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The purpose of this study is to obtain one of the 

important dynamical properties, namely natural 

frequency (ω) for a number of tall buildings with tube 

and tapered tube systems. Furthermore, it presents an 

approximate method to analyze the free vibration of 

tall buildings by tube, tube-in-tube, bundled tube, and 

tapered tube structures. The method we have proposed 

would enable us to compute the natural frequency of 

tubular vertical and tapered tall buildings by the help 

of computer programming. The models were analyzed 

by finite element and analytical methods. The results 

indicate that the investigated analytical method 

correctly calculates the natural frequency and is in 

decent accord with the finite element results and has 

better compatibility with tapered structures without 

angle with higher altitude. The resulting computational 

error is very low. Also, this analytical method has the 

least error for tube systems and the highest error is for 

tube-in-tube systems. 
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1. Introduction 

To evaluate a tall bulding's response to wind 

or earthquake, it is necessary to estimate the 

natural frequency of such buildings. As a 

consequence, it seems that developing new 

and simple methods for free vibration 

analysis and specifying the natural 

frequency and mode shape functions are 

essential. The mass and stiffness of the 

structure change along the height in the 

current tall structures. In recent years, 

tubular building has been acknowledged as 

an economic and advanced structural 

system. In this paper, a new and simple 

analytical approach is suggested for 

approximate analysis of tall structures with a 

combined system of framed tube, tube-in-

tube structures, bundled tube, and tapered 

tube systems. Therefore, a tall structure is 

modeled by a cantilevered beam with 

variable stiffness and mass along the height, 

hence, in order to calculate the natural 

frequencies, the governing partial 
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differential equation is solved along with its 

variable coefficients. The tall structure 

behavior is equivalent to a cantilevered 

beam with variable hollow box cross-

sections (Fig. 1 and Fig. 2).  

Equation (1): For tapered tube system 

𝐾𝑠(𝑥)  = [𝐾𝑠(𝑥)]𝐼 

(1) 𝐾𝐵(𝑥)  = [𝐾𝐵(𝑥) ]𝐼 

𝑚(𝑥) = [𝑚(𝑥)]𝐼 

𝑁(𝑥)  =  ∫ 𝑔 𝑚(𝑥)𝑑𝑥
𝐻

𝑥

 

 
Fig. 1. Modeling of tall structure: (a) tapered 

tube system, (b) equivalent bending and shear 

beam, (c) equivalent beam of whole structure 

with varying shear and bending stiffness and 

variable mass in height due to variable axial 

force. 

Equation (2): For tube-in-tube system and 

bundled tapered tubes: 

𝐾𝑠(𝑥) = [𝐾𝑠(𝑥)]𝐼 + [𝐾𝑠(𝑥)]𝑂 

 

(2) 

𝐾𝐵(𝑥)  = [𝐾𝐵(𝑥) ]𝐼 + [𝐾𝐵(𝑥) ]𝑂 

 
𝑚(𝑥)  = [𝑚(𝑥)]𝐼 + [𝑚(𝑥)]𝑂 

 

𝑁(𝑥)  =  ∫ 𝑔 𝑚(𝑥)𝑑𝑥
𝐻

𝑥

 

 

where in Equations (1) and (2), Figs (1) and 

(2), H is the height of the structure, subscript 

F is the tube system, subscript W is the shear 

wall, subscript I is the inner tube, and 

subscript O is the outer tube. The bending 

stiffness of 𝐾𝐵(𝑥), shear stiffness 𝐾𝑠(𝑥), the 

mass of the beam is equal to 𝑚(𝑥), g is the 

gravity acceleration, and the axial force of 

the beam is equal to 𝑁(𝑥). 

 
Fig. 2. Modeling of a tall structure: (a) tube-in-

tube system and bundled tapered tube with 

equivalent bending and shear beams, (b) the 

equivalent beam of the whole structure with 

shear and flexural stiffness and variable mass in 

height due to variable axial force. 

One of the important parameters in tapered 

slimming structures is the calculation of the 

vibrational natural frequency of the structure 

(ω, radians per second). A new method is 

presented for this calculation by dynamical 

relations of structures. Compared to 

software computations, it was concluded 

that due to their structural nature, tall 

buildings are usually flexible and prone to 

dynamic loads. Basically, analyses including 

more than one dimension such as finite 

element analysis (FEM) is employed in 

order to obtain the precise dynamic behavior 

of structures. The tubular systems are also 

one of the most suitable structural systems 

for high-rise towers and buildings. The tube 

system can be considered as a system in 

which a hollow canister column is console 

from the ground, so that the external side of 

the building represents tubular behavior 

against lateral forces of the tube. In other 

words, it can be considered as a three-

dimensional rigid frame around the exterior 

part of the building which is designed for 

resistance against all lateral and vertical 

forces. The column dimensions and 

distances and bending strength of the 
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perimeter beams directly affect the tubular 

frame system performance. Tapered 

structure system gets narrower with 

increasing height and decreases with 

lowered windshield plan level on upper 

floors of the building. As a result, the 

intensity of the wind and subsequent excess 

wind pressure will also decrease. The 

gradient-form buildings and slimming 

tapered ones towards up has an architectural 

and symbolic form of the integration of the 

architecture and structure. Due to inward 

gradient of the frontage, the narrowing of 

the form reduces the impact level of the 

wind on upper floors of the building and 

also reduces the intensity of the wind and 

the surplus of wind loads that can even be 

more critical than earthquake forces [1].  

The narrowing of the building at higher 

altitudes can take the following forms: 1) 

gradual, conical, and tapered reduction, and 

2) breakdowns that are effective ways to 

reduce perpendicular reactions against 

winds in building design [2,3]. A dynamic 

stiffness method has been developed and 

employed to analyze and investigate the free 

vibration properties of tapered beam [4].  

1.2. Kinds of tubular systems: 

 (a) Framed tube structure 

A tubular system is a system where 

structural elements are designed in such a 

way that enables the system to be resistant 

against the loads on the structure including 

the general as well as the lateral loads. The 

most salient feature of this system is the use 

of peripheral columns in close distances and 

these members are connected to each other 

by deep beams. The distance between outer 

columns is about two or three meters. So, 

the whole building is considered as a huge 

vertical cantilever that resists against the 

overturning moment [5,6]. 

 (b) Tube-in-tube structure 

Another type of framed tube including an 

internal and an external tube is tube-in-tube 

structure. Together, these internal and 

external tubes are working in a way to 

withstand lateral and gravity loads on the 

buildings. External tube with inner shear 

cores is combined in tube-in-tube form 

which increases stiffness and makes it easier 

to create taller buildings. It can be used in 

structures having more than 100 floors [5,6]. 

(c) Bundled tube system 

Having two or more tubes connected to each 

other makes bundled tudbe system capable 

of being used for creating a multi-cell tube 

in which frames can withstand shear along 

the lateral loads. Whereas the wing frames 

tolerate turning moments, this system allows 

heights up to 110 floors and larger areas. In 

this system, the internal networks reduce the 

shear lag on the wings of the beam [5,6].  

2. Literature review  

For preliminary design stage, approximate 

methods presented for free vibration 

analysis of the structures in tubular 

buildings are suitable solutions. A lot of 

research has investigated free vibration of 

tall structures using various methods. Using 

finite element analysis (FEA), an orthotropic 

membrane analogy has also been developed 

for simplified analysis of framework panels 

[6]. In order to calculate the natural 

frequency of tube-in-tube structures in tall 

buildings a formula has been proposed 

working directly from the fourth-order 

Sturm-Liouville differential equations [7]. A 

study conducted using free vibration 

analysis in tubular frame structures for 

different frequencies and the effect of mass 

and lateral stiffness of structures on natural 

frequencies and its displacement under free 

vibration has been studied and discussed [8]. 

