971 2016.13 3.8g 1.81 77 

TABAS 7.35 Tabas 1978 766.77 4.85g 2.05 143 

TOTTORI 6.61 SMN015 2000 616.55 1.02g 9.12 3943 

 

5. Earthquake excitation 

To evaluate the dynamic effect of axial force 

on a frame structure under earthquake 

excitation, a real earthquake record, Kobe 

1995, is applied to the structure and the time 

history response is assessed for different 

values of the axial force for the proposed 

model.  

Fig. (3) shows the time history of Kobe’s 

earthquake, and Fig. (4) shows the time 

history of the model. We can see that as the 

value of axial force is increased the response 

of the system becomes bigger. 

5.1. Response spectra of the frame v.s 

axial load 

 This section is devoted to find the response 

spectra of the model 1 under 7 far and 7 near 

earthquakes which for the far and near 

earthquakes respectively the distance from 

the fault is assumed to be more and smaller 

than 20 km . Then the effect of axial force 

on the response spectrum is surveyed. Table. 

2 shows the characteristics of the 

earthquakes. In this table Ys30 is the 

velocity of shear wave in the depth of 30 

meters, PGA is the maximum acceleration of 

the earth, and Rup is the distance from the 

fault. Figs. (5) and (7) shows the response 

spectra of the frame with axial  load ratios 

smaller than 0.1 for far and near-fault 

earthquakes respectively. Figs. (6) and (8) 

shows the response spectra for axial load 

ratios bigger than 0.1. It can be seen from 

the figures that the axial load causes 

increasing the response of the frame in 

almost whole range of periods of the model. 

It is also concluded from the figures that for 
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axial load ratio smaller than 0.1 its effect on 

the responses is negligible however it is 

clear from the figures that the effect of the 

axial load ratios bigger than 0.1 is noticeable 

and can’t be neglected, especially for 

structural periods smaller than 0.6 sec. 

 
Fig. 3. Kobe earthquake time history. 

 

Fig. 4. Time history of the frame for various 

axial load ratios. 

 
Fig. 5. Response spectra of the frame for axial 

load ratios smaller than 0.1 for far earthquakes. 

 

Fig. 6. Response spectra of the frame for axial 

load ratios bigger than 0.1 for far earthquakes. 

 
Fig. 7. Response spectra of the frame for axial 

load ratio smaller than 0.1 for near earthquakes. 

 
Fig. 8. Response spectra of the frame for axial 

load ratio bigger than 0.1 for near earthquakes. 

6. Numerical results 

In this part, we first study the responses of 

the proposed model to harmonic forces and 

earthquake excitations when the frame 

imposed to small or large values of axial 

forces and deformations. A time history 

analysis under Kobe 1995 earthquake has 

been done. The maximum acceleration is 

scaled up to 1.0g. several amplitudes are 

selected for the harmonic excitations and the 

frequency is tuned to the first lateral natural 

frequency of the structure.  

The time histories are attained based on 

solving Eqs. (10) and, (11), numerically, by 

means of ODE45 solver in the MATLAB 

2014. To gain the numerical solutions of the 

perturbation analysis, the software package 

MATHEMATICA 10.0 has been used. 
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Fig. 9. Axial load effect on the lateral 

displacement under non-resonance condition. 

 
Fig. 10. Axial load effect on the lateral 

displacement under resonance condition. 

6.1. Harmonic excitation 

The external harmonic excitation frequency, 

and the natural frequency in x direction are 

away from each other in the non-resonance 

case. Fig. (9) represents the lateral 

displacement of the frame with respect to 

time for the linear model (1) for different 

values of axial forces and constant damping 

ratio, 𝜉𝑥 = 0.05 in non-resonance condition. 

In this case, by increasing the axial force, 

lateral displacements increase and so the 

axial load has an opposite behavior as 

damping, so growing axial force increases 

the probability of structural instability. 

Furthermore, it can be seen from the Fig. (9) 

that because of the difference between the 

natural frequency and the excitation 

frequency, more than one peak exist in the 

amplitude of motion with respect to time.  

The next case complies with the ratios 𝜔𝑥 ≈ 

𝜔 ≈ 1, which is the resonance case.  Fig. 

