Journal of Rehabilitation in Civil Engineering 10-1 (2022) 49-68

il of

S EMMSY  journal homepage: http://civiljournal.semnan.ac.ir/

Probabilistic Active Control of Structures Using a
Probabilistic Fuzzy Logic Controller

Azadeh Jalalil, Hashem Shariatmadarz*, Farzad Shahabian Moghadam3,
SiamakGolnargesi®

1. Ph.D. Student, Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad,
Mashhad, Iran

2. Professor, Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad,
Iran

3. Professor, Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad,
Iran

4. Assistant Professor, Faculty of Civil Engineering and Environment, Khavaran Institute of Higher Education of
Mashhad, Mashhad, Iran

Corresponding author: shariatmadar@um.ac.ir

ARTICLE INFO ABSTRACT

Acrticle history:

Received: 09 January 2021 Because uncertainty is inherent in engineering structures,

Revised: 26 May 2021 it is essential to improve the procedures of structural

Accepted: 27 June 2021 control. The present study focuses on applying a
probabilistic fuzzy logic system (PFLS) in active tendons

Keywords: for the covariance response control of buildings. In

contrast to an ordinary fuzzy logic system, PFLS
integrates the probabilistic theory into a fuzzy logic
Covariance response matrix: system that can handle the linguistic and stochastic

ANCE Tespe o uncertainties existing in the process. To investigate the
Probabilistic active control; proficiency of the proposed controller, a single degree of
Probabilistic ~ fuzzy  logic freedom (SDOF) system and a three-story multiple degree
controller. of freedom (MDOF) system with different arrangements
of tendons on the floors are considered. The structures are
subjected to a random dynamic load modeled using
Gaussian white noise, and the modeling parameters such
as damping, stiffness, and mass are considered to be
random Gaussian samples with a dispersion coefficient of
10%. The results of the proposed intelligent control
scheme are compared with those of an uncontrolled
structural model and a linear quadratic regulator (LQR)
controller model. The numerical results reveal that the
probabilistic fuzzy logic controller (PFLC) is more
efficient than the LQR controller in decreasing the
structural covariance responses. Moreover, the maximum
and minimum reductions in displacement responses for
the MDOF structures are, respectively, about 36% and
12.5%compared to the LQR controller. It is also showed
that the PFLC is more accurate because it includes
stochastic uncertainty.

Probabilistic fuzzy logic system;
Linear quadratic regulator;

How to cite this article:

Jalali, A., Shariatmadar, H., Shahabian Moghadam, F., Golnargesi, S. (2022). Probabilistic Active Control of
Structures Using a Probabilistic Fuzzy Logic Controller. Journal of Rehabilitation in Civil Engineering, 10(1), 49-
68. https://doi.org/10.22075/JRCE.2021.22238.1469


https://doi.org/10.22075/JRCE.2021.22238.1469
http://civiljournal.semnan.ac.ir/
mailto:shariatmadar@um.ac.ir

50 A. Jalali et al./Journal of Rehabilitation in Civil Engineering 10-1 (2022) 49-68

1. Introduction

The concept of likelihood has become a
preferred approach to deal with unreliability
and unpredictability. This has been brought
into question with the development of the
fuzzy logic systems [1]. A significant
advantage of conventional fuzzy logic
systems (FLSs) is their ability to map
uncertain information to a linguistic domain.
However, fuzzy logic systems cannot handle
uncertainty in practical applications [2, 3].
Uncertainty results from lack of information.
The aspects of uncertainty are inherently
different and should be addressed by process
modeling. One aspect is linguistic or non-
stochastic uncertainty and the other one is
statistical uncertainty, which has been
represented using the possibility theory.
Fuzzy logic is a mechanism to handle and
manipulate linguistic uncertainty. This
feature enables the wuse of connoisseur
science in the form of rules to transform
unpredicted membership functions (MFs) for
input and/or output segments of rules;
however, the knowledge itself is uncertain.
Stochastic uncertainty affects the appearance
of an event in the future. This kind of
uncertainty gives the likelihood of the results
that may or may not happen.