Translational mode is taken as the main 

mode of diagrid tube-in-tube structure. The 
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first and second modes have a significant 

influence on structure, while the vibration 

mode has little influence on the structure 

[9]. To analyze the free vibration of tube-in-

tube tall buildings, Lee formulated an 

approximate solution [10-12]. Approximate 

formulae are proposed in order to calculate 

the fundamental frequency of structures. As 

a prismatic cantilever flexural-shear beam, 

tubular structures are idealized in a way 

assuming the lower most elevation to be 

fully fixed. Consequently, natural frequency 

expressions are derived through an energy 

method [13]. The tapered beam considered 

in [14] is restrictive in its choice of beam 

cross-sections in that the area variation is 

assumed linear whereas the second moment 

of area variation is considered cubic in terms 

of the beam length parameter [14]. An 

analytical model for the dynamical analysis 

of tall buildings [15]. Having calculated the 

natural frequencies of flexural, axial and 

torsion vibration of the beams, he has 

converted the governing differential 

equations into weak form integral equations. 

Tall structure modeling by a cantilevered 

beam with variable stiffness and mass under 

effects of variable axial force caused by the 

structure weight may provide realistic 

conditions for an accurate structural analysis 

[16]. The first natural frequency of tall 

buildings with a combined system of framed 

tube has been calculated [17]. An analytical 

approach based on energy principles has 

been developed for computing the natural 

frequencies of buildings constructed by 

framed tube systems [18,19]. The 

fundamental frequency of tall buildings has 

been determined framed tube systems vary 

in size along the height of the structure [20]. 

The effective impact of the core to improve 

the behavior of tubular structures was 

investigated and the such on the shear delay 

of the tubular system was estimated 

approximately [21]. The free vibration 

analysis has been solved using the DQM 

method governing differential equation for 

free vibration of coupled shear walls 

[22,23]. The weak-form integral equations 

have been developed for free vibration 

analysis and calculated the natural 

frequencies of non-prismatic beams [24,25]. 

Natural frequencies of tapered Timoshenko 

beam are presented for different 

combinations [26]. They converted the 

equations to its weak-form integral 

equations. Here, we present a new and 

simple solution to calculate the natural 

frequency of framed tube, tube-in-tube 

structures, bundled tube, and tube tapered 

systems. Bending moment function 

approximation is proposed instead of mode 

shape function approximation. The proposed 

method is much simpler in mathematical 

computation steps. Shear stiffness, bending 

stiffness, and mass vary with height 

throughout the structural unit. The effect of 

structural weight on its differing amounts of 

natural frequency is examined by using 

variable axial force proposed by 

Mohammadnejad and Haji-Kazemi (2018) 

[27]. Analysis and design of tall structures, 

explanation of analysis methods of different 

types of structures of tall buildings have 

been introduced using precise computer and 

approximate methods [28]. Some articles on 

the subject of tall buildings with reference to 

shear wall structures, basic design criteria, 

and a variety of structural forms for initial 

and final analysis have been published [29]. 

The framed tubular structural system is 

formed by creating rigid connections 

between several columns in close proximity 

to each other and high deep beams in the 

perimeter of the structure [30]. The tubular 

structures are formed using a continuous 

method in which the two beams are modeled 

separately by a tubular beam. These 

analyses are performed using the principle 

of minimum potential energy [31]. A simple 

analytical approach is provided by 

Takabatake et al. (1993). This simplified 
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procedure is performed by replacing the 

tube with an equivalent beam [32]. Based on 

the continuous method, an analytical method 

is presented to analyze the frequency of 

buildings prepared by shear walls and 

narrow structures. According to this method, 

a general solution is obtained to determine 

the natural frequencies of the structures [33]. 

Based on the generalized continuous 

approach, the main hypothesis of tubular 

structure analysis is that in two different 

structural systems, deformation in shear and 

bending modes are confined to each other 

[34]. The study of the effects of reducing 

unequal lateral stiffness in seismic response 

and distribution of normal seismic responses 

has been predicted with appropriate curves 

[35].  

3. Formulation and solution 

3.1. Methodology: Weak form of 

differential equations 

The differential equation for free vibration 

of beam with variable stiffness and mass is a 

partial differential equation with variable 

coefficients. Many mathematical methods 

may be used for numerical or approximate 

analysis of this equation. The proposed 

approach to convert the governing partial 

differential equation to a solvable equation 

is to transform the equation into its weak 

form. The weak form of the differential 

equation has many uses in place of the 

original equation [27,36-38].  

3.2. Equivalent properties of the framed 

tube 

For the analysis of framed tube structures, 

Kwan has proposed a helpful model. Using 

equivalent orthotropic plates, he has made a 

number of assumptions in his model to 

describe the framed tube system. Using his 

assumptions, the tall structure can be 

modeled as a cantilever beam with a 

variable cross-section in height. It is a 

common practice to fix the value of 

thickness of the membrane t such that the 

area of the membrane (d.t) is equal to the 

sectional area of the column (𝐴𝑐) [10, 

27,36].  

AC =  𝑑𝑡 (3) 

where d is center-to-center distance of the 

columns of the outer tube and subject to a 

lateral force Q. The lateral deflection may be 

computed as the sum of that due to bending 

∆𝑏  and due to shear ∆𝑠. The bending 

deflection ∆𝑏 is given by the following 

formula [10, 27,36]:  

∆𝑏

𝒬
=

(ℎ − 𝐻𝑏)3

12𝐸𝑚𝐼𝑐

+ (
ℎ

𝑑
)

2 (𝑑 − 𝐻𝑐)2

12𝐸𝑚𝐼𝑏

 (4) 

where h, Hb, Em, IC, Ib, Hc are story height, 

height of beam, elastic modulus of the 

construction material, moments of inertia of 

the column, moments of inertia of the beam 

and height of the column, respectively. 𝐴𝑠𝑐 is 

the cross-sectional area of the column; 𝐴𝑠𝑏 

is the cross-sectional area of the beam; Q is 

the unit subject to a lateral force on the 

structure. On the other hand, the shear 

deflection ∆𝑠 is given by [10, 27,36]: 

∆𝑠

𝒬
=

(ℎ − 𝐻𝑏)

𝐺𝑚𝐴𝑠𝑐

+ (
ℎ

𝑑
)

2 (𝑑 − 𝐻𝑐)

𝐺𝑚𝐴𝑠𝑏

 (5) 

where 𝐴𝑠𝑏  and 𝐴𝑠𝑐  are effective shear areas 

of the beam and column, respectively, and 

Gm is the shear modulus of the material, G 

shear modulus. Equivalent shear modulus of 

the membrane is calculated as follows [10, 

27,36]: 

𝐺 =

ℎ

𝑠𝑡
∆𝑏

𝑄
+

∆𝑠

𝑄

  (6) 

To solve the differential equation governing 

the free vibration of a beam with varying 

stiffness and mass, different mathematical 

techniques are presented. But here, the 

technique presented by Mohammadnejad 

and Haji-Kazemi (2018) [27] is compared 

with other methods. The differential 

equation of weak form governing the 
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behavior of equivalent beam with variable 

stiffness and mass subject to the loading of q 

and the axial force of N is presented as 

follows (30-38): 

𝜕2

𝜕𝑥2 [𝑘𝐵(𝑥)
𝜕2

𝜕𝑥2 𝑊(𝑥, 𝑡)] −
𝜕

𝜕𝑥
[𝑘𝑠(𝑥)

𝜕

𝜕𝑥
𝑊(𝑥, 𝑡)] −

𝜕

𝜕𝑥
[𝑛(𝑥)

𝜕

𝜕𝑥
𝑊(𝑥, 𝑡)] + 𝑚(𝑥)

𝜕2

𝜕𝑡2 𝑊(𝑥, 𝑡) + 𝑞(𝑥, 𝑡) =

0                                                           (7) 

In this equation, 𝑊(𝑥, 𝑡) is displacement; 

𝑚(𝑥) is mass per unit height; 𝑘𝐵(𝑥) refers 

to the flexural stiffness; 𝑘𝑠(𝑥) is the shear 

stiffness; 𝑛(𝑥) stands for axial force, and 

𝑞 (𝑥, 𝑡) is lateral distribution of forces. The 

whole building is taken as a prismatic 

cantilever beam having shear stiffness 

GA(x), bending stiffness EI(x) which 

depends on both shear modulus G and cross-

sectional area A(x). In free vibration mode, 

𝑞(𝑥, 𝑡) is considered equal to zero. 