(10) shows the lateral displacement with 

respect to time for different values of axial 

load ratios under resonance condition. It has 

been shown that the effect of axial load is 

like the effect of damping and causes 

decreasing the lateral displacement. Fig. (11) 

shows a comparison between approximated 

solution of Eq. (29), and the numerical exact 

solution of Eq. (10) and as it can be seen 

from the figure, an acceptable conformity 

exists particularly for 𝑃/𝑃𝑒 < 0.8. Beyond 

𝑃/𝑃𝑒  = 0.1, a fast drop in lateral deformation 

is seen by increasing the value of axial force 

and whatever the value of axial load ratio 

becomes bigger than 0.1, the severity of 

decreasing the response is reduced and 

almost for 0.2 < 𝑃/𝑃𝑒 < 0.9 the response 

dependence to axial force is disappeared. 

For 𝑃/𝑃𝑒  > 0.9, the structural function is 

close to the unstable situation and a fast 

jump is seen in the graph. 

For large deformations Eq. (48) is solved by 

MATHEMATICA and the lateral motion 

amplitude has been acquired and the results 

compared with exact results in Fig. (12). 

Also the numerical solution of equation of 

motion, ignoring large deformations has 

been done. A good coincidence between the 

perturbed solution and the exact solution can 

be seen from the figure and it is clear from 

the figure that the results of Eq. (48) is 

closed to the numerical results which has 

been obtained considering large 

deformations. 

To study the effect of big axial force 

(𝑃/𝑃𝑒  > 0.9), numerical solution of Eq. 

(10) has been done and the result is 

compared with Eq. (54) which, is acquired 

from perturbation solution. The results have 

been shown in Fig. (13) and it can be 

deduced from the figure that, when the axial 

force is near the critical buckling load, the 

stability of the system is influenced, the 

system becomes unstable and the response 

increases dramatically. 
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Fig. 11. The effect of axial force on the lateral 

displacement under lateral harmonic excitation 

and resonance condition. 

 
Fig. 12. Axial load effect on the lateral 

displacement under resonance condition in the 

case of large deformations. 

 
Fig. 13. Effect of big axial load on the lateral 

displacement of the frame. 

6.2. Stochastic loading 

The system of differential equations 

acquired by SDE method as [62] is 

numerically solved for model (1) by 

MATLAB, and the results are shown as the 

figures bellow. Figs. (14), (16) and (18) 

respectively, shows the effect of axial load 

on R11, R12 and R22. From Figs. (14) and 

(16) one can conclude that, as the value of 

axial force increased the quantity of R11 and 

R12 increased too and the peaks of the 

curvatures shifted to right side of the 

diagram by the time. It is obvious that these 

increase and shift of the peaks are evident 

specially for the axial load ratios bigger than 

0.1. The effect of axial force on R22 just shift 

the phase of the curvatures and doesn’t 

affect the values of R22 by the time.  Figs. 

(15), (17) and (19) respectively, shows the 

effect of damping on R11, R12 and R22. It is 

obvious from the figures that the axial load 

has an converse effect with damping and 

causes increasing the response of the frame. 

 
Fig. 14. Axial load effect on R11 

 
Fig. 15. Damping effect on R11 

 
Fig. 16 Axial load effect on R12 
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Fig. 17. Damping effect on R12 

 
Fig. 18. Axial load effect on R22 

 
Fig. 19. Damping effect on R22 

7. Conclusions 

In this paper a simple frame is modeled and 

the P-delta effect on the dynamic analysis of 

the frame under harmonic, seismic and 

stochastic load is investigated. The 

governing differential equations of motion 

are formulated. The outcome of the results 

of dynamic analysis of the frame is as 

follows: 

From perturbation analysis based on the 

multiple scales method, it was obtained that 

for small amounts of axial load and 

deformation, the axial load has the same 

descending performance as damping to the 

structural response under external resonance 

condition. In the non-resonance condition,  

the axial load behaves inversely and 

increasing it increases the structural 

responses. 

Under large axial force the system becomes 

unstable and the response of the system 

dramatically increased by the time. 

Under stochastic loading, the effect of 

damping and axial load on the elements of 

the covariance matrix is investigated. It is 

concluded that the effect of damping are the 

same on all of the elements of the 

covariance matrix and as the amount of 

damping increases, the amount of 

covariance matrix elements decreases. The 

effect of axial force on the matrix elements 

is a little different. It has an ascending effect 

on R11 and R12 but its effect is neutral on the 

R22 and just causes shifting in phase. 

Under earthquake excitation the effect of 

axial force is as it is expected and increases 

the response of the system. 
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