In the past decades, the implementation of
intelligent control schemes such as fuzzy
logic has been improved. Because of the
capacity of fuzzy logic to manage linguistic
uncertainties, it has been widely used. In
1965, Zadeh proposed the fuzzy logic of
type-1 [4]. It is evident that the information
available for the creation of fuzzy rules
contains unreliable data, but this unreliability
is not assumed in the fuzzy logic methods of
type-1. Because the result of a fuzzy logic
system of type-1 is a single number, it
requires some measures of dispersion to
increase the understanding about its
uncertainties [5]. To overcome this
shortcoming, Zadeh presented the fuzzy logic

system of type-2 in 1975 [6] to provide a
measure of dispersion. This is now
considered to be essential for the design of
structures that contain linguistic uncertainty:.
Membership function of a type-1 fuzzy set is
two-dimensional, so the membership value is
a crisp quantity within [0, 1]. In contrast,
type-2 fuzzy sets have three-dimensional
membership functions, i.e., there is a
secondary membership value for each
primary element of a fuzzy set within [0, 1].
This secondary membership value should be
a constant value or a function. A major
advantage of type-2 fuzzy sets is their
capability to manage linguistic unreliability.
Mendel et al. [5, 7-10] improved the basic
concepts related to type-2 fuzzy sets. To
decrease the computational complexity of a
type-2 FLS, an interval type-2 fuzzy logic
system (IT2FLS) was produced [11-13]. For
simplicity, IT2FLS assumes that the
secondary membership is one. To define the
unreliability boundaries in IT2FLS, upper
and lower membership functions are
considered in interval type-2 fuzzy sets [14].

The application of fuzzy control algorithms
has increased for civil engineering structures.
Al-Dawod et al. [15-19] used an active tuned
mass damper (ATMD) on the top floor of
buildings with 5 and 76 stories. These
structural models have been studied under
various loading types, including earthquakes
and wind loads. Pourzeynali et al. [20]
analyzed an 11-story realistic shear building
for various types of earthquakes. They stated
that FLS is very beneficial in minimizing the
structural response in comparison with the
linear quadratic regulator (LQR) and linear
quadratic Gaussian (LQG) methods. Liang
and Mendel [11] proposed an approach for
estimating input and antecedent operations
inIT2FLS by focusing on the upper and
lower membership functions. Golnargesi et
al. [21, 22] demonstrated that IT2FLS is
efficient in reducing the structural responses.
They used IT2FLSs to specify an active
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control force. Previous works show that the
current fuzzy control algorithms have not
considered stochastic uncertainty. Zabihi and
Ghanooni-Bagha [23] introduced a semi-
active controller using the combination of
thermal exchange and intelligent fuzzy logic
controller.

For addressing the insufficiencies of
probability theory [1, 24], it is useful to
integrate FLS with probabilistic features to
process uncertainties that include both fuzzy
and probabilistic aspects. Loginov [25]
considered a connection between fuzzy and
probabilistic sets. He recommended that the
membership function can be described as a
dependent likelihood. This integration has
been studied by others [26-28]; however,
they only studied the relation between
randomness and fuzziness, which cannot be
directly applied to engineering applications.
A probabilistic fuzzy logic system (PFLS)
was proposed by Meghdadi et al. [27]. In this
system, a true value has a specified quantity
in the interval [0, 1] that is called “degree of
truth” with a “likelihood of truth” that is
identified by a likelihood value or likelihood
distribution function. Probabilistic fuzzy
logic utilizes a  probabilistic  three-
dimensional membership function to show
probabilistic uncertainties. The probabilistic
membership  function  contains  three
segments: the input signal, the fuzzy degree,
and the related likelihood. The likelihood
segment of the probabilistic membership
function can be used to describe the
probabilistic unreliability [29]. To present
stochastic uncertainties in an FLS, the
primary membership function should be a set
of fuzzy numbers in [0, 1] and the secondary
membership function is related to the
probability density function (PDF). Several
studies have examined the theoretical
concepts of PFLS. The probabilistic fuzzy set
was suggested by Liu and Li [2], who
introduced probability theory to the
conventional fuzzy field to describe the

random property of membership degree. The
fuzzy degrees in a probabilistic fuzzy set
become the probabilistic parameters, which
allow it to obtain both probabilistic and fuzzy
unreliability. Initially, probabilistic fuzzy sets
were used to approximate functions and
control problems. Liu et al. [30] and Li et al.
[31] introduced a concise review and easy
tutorial on the improvement of PFLS when
there exist both probabilistic and fuzzy
unreliability data. They integrated PFLS into
a neural network to develop its efficiency
under time-varying conditions. For example,
the stochastic nature of wind makes the
estimating of wind speed a complex problem.
Zhang et al. [32] designed a practical wind
speed  forecasting  pattern  utilizing
probabilistic fuzzy theory. Simulations using
real collected data for wind speed showed
that their wind speed estimation model
performs better than the conventional fuzzy
types, interval type-2 fuzzy method, and
neural networks. Huang et.al [33] introduced
a novel procedure to modify PFLS
characteristics based on general probabilistic
fuzzy sets (GPFS). Shaheen et al. [34]
proposed an adaptive probabilistic TSK
fuzzy proportional-integral-derivative
(APTSKF-PID) controller to deal with
linguistic and stochastic complexities of
nonlinear dynamic operations. The results of
two uncertain systems showed that the
proposed scheme can handle both
uncertainties better than the adaptive TSK
fuzzy PID (ATSKF-PID) controller. Nguyen
[35] introduced a fuzzy logic system along
with stochastic uncertainty. In the proposed
fuzzy logic system, the consequent part of
the rules considered all feasible assumptions
with different likelihoods.