Assuming the harmonic vibration 

of 𝑊(𝑥, 𝑡) = 𝑊(𝑥)𝑒𝑖𝛺𝑡, 𝑊(𝑥) is considered 

the function of mod shape and Ω is natural 

frequency of the structure. By putting these 

values and values of Eq. (1) in Eq. (2) and 

using Equations 3 to 6, Eq. (7) is obtained as 

Eq. (8) and Eq. (9) [27-35]. 

𝜉 =
𝑥

𝐻
  

𝑘𝐵(𝜉) = 𝐸𝐼0𝐾𝐵(𝜉) ,   𝑘𝑠(𝜉) = 𝐺𝐴0𝐾𝑠(𝜉)  

𝑛(𝜉) = 𝑁0𝑁(𝜉)  , 𝑚(𝜉) =

𝑚0𝑚(𝜉)             (8)  

 

𝛽2 =
𝐺𝐴0𝐻2

𝐸𝐼0

    

𝛼2 =
𝑚0𝛺2𝐻4

𝐸𝐼0

   

 𝛾2 =  
𝑁0𝐻2

𝐸𝐼0

 

𝑑2

𝑑𝜉2 [𝐾𝐵(𝜉)
𝑑2

𝑑𝑥2 𝜔(𝜉)] −

𝜕

𝜕𝜉
[𝛽2𝐾𝑠(𝜉)

𝑑

𝑑𝜉
𝜔(𝜉)] −

𝜕

𝜕𝜉
[𝛾2𝑁(𝜉)

𝑑

𝑑𝑥
𝜔(𝜉)]                                        

(9) −𝛼2𝜔(𝜉) = 0                               0 ≤
𝜉 ≤ 1  

𝛼2 are the coefficients without 

dimension of mass, 𝛽2 are the 

coefficients without dimension of 

shear stiffness, and  𝛾2 are the 

 

coefficients without dimension of 

axial force. 

Equation (9) is a free vibration equation of 

tall structures in terms of a variable without 

ξ dimension. For finding natural frequency 

from Eq. (9), it can be integrated from the 

sides of four-load equation. But according to 

a method recently proposed by 

Mohammadnejad and Haji-Kazemi (2018) 

[27], Eq. (9) can be solved using integrating 

twice. This method is used in this study, and 

here is the formulation of this method.  

Equation (10) is the result of two times 

integration of the sides of Eq. (9) obtained 

by applying the boundary conditions of the 

integral constants included in it. 

∫ ℎ1(𝜉, 𝑠)𝑀(𝑠)𝑑𝑠
𝜉

0

+ ∫ ℎ2(𝜉, 𝑠)𝑀(𝑠)𝑑𝑠
1

0

+ 𝐾𝐵(𝜉)𝑀(𝜉)
= 0                                

(10) 

 

𝑀 =
𝑑2𝜔

𝑑𝜉2    , 𝜔(𝜉) = ∫ (𝜉 − 𝑠)𝑀(𝑠)𝑑𝑠
𝜉

0
  

 

ℎ1(𝜉, 𝑠) = ∫ [𝛽2𝐾𝑠(𝑠) + 𝛾2𝑁(𝑠)]𝑑𝑠 −
𝑠

0

∫ (𝛽2𝐾𝑠(𝑠)
𝜉

0
+ 𝛾2𝑁(𝑠))𝑑𝑠 −

𝛼2

6
(𝜉 − 𝑠)3  

 

 

ℎ2(𝜉, 𝑠) =  
𝛼2

2
(1 − 𝑠)2(𝜉 − 1) − ℎ1(1, 𝑠)  

 
 

In order to obtain the answer from Eq. (10) 

based on the method proposed by 

Mohammadnejad and Haji-Kazemi (2018) 

[27], a power series was proposed instead of 

M (ξ) function. This power series is given in 

Eq. (11).  

𝑀(𝜉) =
∑ 𝐶𝑟𝜉𝑟                                                (11)𝑅

𝑟=0   
 

In Eq. (11), 𝐶𝑟 constant is unknown and 

must be determined, and R is a positive 

value that determines the accuracy of 

calculations. By putting Eq. (11) in Eq. (10), 

a linear algebraic system will be obtained 

that can be solved. 
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4. Analysis and results 

Tapered angle of building and type of 

tubular system were the variables of this 

research. For the investigation of these 

variables, it's necessary to change the 

tapered angle in different tubular structural 

systems and the results should be examined. 

For this purpose, three tubular structural 

systems were considered: 1) simple tubular 

system, 2) tube-in-tube, and 3) bundled tube 

system. For these three systems, three 

tapered angles of 0, 1.23, and 2.45 degrees 

from vertical deflection were considered 

according to the ratio of height to the 

diameter and based on the definition of tall 

buildings, angle changes, and careful 

comparison of the systems. So, nine models 

were investigated in this research. For the 

presentation of an approximate new model 

for primary design, tubular buildings (Fig. 3) 

, tube-in-tube, and tapered bundled tubular 

systems were considered equivalent with 

cantilever shear-bending beam with variable 

cross-sections. Also, the number of floors 

were considered fixed in homologous 

structural systems. For this purpose, the 

models with tubular system, tube-in-tube 

(Fig. 4) , and bundled tubular systems were 

considered with 40 and 70 floors (Fig. 5). 

The length of center-to-center openings 

were considered three meters on the ground 

level. The parameter of floor mass is one of 

the effective parameters in natural frequency 

of building. Since the tapered angle is 

different, the area of floor is not the same in 

different models. 

4.1. Selection of basic assumptions, 

consumed construction materials, 

modeling, reason model selection and 

structural analysis, discuss about the 

results. 

4.1.1. Basic assumptions considered: 

Analyzing a tall structure by accurate 

consideration of behavioral issues of 

elements and construction materials, even if 

the properties of the materials and 

dimensions of the elements being clear, is 

practically impossible, and it is inevitable to 

apply simplistic assumptions to reduce the 

size of the problem. In this regard, the most 

common hypotheses are introduced. 

4.1.2. Materials 

Construction materials of structure elements 

have linear elastic behavior. This 

assumption makes it possible to combine the 

effects of forces, displacements, the 

combination of two bending and shear 

effects, and the use of linear analysis 

methods. 

4.1.3. Effective elements on structure 

behavior 

Only important early structural elements are 

involved in the overall behavior. 

Considering this assumption, the effects of 

secondary structural elements and non-

structural elements are ignored 

conservatively. 

4.1.4. Floor slabs 

It is assumed that the floors are on a rigid 

plate. This assumption causes the horizontal 

displacement of all vertical elements at the 

floor level being dependent on the rotation 

and horizontal transfer of the floors. 

4.1.5. Ignorable stiffness 

Minor stiffness of elements are overlooked. 

The lateral bending stiffness of slabs, the 

sub-axis stiffness of the shear walls, and the 

torsional stiffness of the columns, beams, 
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and walls are some types of stiffness that 

can be ignored. 

4.1.6. Ignorable deformations 

Small, ineffective deformations are ignored. 

These deformations include: axial and shear 

deformations of beams, bending and shear 

deformations of slabs and axial 

deformations of the columns of short- and 

medium-sized buildings. 

4.1.7. Continuous perimeter and its 

limitations 

1) The distance between the columns and 

the beams along the height of the building is 

constant; 2) The dimensions of all beams 

and columns on each floor are the same; 3) 

Structural materials are linearly elastic, 

isotropic, homogeneous and obedient to 

Hooke's law; 4) The structural system is 

assumed symmetrical on all floors; 5) The 

properties of the building are uniform 

throughout the height of the structure. 

Considering these assumptions, the structure 

is modeled as a beam with a box section and 

a continuous perimeter. 

4.2. Consumed construction materials 

In the models of this study, in general, 3 

types of materials have been used, and the 

specifications of the materials used to design 

the towers are St52 steel. The modulus of 

elasticity and shear of this type of steel is 

200,000 and 77,000 MPa, respectively. The 

sections used for the beams and columns are 

made of plate girder and square boxes in the 

software, respectively. The specifications of 

the consumed materials have been defined 

based on concrete with modulus of elasticity 

of 2×10
4
 MPa and a specific gravity of 2500 

kg/cm
2
, and the Poisson coefficient of steel 

and concrete is 0.3 and 0.2, respectively. 

Reinforced concrete is used to model the 

shear wall and ceiling aperture. 

4.3. Type of analysis 

Because the models are tall buildings, 

according to Regulation 2800, the analysis 

must be dynamic. Therefore, in this 

research, the models are initially analyzed 

by spectral dynamic method, and according 

to the results of the initial analysis of 

sections, and the ninth and tenth subjects of 

the National Building Regulations are 

controlled and re-analyzed. This process 

continues until all sections are confirmed, 

and the results of the final analysis are used 

to measure and compare the natural 

frequency of the models. Because the 

models are tall structures, the effects of P-Δ 

as well as the effect of large deformations 

must be considered in the analysis. The soil 

under the foundation is considered of type II 

and the construction area with moderate 

seismic risk. 

4.4. Modeling details in software and the 

reason for model type selection 

Prior to any structural modeling, it is 

necessary to ensure that the dimensions of 

the plan and the height and sections are 

appropriate Stafford Smithand and Coull in 

The Basics of Designing Tall Buildings [35] 

that from the point of view of structural 

architecture, when the ratio of height to 

diameter is more than π, the structure is 

considered as a tall building. Therefore, this 

criterion has been used in selecting the 

dimensions of the plan and height of 

building. The assumed three-dimensional 

building has a square plan measuring 30x30 

meters, which has been studied in three 

different heights of 40, 55 and 70 floors. The 

height of the floors and the distance between 

the axis of the columns is equal to three 

meters which has been selected based on the 

specifications of tube-in-tube and bundled 

tapered tubular systems. Each of them has 

three angles for modeling, so that the slope 

of the tapered tubular system is external and 
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up to the inner vertical tube and the inner 

tube is without slope and vertical. Due to the 

fact that the selected angles are up to the 

extension of the inner tube, the 

comparability of the systems and the 

responsiveness of the type of structural 

system have been selected according to the 

height of the floors. To create a tubular 

system in structures, the length of the 

openings of the tubular frames is considered 

three meters and the length of the other 

openings of the structure is considered six 

meters in this model. The connection of the 

components outside the tubular system to 

the components of the tubular system will be 

articulated type and all connections will be 

considered rigid type in tube frames. The 

support of all columns is considered fixed 

support type. For modeling the apertures, 

the weight of the concrete as well as the 

design details are ignored and are entered 

only to apply the load in the modeling. The 

length of the three-meter opening is fixed 

and is cut based on the angle of columns 

along the angle and height.  

Therefore, all design steps, including 

drawing members, allocating loads and 

controlling sections, have been performed in 

ETABS software. The gravitational loads of 

a seismic mass are calculated and defined in 

accordance with subject 6 of the National 

Building Code and Regulation 2800. Lateral 

loads of wind and earthquake based on 

ASCE 7-10 are automatically calculated and 

applied in the software. The AISC 360-10 

design regulation has been selected because 

the tenth subject of the National Building 

Regulations is derived from it and the 

seismic design criteria are controlled 

according to AISC 341-10. The type of 

special bending frame structural system is 

selected by the tubular system. 

4.5. The used sections and profiles 

This paper is a research project, so the 

criterion for selecting profiles is to meet the 

conditions mentioned in the ninth and tenth 

subject of the National Building 

Regulations. Accordingly, all profiles used 

in beams, columns and braces are 

considered as square cans. It is considered 

according to Table (1). Modeling of beam 

and column elements is done as linear 

elements in the software. Also, the general 

model of the structure is done in three-

dimensional form in the software 

environment. In order to select a profile for 

each element, it is possible to optimize the 

sections in ETABS software and the final 

control is done by the software. 

 By applying monotonic and equal load in 

floors, the mass of floors will not be the 

same according to Standard 2800 [39], the 

total dead load (including the weight of 

structural components and the diaphragm) 

mass of each floor. Since the floor area 

varies, to calculate the mass of each floor, it 

is necessary to multiply the load per unit 

area by the floor area. Considering the wide 

dead load of 9500 N/m
2
.Effective load to the 

floor of each story is considered about 9.5 

KN/m
2
 which was shown by q in 

computations. Also, the equivalent 

(including the weight of peripheral columns 

tube) load is about 7.5 KN/m
2
 which was 

shown by q' (for story 40). To calculate the 

mass parameter in terms of x, the total of 

structure load, exerted load to the floors, and 

peripheral load should be considered. Since 

the height of each floor is three meters, the 

obtained average should be divided by three. 

Applying loads is in terms of the weight 

unit, so the total load should be divided by 

three to change to mass unit. 
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Fig. 3. Sectional plan view of tube tall building. 

 
Fig. 4. Sectional plan view of tube-in-tube 

building. 

 
Fig. 5. Sectional view of bundled tube tall 

building. 

5. Mathematical formulation 

To verify the accuracy of the modeling, the 

natural frequency of models is calculated 

once again by a mathematical method. First, 

these equations are given for the tapered 

tube systems. 

5.1. Tube system equations 

 
Fig. 6. Equivalent cantilever beam, with tapered 

angle and box cross-section. 

Fig. 6 shows that the second moment inertia 

of beam surface is a function of height and 

varies with height. Given that the cross-

sectional area is like a hollow square, so the 

relation of the second moment inertia of the 

surface in terms of x is defined as follows 

Eq. (12) : 

𝐼(𝑥) =
(𝑎−2𝑥 𝑡𝑎𝑛𝜃)4

12
−

(𝑎−2𝑥 𝑡𝑎𝑛𝜃−2𝑡)4

12
  (12) 

𝑥 = 0  →   𝐼0 =
2𝑡𝑎3

3
 

 

 

Using the parameters of I (x) and I0 obtained 

above, Eq. (8) can be rewritten for bending 

stiffness: 

𝑘𝐵(𝑥) = 𝐸𝐼(𝑥) = 𝐸 
2𝑡(𝑎−2𝑥 𝑡𝑎𝑛𝜃)3

3
=

𝐸
2𝑡𝑎3

3
(1 −

2𝑥 𝑡𝑎𝑛𝜃

𝑎
)3 = 𝐸𝐼0(1 −

2𝑥 𝑡𝑎𝑛𝜃

𝑎
)3  

 

(13) 

With constitute 𝑥 = 𝜉𝐻 from Eq. (13) as 𝜉 

parameter, Eq. (14) is as follows: 
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𝑘𝐵(𝜉) = 𝐸𝐼0𝐾𝐵(𝜉) = 𝐸𝐼0(1 −
2𝜉𝐻 𝑡𝑎𝑛𝜃

𝑎
)3  

 

(14) 

The cross-sectional area of the equivalent 

cantilever beam is regarded as a function of 

x which is defined as Eq. (15): 

    𝐴(𝑥) = (𝑎 − 2𝑥 𝑡𝑎𝑛𝜃)2 −

(𝑎 − 2𝑥 𝑡𝑎𝑛𝜃 − 2𝑡)2           

 

(15) 

   𝑥 = 0  →    𝐴0 = (𝑎)2 − (𝑎 − 2𝑡)2    

Using the parameters of A (x) and A0 

obtained from Eq. (15), Eq. (16) can be 

rewritten for shear stiffness: 

 𝑘𝑠(𝑥) = 𝐺𝐴(𝑥) = 𝐺((𝑎 −

2𝑥 𝑡𝑎𝑛𝜃)2 − (𝑎 − 2𝑥 𝑡𝑎𝑛𝜃 − 2𝑡)2) =

𝐺((𝑎)2 − (𝑎 − 2𝑡)2)(1 −
2𝑥 𝑡𝑎𝑛𝜃

𝑎−𝑡
) =

𝐺𝐴0(1 −
2𝑥 𝑡𝑎𝑛𝜃

𝑎−𝑡
)  

 

(16) 

With 𝑥 = 𝜉𝐻 from Eq. (16) as a function of 

𝜉parameter, the Eq. (17)is: 

 𝑘𝑠(𝜉) = 𝐺𝐴0𝐾𝑠(𝜉) = 𝐺𝐴0 (1 −
2𝜉𝐻 𝑡𝑎𝑛𝜃

𝑎−𝑡
)     

(17). 