To the best of the authors' knowledge, no
study has been dedicated to probabilistic
active control in which a probabilistic fuzzy
logic controller (PFLC) as a novel technique
has been applied to civil engineering
structures. The present study has aimed to
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use a PFLC, which is a combination of fuzzy
and stochastic theories, for controlling the
response of structures subject to a dynamic
random load modeled by Gaussian white
noise. The mass, stiffness, and damping
variables of structures are assumed to be
random Gaussian variables. The dispersion
coefficient of random parameters is assumed
to be 10%. To verify the efficiency of the
proposed control approach, active tendon
control is applied to two different structural
models. One of these models has a single
degree of freedom (SDOF), and has been
empirically investigated by Chung et al. [36].
The other one has a three-story multiple
degree of freedom (MDOF) system, which
has also been investigated by Chung et al.
[37]. The results of the proposed PFLC
technique are compared with those of an
uncontrolled structural model and the LQR
controller. It is observed that the proposed
PFLC has better efficiency for minimizing
the structural covariance responses. The
advantages of the intelligent controller over a
classic controller are highlighted in the
present study.

2. Research significance

In the last decades, the fuzzy logic control
method has been considered as an intelligent
controller in engineering systems. Despite
the significant efficiency of FLS to overcome
linguistic uncertainties, it must be noted that
FLS is not effective in situations where the
controlled systems are subjected to stochastic
uncertainties. It 1s more beneficial when the
probability theory can be combined with the
fuzzy theory. Several uncertainties result
from structural characteristics, mathematical
model insufficiency, dynamic characteristic
of earthquake excitation, and lack of
information in civil engineering structures.
These uncertainties reduce the efficiency of
the control systems. Thus, it is essential to
apply PFLS in controlled structures. This

research utilizes a probabilistic fuzzy logic
system to reduce the covariance responses of
controlled structures. The findings of this
study show that PFLS is more beneficial in
reducing structural covariance responses. The
probabilistic fuzzy logic controller can
reduce the structural covariance responses by
applying linguistic and stochastic
uncertainties which resulted in increasing of
system reliability.

3. Problem formulation

The uncertainty in the movement equation of
a building can be considered as a random
variable 4. This variable is a g-dimensional
vector with the mean u, covariance o4, and a
joint likelihood distribution. Movement
equations for an n-degree of freedom
building can be represented by the
framework of state-space as [38]:

z=A(A)z + B(A)u + E(A)w (1)
and the measurement equation is [38]:
y=C(A)z+D(Au+F(A)v (2)

where z is the 2n-dimensionalvector of
velocity and displacement, 4 denotes the
2nx2nsystem plant matrix, u is the 7-
dimension input vector, B is a 2n X2n matrix
describing the position of the applied control
forces, w denotes the /-dimensional vector of
excitation, £ denotes a 2nx/ matrix defining
the excitation effects on the building, y is an
m-dimension measuring vector, C is them x2n
output matrix of the combination of
measured states, D is the m xr feed-through
matrix, F is an mxm matrix that affects the
measurement noise, and v is them-
dimensional vector of noise measuring.
[w”v” ] is the white noise vector of zero
mean and autocorrelation function as [38]:

w
E{ }:0 3)
v
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where  E[-]denotes the  mathematical
expectation, S is the matrix of uniform
spectral density, and J is the Dirac function.
Non-white noise is integrated into the
equation by reinforcing the movement
formulation with an effective perturbation
filter [39].

4. Covariance control fundamentals

Studying the improvement of the covariance
control theory emerged in the 1980s [40].
The main concept of covariance control is to
obtain a state covariance by solving the
closed-loop feedback methodology. Thus, it
is needed to describe the system
specifications in the form of covariance,
variance, or root mean square (RMS).The
essential reason for improving the theory of
covariance control is the expression of
engineering systems in terms of variance
[41]. The basic quantities that are the product
of unpredictable inputs and the primary
conditions exerted one at a time to the
mechanism are presented in Egs. (1) and (2)
[41]. Let the system be driven only by u, so
an impulsive input is inserted into the /™
input source, and other data are assumed to
be zero, and the results are added as shown in

Eq. (5):

U; = 1;0(t) (5)
where y; is the intensity of the strike and d(¢)
denotes the Dirac function. The linear matrix

in Eq. (6) describes the state covariance
matrix X [41].