The effective load on each floor is shown 

in the calculations with q. Also, the load 

equivalent to perimeter walls is shown 

with q' and  𝑚(𝑥)  in the Eq. (18): 
 

𝑚(𝑥) =
𝑞(𝑎−2𝑥 𝑡𝑎𝑛𝜃)2+4𝑞′(𝑎−2𝑥𝑡𝑎𝑛𝜃)

3𝑔
  (18)     

 

𝑥 = 0  →   𝑚0 =
𝑞𝑎2+4𝑞′𝑎

3𝑔
  

 

𝑚(𝑥) =
𝑞𝑎2+4𝑞′𝑎

3𝑔
(

(𝑎−2𝑥 𝑡𝑎𝑛𝜃)(4𝑞′+𝑎𝑞−2𝑞𝑥𝑡𝑎𝑛𝜃)

𝑎(4𝑞′+𝑎𝑞)
=

𝑚0
(𝑎−2𝑥 𝑡𝑎𝑛𝜃)(4𝑞′+𝑎𝑞−2𝑞𝑥𝑡𝑎𝑛𝜃)

𝑎(4𝑞′+𝑎𝑞)
  

 

Considering the value of q' equal to zero, 

the above equation is as follows Eq. (19): 

𝑚(𝑥) = 𝑚0(1 −
2𝑥 𝑡𝑎𝑛𝜃  

𝑎
)2  

  

(19

) 
 

 

It is easy to see that the equations obtained 

for m (x) and N (x) in Eq. (19) and Eq. (20-

21) in the previous section are the same for 

all structural systems, and only the 

difference in systems in the equations 

𝑘𝐵(𝑥) and 𝑘𝑆(𝑥) 

5.2. Equations of a tube in tube system 

 
Fig. 7. Equivalent cantilever beam, with tapered 

angle and box cross-section for tube in tube 

system. 

Equations 18 and 19 are used to obtain 

the axial force in the equivalent beam: 

𝑁(𝑥) =  ∫ 𝑔 𝑚(𝑥)𝑑𝑥
𝐻

𝑥
  (20) 

= 𝑥2 (
4𝑞′𝑡𝑎𝑛𝜃

3
+

2𝑎𝑞𝑡𝑎𝑛𝜃

3
) −

𝐻2 (
4𝑞′𝑡𝑎𝑛𝜃

3
+

2𝑎𝑞𝑡𝑎𝑛𝜃

3
) + 𝐻 (

𝑞𝑎2

3
+

4𝑞′𝑎

3
) − 𝑥 (

𝑞𝑎2

3
+

4𝑞′𝑎

3
) +

4𝐻3𝑞 𝑡𝑎𝑛𝜃2

9
−

4𝑥3𝑞 𝑡𝑎𝑛𝜃2

9
  

 

𝑥 = 0  →   𝑁0 =
4𝐻𝑎𝑞′

3
−

4𝐻2𝑞′𝑡𝑎𝑛𝜃

3
+

4𝐻3𝑞 ta n(𝜃)2

9
+

𝐻𝑎2𝑞 

3
−

2𝐻2𝑎𝑞 𝑡𝑎𝑛𝜃

3
  

(21) 

According to Fig. 7, it is possible to obtain 

the second moment inertia Eq. (22)  of the 

surface as well as the area of the cross-

sectional area of the equivalent beam for 

tube-in-tube structural system (The outer 

tube of the tapered and the inner tube are 

assumed to be fixed sections  (  

𝐼(𝑥) =
(𝑎−2𝑥 𝑡𝑎𝑛𝜃)4

12
−

(𝑎−2𝑥 𝑡𝑎𝑛𝜃−2𝑡)4

12
+

2𝑡′𝑎′3

3
  

(22) 
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     𝑥 = 0  →   𝐼0 =
2𝑡𝑎3

3
+

2𝑡′𝑎′3

3
   

Using the parameters I (x) and  𝐼0obtained 

above, we can rewrite the Eq. (23) for 

flexural stiffness: 

𝑘𝐵(𝑥) = 𝐸𝐼(𝑥) = 𝐸 
2𝑡(𝑎−2𝑥 𝑡𝑎𝑛𝜃)3

3
+

2𝑡′𝑎′3

3
=

𝐸𝐼0(1 −
8𝑡𝑥3 tan(𝜃)3−12𝑎𝑡 𝑥2tan(𝜃)2−6𝑎2𝑡𝑥 𝑡𝑎𝑛𝜃

𝑡𝑎3+𝑡′𝑎′3 )  

 

(23) 

By placing the value of x =ξH of Eq. (23), 

the following equation is considered as a 

function of the parameter of ξ, and Eq. 

(24)is as follows: 

𝑘𝐵(𝜉) = 𝐸𝐼0𝐾𝐵   =
𝐸𝐼0(1 −
8𝑡(𝜉𝐻)3 tan(𝜃)3−12𝑎𝑡 (𝜉𝐻)2tan(𝜃)2−6𝑎2𝑡𝜉𝐻 𝑡𝑎𝑛𝜃

𝑡𝑎3+𝑡′𝑎′3 )  

    

The cross-sectional area of the equivalent 

cantilever beam is the same as the second 

anchor of the surface and is a function of x, 

which is defined as follows Eq. (25): 

𝐴(𝑥) = (𝑎 − 2𝑥 𝑡𝑎𝑛𝜃)2 − (𝑎 −

2𝑥 𝑡𝑎𝑛𝜃 − 2𝑡)2 + 𝑎′2
− (𝑎′ − 2𝑡′)2  

(25)  

𝑥 = 0  →    𝐴0 = (𝑎)2 − (𝑎 − 2𝑡)2 + 𝑎′2
−

(𝑎′ − 2𝑡′)2  

Using the parameters A(x) and  A0 obtained 

above, the Eq. (26) can be rewritten for 

shear stiffness: 

 𝑘𝑠(𝑥) = 𝐺𝐴(𝑥) = 𝐺((𝑎 − 2𝑥 𝑡𝑎𝑛𝜃)2 −

(𝑎 − 2𝑥 𝑡𝑎𝑛𝜃 − 2𝑡)2 + 𝑎′2
−

(𝑎′ − 2𝑡′)2) = 𝐺𝐴0(1 −
2𝑡𝑥 𝑡𝑎𝑛𝜃

−𝑡2+𝑎𝑡−𝑡′2
+𝑎′𝑡′

)  

 

(26) 

By placing the value of x =ξH of Eq. (26), 

the following equation is considered as a 

function of the parameter of ξ, and Eq. (27) 

is as follows: 

 𝑘𝑠(𝜉) = 𝐺𝐴0𝐾𝑠(𝜉) = 𝐺𝐴0 (1 −
2𝑡𝜉𝐻 𝑡𝑎𝑛𝜃

−𝑡2+𝑎𝑡−𝑡′2
+𝑎′𝑡

)  

 

(27) 

5.3. Equations of the bundled tube 

system 

 
Fig. 8. Equivalent cantilever beam, with tapered 

angle and box cross-section for bundled tube 

system. 

According to Fig. 8, it is possible to obtain 

the second moment inertia of the surface as 

well as the area of the cross-sectional area of 

the equivalent beam for categorized tube 

structural system:  

   
𝐼(𝑥) =
(𝑎−2𝑥 𝑡𝑎𝑛𝜃)4

12
−

(𝑎−2𝑥 𝑡𝑎𝑛𝜃−2𝑡)4

12
+

𝑡(𝑎−2𝑥 𝑡𝑎𝑛𝜃)3

12
+

(𝑎−2𝑥 𝑡𝑎𝑛𝜃)𝑡3

12
 

(28) 

𝑥 = 0  →   𝐼0 =
2𝑡𝑎3

3
+

𝑡𝑎3

12
+

𝑎3𝑡

12
   

Using the parameters of I(x) and I0 obtained 

above Eq. (28), Eq. (29) can be rewritten for 

bending stiffness: 

  𝑘𝐵(𝑥) = 𝐸𝐼(𝑥) = 𝐸 (
2𝑡(𝑎−2𝑥 𝑡𝑎𝑛𝜃)3

3
+

𝑡(𝑎−2𝑥 𝑡𝑎𝑛𝜃)3

12
+

(𝑎−2𝑥 𝑡𝑎𝑛𝜃)𝑡3

12
==

𝐸𝐼0(
(𝑎−2𝑥 tan 𝜃)(36𝑥2 tan(𝜃)2+9𝑎2+𝑡2−36𝑎𝑥 𝑡𝑎𝑛𝜃

𝑎(9𝑎2+𝑡2)
) 

   

(29)   

 

By placing the value of 𝑥 = 𝜉𝐻 of Eq. (29), 

the following equation is considered as a 

function of the parameter of ξ, and Eq. (30) 

is as follows: 
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𝑘𝐵(𝜉) = 𝐸𝐼0𝐾𝐵(𝜉) = 

𝐸𝐼0 (
(𝑎−2𝜉𝐻 tan 𝜃)(36(𝜉𝐻)2 tan(𝜃)2+9𝑎2+𝑡2−36𝑎𝜉𝐻 𝑡𝑎𝑛𝜃

𝑎(9𝑎2+𝑡2)
  )  

(30) 

The cross-sectional area of the equivalent 

cantilever beam is a function of x, which is 

defined as follows Eq. (31): 

𝐴(𝑥) = (𝑎 − 2𝑥 𝑡𝑎𝑛𝜃)2 − (𝑎 −
2𝑥 𝑡𝑎𝑛𝜃 − 2𝑡)2 + 2𝑡(𝑎 − 2𝑥 𝑡𝑎𝑛𝜃)  
 

(31)  

𝑥 = 0  →    𝐴0 = (𝑎)2 − (𝑎 − 2𝑡)2 + 2𝑎𝑡   

Using the parameters, A (x) and  𝐴0obtained 

above, Eq. (32) can be rewritten for shear 

stiffness:     

 𝑘𝑠(𝑥) = 𝐺𝐴(𝑥) = 𝐺((𝑎 − 2𝑥 𝑡𝑎𝑛𝜃)2 −
(𝑎 − 2𝑥 𝑡𝑎𝑛𝜃 − 2𝑡)2 + 2𝑡(𝑎 −

2𝑥 𝑡𝑎𝑛𝜃)) = 𝐺𝐴0(1 −
6𝑥 𝑡𝑎𝑛𝜃

3𝑎−2𝑡
)  

 

 

(32) 

By putting the value x = ξH from Eq. (32) of 

the above equation as a function of the 

parameter ξ, Eq. (33) is given as follows: 

 𝑘𝑠(𝜉) = 𝐺𝐴0𝐾𝑠(𝜉) = 𝐺𝐴0(1 −
6𝜉𝐻 𝑡𝑎𝑛𝜃

3𝑎−2𝑡
)   

(33) 

6. Verification: Analysis with 

differential equations 

(mathematical method), finite 

element, and other articles 

For natural frequency verification, two 

models of simple tube systems with a height 

of 120 meters or 40-story and with tapered 

angles of 0 and 2.45 degrees are obtained 

and compared by using mathematical and 

modeling methods in the software. 

6.1. Modeling with finite element 

Initially, the geometry of the structure and the 

location of beams and columns in ETABS [40] 

software environment are shown in Fig. 9 and 

Fig. 10 for both models with a tapered angle of 0 

and 2.45 degrees

 
Fig. 9. 40-story tube system model with zero-

degree tapered angle. 

 
Fig. 10. 40-story tube system model with 2.45-

degree tapered angle. 
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In order to determine the dimensions of 

elements of the beam and the column, an 

initial analysis and design of the structures 

are made to determine the sections used for 

different structural elements. To do this, 

ETABS automatic selection software was 

used. After designing and selecting the 

section sizes by the software, box section 

with a height of 500 mm and wall thickness 

of 50 mm were considered as the section of 

members like beams and columns in 

peripheral frames forming the tube system. 

After determining cross-sections of 

elements, modal analysis was done on the 

models. The results of the analysis showed 

that the model with zero tapered angle had a 

natural frequency of 2.04 radians per 

second. And the model with a tapered angle 

of 2.45 degrees had a natural frequency of 

2.52 radians per second.To verify the 

validity of modeling, mathematical method 

was also used to calculate natural frequency 

of models. For this purpose, the technique 

presented by Mohammadnejad and Haji-

Kazemi (2018) [27] was used, which was 

obtained in Eq. (3) to Eq. (21) in the upper 

section for tapered tube system. To obtain 

the natural frequency from mathematical 

method presented above, first, the properties 

of equivalent cantilever beam for tapered 

tube system should be obtained. According 

to the cross-section considered for beams 

and columns of metal structures (box section 

with a height of 500 mm and thickness of 50 

mm), wall thickness, elastic and shear 

modulus of the equivalent cantilever beam 

can be obtained according to the Eq. (3) to 

Eq. (6). 

𝑡 = 30𝑚𝑚 

𝐸 = 𝐸𝑚 = 2 × 105𝑀𝑃𝑎 

𝐺 = 1.174 × 105𝑀𝑃𝑎 

Using these parameters and inserting them 

in Eq. (1) to Eq. (21) for a tube system, and 

total equation of (1) to (21), natural 

frequency can be obtained for tube system. 

Accordingly, the main calculated frequency 

for a 40-story tube system with 2.45-degree 

tapered angle, and accuracy of R=1, in 

Equations (1) to (21), and using MATLAB 

[41] software, is equal to 2.48 radians per 

second. Also, the calculated natural 

frequency for the zero-degree tapered angle 

is equal to 2.029 radians per second. 

7. Discuss about the results  

7.1. Overview  

In the previous section, the number of 

models and details of their modeling in 

software as well as how to calculate the 

natural frequency of structures using the 

theoretical method were presented. In this 

section, the results of computer modeling as 

well as the theoretical method for all models 

are presented and compared. It is 

emphasized that the scope of confirmation 

of the obtained results be confined to the 

selected models. 

7.2. Preliminary analysis of models 

Before examining the results and obtaining 

the natural frequency of the models, it is 

necessary to first identify the sections used 

in beams and columns. For this purpose, 

ETABS software was used to design models 

and identify the cross-sections. The results 

are shown in Table 1. 
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Table 1. Cross-sections used in metal structure models. 

Stories and systems 

 

Section beams and columns 

Stories 40 with simple tube 

 
box section with a height of 500×500 mm and thickness of 50 mm 

Stories 55 with simple tube 

 
box section with a height of 600×600mm and thickness of 100 mm 

 

Stories 40 with tube in tube box section with a height of 500×500 mm and thickness of 50 mm 

Stories 70 with tube in tube box section with a height of 600×600mm and thickness of 100 mm 

 

Stories 40 with tube bundled box section with a height of 500×500 mm and thickness of 50 mm 

Stories 70 with tube bundled box section with a height of 600×600mm and thickness of 100 mm 

 

 

For better comparisons, a cross-section for 

beams and columns and a number of equal 

floors having different tapered angles have 

been used in models with a system. It should 

be noted that in the mathematical method 

presented by Mohammadnejad and Haji-

Kazemi (2018) [27], the beam and column 

sections must be the same across all floors. 

In this research, cross-sections of beams and 

columns are considered the same.  

The necessary parameters must first be 

calculated. According to the relations of Eq. 

(4-6), this method requires the calculation of 

the equivalent thickness of the tube wall (t), 

the modulus of elasticity and the shear 

modulus in the equivalent beam (E and G) 

obtained by placing the values in Table 1. 

Accordingly, for 40-story models using 

50×50cm cross-sections with 5cm wall 

thickness, the parameters are as follows: 

𝑡 =
𝐴𝑐

𝑠
= 30𝑚𝑚  𝐸 = 𝐸𝑚 = 2 × 105𝑀𝑃𝑎 

𝐺 = 1.174 × 105                                         (34) 

Also, for 70-story models using 60×60cm 

profile with 10cm wall thickness, the 

following parameters are obtained: 

𝑡 =
𝐴𝑐

𝑠
= 66.667𝑚𝑚 𝐸 = 𝐸𝑚 = 2 × 105𝑀𝑃𝑎  

 𝐺 = 1.535 × 104𝑀𝑃𝑎                               (35)                             

7.3. The results of mathematical method 

for variety tubular structural systems 

Considering the calculated parameters in 

Eqs. (34,35), using MATLAB and 

considering R = 1 in Eq. (11) and placement 

of geometric parameters of height (120,165 

and 210 m), side length (30 m), angle of 

deviation (0 ,1.23 and 2.45°) as well as Eq. 

(1-33) calculated in the previous section, 18 

natural frequencies can be obtained for 18 

models with structural systems as shown in 

Table 2. 

Table 2. Natural frequencies calculated by 

mathematical methods in models with different 

types of tube systems. 

Systems   \ Degrees       0 1.23 2.45 

Stories 40 tube 2.029 2.242 2.480 

Stories 55 tube 2.102 2.782 3.212 

Stories 40 tube in tube 2.183 2.489 3.109 

Stories 70 tube in tube 1.572 2.010 2.781 

Stories 40 tube 

bundled 
3.119 3.151 3.312 

Stories 70 tube 

bundled 
2.003 2.211 2.890 
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7.4. Results of finite element modeling 

method 

As stated earlier in this section, the models 

were first analyzed once to approximate 

determination of the profiles used by the 

models. After the initial analysis, the values 

in Table 1 are assigned to the profiles and 

the models are re-analyzed. For structural 

systems, 18 natural frequencies were 

obtained as shown in Table 3. 

Table 3. Natural frequency calculated by finite 

element method in models with different types 

of tube system. 

Systems  \ Degrees    0 1.23 2.45 

Stories 40 tube 2.04 2.569 2.520 

Stories 55 tube 1.938 2.761 3.156 

Stories 40 tube in tube 2.210 3.962 2.071 

Stories 70 tube in tube 1.549 2.082 2.748 

Stories 40 tube 

bundled 
3.433 4.165 3.225 

Stories 70 tube 

bundled 
1.613 2.023 2.847 

 

7.5. Calculating the accuracy of the 

mathematical method 

In order to accurately understand the 

mathematical method and its compatibility 

with different types of tube systems as well 

as different tapered angles, the results of this 

method should be compared with the finite 

element method. Therefore, to determine the 

effects of structural system variables, 

structural height and tapered angle were 

added to the accuracy of the presented 

mathematical method, and each of the 

variables is examined separately. 

7.6. Accuracy of mathematical method in 

terms of structural system 

For this purpose, the frequency differences 

obtained from both mathematical and finite 

element modeling methods are separated 

based on structural system orders. Then, the 

mean and standard deviation of the 

differences in responses are examined. In 

Table 4, the natural frequencies obtained 

from both methods are analyzed in terms of 

the structural system. 

Table 4. Natural frequency obtained from mathematical and finite element methods in structural 

system. 

System    
Natural 

frequency 
   

Standard 

deviations 

Mean of 

errors 

 

tube 

Finite element 2.04 2.569 2.52 1.938 2.761 3.156 

Mathematical 2.029 2.242 2.48 2.102 2.783 3.212 

Error 0.011 0.327 0.04 -0.164 -0.022 -0.056 0.15060 -0.0055 

 

Tube in tube 

Finite element 2.21 3.962 2.071 1.549 2.082 2.748 

Mathematical 2.183 2.489 3.109 1.572 2.01 2.781 

Error 0.027 1.473 -1.038 -0.023 0.072 -0.033 0.7321912 0.002 

Tube bundled 

Finite element 3.343 4.165 3.225 1.613 2.023 2.847 

Mathematical 3.119 3.151 3.312 2.003 2.211 2.89 

Error 0.224 1.014 -0.087 -0.39 -0.188 -0.043 0.45248 -0.065 
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Fig. 11. The natural frequency obtained for 6 

models with a tubular system. 

 

 
Fig. 12. The natural frequency obtained for 6 

models with a tube in tube system. 

 

 
Fig. 13. The natural frequency obtained for 6 

models with a tube bundled system. 

 

 

Considering Table 4 and bar graph Fig.11 to 

Fig.13 as well as comparing the standard 

deviation of the errors, it can be seen that 

the scattering errors are lower for the tube 

system and are more for tube-in-tube system 

than the others. Also, by comparing the 

mean errors, it can be found that the 

mathematical method for the categorized 

tube system gives a higher frequency value 

than the real state. 

The results of Table 4 show that the 

mathematical method is most compatible 

with the tube system. It also has the least 

compatibility with tube-in-tube structural 

system. In other words, tube structural 

systems, categorized tubes, and tube-in-tube 

systems are more in line with the 

mathematical method, respectively. 

7.7. The accuracy of mathematical 

method in terms of the height of 

structure 

For this purpose, the frequency differences 

obtained from both mathematical and finite 

element modeling methods are separated 

based on the number of floors. Then the 

mean and standard deviation of the 

differences in responses are examined. In 

Table 5, the natural frequencies obtained 

from both methods are analyzed in terms of 

the number of floors.  

Also, in Fig. 11, the graphs of the number of 

floors according to the natural frequency of 

different models with the same number of 

floors are shown in both mathematical and 

numerical methods. 
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Table 5. Natural frequency obtained by numerical and mathematical methods in terms of number of 

floors. 
Stories 40 Stories 55 Stories 70 

Finite 

elemen

t 

Mathematica

l 
Error 

Finite 

elemen

t 

Mathematica

l 
Error 

Finite 

elemen

t 

Mathematica

l 
Error 

2.04 2.029 0.011 1.938 2.102 -0.164 1.549 1.572 -0.023 

2.569 2.242 0.327 2.761 2.783 -0.022 2.082 2.01 0.072 

2.52 2.48 0.04 3.156 3.212 -0.056 2.748 2.781 -0.033 

2.21 

3.962 

2.071 

3.343 

4.165 

3.225 

2.183 

2.489 

3.109 

3.119 

3.151 

3.312 

0.027 

1.473 

-1.038 

0.224 

1.014 

-0.087 

   1.613 

2.023 

2.847 

2.003 

2.211 

2.89 

-0.39 

-0.188 

-0.043 

Standard deviations 0.66683

7 

Standard deviations 0.06053

8 

Standard deviations 0.1500

5 

Mean of errors 0.04 Mean of errors -0.056 Mean of errors -0.038 

 

Considering Table 5 as well as Fig. 14 and 

comparing the standard deviation of the 

errors, it can be seen that the in 70-story 

buildings, error scattering is less than 40-

story buildings. Also, by comparing the 

mean errors, it can be found that the 

mathematical method for buildings with 70 

floors gives more frequency value than 

reality. This value is less for buildings with 

less than 40 stories. The results in Table 5 

and Fig. 11 show that the mathematical 

method is most compatible with the number 

of floors. In other words, the higher the 

number of floors, the more the accuracy of 

the mathematical method.

Fig. 14. Natural frequency means obtained by the number of floors in mathematical and numerical 

methods. 
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7.8. The accuracy of the mathematical 

method in terms of tapered angle 

For this purpose, the frequency differences 

obtained from both mathematical and finite 

element modeling methods are separated 

based on tapered angle. Then, the mean and 

standard deviation of the differences in 

responses are examined. In Table 6, the 

natural frequencies obtained from both 

methods are analyzed in terms of tapered 

angle.  

Table 6. Natural frequencies obtained by mathematical and numerical methods in terms of tapered 

angles. 

Stories 40 Stories 55 Stories 70 

Finite 

elemen

t 

Mathematica

l 
Error 

Finite 

elemen

t 

Mathematica

l 
Error 

Finite 

elemen

t 

Mathematica

l 
Error 

2.04 2.029 0.011 2.569 2.242 0.327 2.52 2.48 0.04 

1.938 2.102 -0.164 3.962 2.489 1.473 2.071 3.109 -1.038 

2.21 2.183 0.027 4.165 3.515 1.014 3.225 3.212 -0.087 

1.549 

3.343 

1.613 

 

1.572 

3.119 

2.003 

 

-0.023 

0.224 

-0.39 

 

2.761 

2.082 

2.023 

 

2.783 

2.010 

2.211 

 

-0.022 

0.072 

-0.188 

 

3.156 

2.748 

2.847 

 

2.781 

2.211 

2.89 

 

-0.056 

-0.033 

-0.043 

 

Standard deviations 0.1888

6 

Standard deviations 0.59893

9 

Standard deviations 0.37546

4 

Mean of errors -0.006 Mean of errors 0.1995 Mean of errors -0.0495 

  

 
Fig. 15. The bar graph shows the natural 

frequency at different tapered angles. 

 
Fig. 16. The bar graph shows the natural 

frequency at different tapered angles. 
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Fig. 17. The bar graph shows the natural frequency 

at different tapered angles. 

Considering Table 6 , bar graph Fig.15 to 

Fig.17 and comparing the standard deviation 

of the errors, it can be seen that the 

scattering of the errors for the tapered angle 

of zero degree is lower than other angles. By 

comparing the mean errors, it can be found 

that the mathematical method for the tapered 

angle of 1.23 degrees offers a lower 

frequency value than the reality. And also, 

for the tapered angle of 2.45 degrees, this 

value is more than reality and for the tapered 

angle of zero degree there is no clear trend. 

The results of Table 6 show that the 

mathematical method is most compatible 

with the zero-degree tapered angle. There is 

no clear trend for other angles. The reason 

for the error of the mathematical method for 

1.23- and 2.45-degree angles is due to the 

decrease in the number of columns in height 

which causes a sudden change in the 

structural stiffness, but in the mathematical 

method the stiffness reduction is considered 

gradual. 

7.9. Obtaining the relationships between 

variables 

Finite element modeling results are used to 

obtain the relationships between variables 

that are more consistent with reality. For this 

purpose, the relationships between the 

variables of the tapered angle and the type 

of structural system are investigated with 

natural frequency. The relationship between 

the structure height and natural frequency is 

known, and when beam and column profile 

dimensions are constant, the higher the 

structural height, the less the natural the 

frequency. 

7.10. Obtaining the relationships 

between variables 

Limited element modeling results are used 

to obtain the relationships between variables 

that are more consistent with reality. For this 

purpose, the relationships of tapered angle 

variables and the type of structural system 

with natural frequency are examined. The 

relationship of the height variable of the 

structure with the natural frequency is clear, 

and if the dimensions of the profile of the 

beams and columns are constant, the higher 

the structure is, the more the natural 

frequency decreases. 

7.11. The relationship between natural 

frequency and tapered angle 

In order to obtain the relationship between 

the natural frequency and the tapered angle, 

the natural frequency must be examined 

separately in each structural system as well 

as in the number of floors. For this purpose, 

according to Fig. 18 to Fig. 20 the frequency 

diagram based on tapered angle has been 

obtained based on the structural system 

separation and the number of floors.  

 
Fig. 18. Tapered angle diagram in frequency for 

Tube, Tube in Tube and Tube bundled systems.  
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Fig. 19. Tapered angle diagram in frequency for 

Tube in tube structural systems. 

 
Fig. 20. Tapered angle diagram in frequency 

for Tube bundled structural systems. 

For the 40-storey models, the natural 

frequency has lost its incremental trend at 

2.45 degrees. In other words, the zero-

degree angle has the lowest frequency and 

the 1.23-degree angle has the highest natural 

frequency. 

 The reason for the decrease in the natural 

frequency at the tapered angle of 2.45 can be 

attributed to the decrease in the number of 

columns and hard elements at the height of 

the structure.But the trend is quite rising in 

structures with 70 floors. In other words, for 

structure with 70 floors, the higher the 

tapered angle, the more the natural 

frequency.In sum, it can be said that in 

tapered structures, a rise in tapered angle 

increases the natural frequency. But on the 

other hand, as the floor level decreases in 

height, the hardening elements such as 

columns also decrease, which in turn 

reduces the natural frequency. 

7.12. The relationship between natural 

frequency and type of structural system 

 
Fig. 21. Natural bar rod diagram with tapered 

angles 0 degree according to the structural 

system. 

 
Fig. 22. Natural bar rod diagram with tapered 

angles 1.25 degree according to the structural 

system. 

 
Fig. 23. Natural bar rod diagram with tapered 

angles 2.45 degree according to the structural 

system. 
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the number of floors. Considering Fig. 21 to 

Fig. 23 it can be seen that for 40-storey 

models, the categorized tube system has the 

highest frequency, and then the tube system 

and tube-in-tube systems have the highest 

frequency, respectively. For models with 55 

and 70 floors, tube system, tube-in-tube and 

bundled tube systems have the highest 

frequency, respectively. In the previous 

section, the results of numerical modeling as 

well as the results of the mathematical 

method were presented, and these results 

were compared and the errors of the 

mathematical method were analyzed. Also, 

the relationships between research variables 

were investigated and their relationship was 

obtained. This section now gives an 

overview of the present study as well as its 

conclusions. 

8. Conclusion 

In the previous section, the results of 

numerical modeling as well as the results of 

the mathematical method were given, and 

these results were compared and the errors 

of the mathematical method were analyzed. 

The relationships between the research 

variables were also examined and their 

relationship was obtained. One of the most 

important dynamic characteristics of high-

rise buildings is tapered vibrational 

frequency. There are no proper classification 

criteria for the new class of high-rise 

tubular, and tubular tapered buildings in 

standard regulations. The results of this 

research are confined to the assumptions 

mentioned in the text. So, the results of the 

present research and also the summary of 

the previous sections and the above 

paragraph, can be deduced and summarized 

as some applicable rules: 

 Using the dynamic relationships of 

structures for free vibration of tall 

tapered buildings, the proposed 

formulae are obtained and with the 

help of programming, the first 

frequency was obtained which is 

used in computational efficiency and 

initial design. 

 The approximate analytical method 

provided for tapered structures is 

well adapted to the results of finite 

element modeling and the use of the 

natural frequency obtained from this 

method was confirmed. This method 

can be used for calculation.  

 The offered mathematical method 

has an acceptable accuracy, which 

has the highest and least accuracy 

and consistency for the tubular and 

tube-in-tube systems, respectively. 

For the range of selected and studied 

models, the average error range is 

approximately 0.08 radians per 

second for tapered structural 

systems. 

 The mathematical analytical method 

is more compatible with the tubular 

system than other systems. In other 

words, the tubular structural systems, 

bundled tubular, and tube-in-tube 

systems, respectively, due to having 

a lower error rate and acceptable 

accuracy, have more compatibility 

and adaptation with the presented 

analytical method. 

 Studies show that the accuracy of the 

offered mathematical method has the 

most compatibility with the highest 

number of floors. In other words, 

with more floors the accuracy of the 

offered method will be higher. So, 

the higher the height of the structure, 

the greater the accuracy of the 

mathematical method, or in other 

words, the proposed method is more 

compatible with the highest number 

of floors for tapered structures. 
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 Studies show that the proposed 

analytical method, which gives very 

little error for tapered angled 

structures and is more compatible 

with the proposed mathematical 

method, is more appropriate. Using 

this method for tapered angled 

structures has a small amount of 

error in calculations. 

 The above research shows that in 

conditions where the stiffness of the 

structure remains constant, when the 

tapered angle of a structure is higher 

(taking into account buildings with a 

fixed height), the natural frequency 

of the mathematical method will be 

more. On the other hand, increasing 

the tapered angle means reducing the 

number of hardening elements, such 

as columns, which reduces the 

stiffness of the structure and reduces 

the natural frequency in the finite 

element method, which must be 

considered. 

 To find the relationship between the 

variables, the study shows that 

although increasing the tapered angle 

increases the natural frequency of the 

structure, there is no significant 

relationship between the natural 

frequency of the structure and the 

type of tapered structural system. 
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