0=XA" + AX + BUB' (6)
w0 0

where U=| 0 . 0 |is the square of
0 0 u

the matrix of input impulsive disturbance
magnitudes (intensity). The state covariance

matrix X,is produced due to exerting
impulses one at a time to each of the
disturbance sources. Moreover, (w;= @;d(f))
[41] satisfies Eq. (7) as:

0=X,A" + AX, + DWD" (7)
o> 0 0

where W =| 0 0 | is the square of
0 0 o

nW
the matrix of disturbance magnitudes
(intensity). To complete the possibilities, if
the preliminary conditions are exerted one by
one, state covariance matrix X, satisfies Eq.
(8)as [41]:

0=X AT + AX, + X, (8)
2
X, 0 0

where X,=| 0 "-. 0 |is the square of
0 0 X

Ony
the matrix of the initial condition intensities.

Eventually, Eq. (9) represents the full results
of all excitations exerted one at a time [41].

0=X,, A" +AX,, +BUBT +DWD" +X, (9)

where X, = X + X,, + X,.. This describes
the sum effect of excitation from initial
conditions and impulsive inputs in u(¢) and
w(?) that have been applied one at a time.
Matrix X,, includes data about the excitation
of the system due to impulsive disturbance
and X includes data about the excitation of
the system due to impulsive inputs in u(¢).
These basic concepts are the foundation for
the improvement in the theory of covariance
control [42]. For a wide class of control
techniques, as in Eq. (1), the closed-loop
state is shown as follows [38]:

7= A (T +E, {VVV} (10)

where 7 denotes the state vector, A, (A)is
the plant matrix of the closed-loop state, and
matrix E, denotes the effect of estimated
noise on the closed-loop technique. By
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assuming that the structural state parameters
are completely assessable, the state-space
matrix of the closed-loop feedback controller
is given as follows [38]:

Ay (A) = A(4) - B(A)K (11)

where K denotes the feedback gain matrix.
The Lyapunov mathematical problem is
showed in Eq. (12). For the linear dynamic
mechanism in Eq. (10), the covariance matrix
of the response can be written as the outcome
of the Lyapunov mathematical problem [38].

Y. =A2; +2;A, +272E,SE (12)

With the initial conditionsX;(0)=ZX,. The
stationary covariance matrix can be obtained
by solving Eq. (12) using X, =0 [38].

5. Structural model

5.1. Structural model of single degree of
freedom

An SDOF structural model with active
tendons is depicted in Fig. 1. The prestress
force of each tendon during a static state is
denoted by R.

m__ | [ m

~ o a < U [

AIi‘ R R—;x‘.u R;k,u
Static State Dynamic State

Fig. 1. SDOF model with active tendons [36].

The movement equation for uncontrolled and
controlled SDOF buildings with active
tendons is presented in Egs. (13) and (14),
respectively, as:

MX + cX + kx = —m¥X | (13)

MX +cX +kx =-—mX  —4k. ucosa (14)

where x denotes the horizontal relative
displacement, and u denotes the activator
situation; ¢, k, and m denote, respectively, the
damping, stiffness, and mass of the building
and X, 1s the ground acceleration.

Control force is generated by pulling a
collection of active tendons and liberating the
others [38].Then, the state-space description
of the movement equations is:

0 1 0 0
1=| k clz+| 4k cosa UJ{ }x (15)
_ - - -1 9

m m m

where z =[x )'(]!. In this study, the ground
acceleration is considered as Gaussian white
noise. Table 1 lists the SDOF model
parameters [38].

Table 1. Model parameters of SDOF structure
[38].
Mean (p) Standard deviation ()

¢ (Ib-s/in) 9.02 0.902
k (Ib/in) 7934 793.4

m (Ib-s*/in) 16.69 1.669
k.(Ib/in) 2124 0

o (degrees) 36 0

5.2. Multiple degrees of freedom

The MDOF systems with various tendon
controller placements are used in more
complex structures. Each system is a three-
story structure with a single-bay exposed to
one-dimensional  earthquake  excitation.
Figure 2 shows the placement of three
tendons. Case A features tendons only on the
first floor. Cases B and C have tendons on all
floors. In case C, activator devices are
situated on the bottom floor [43]. Figure 3
shows the dynamic tendon forces for
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prestress forces (denoted by R). Equation are written in a state-space form as Egs. (17),
(16) presents the mass, stiffness, and (18), and (19) for cases A, B, and C,
damping matrices for a simple shear frame respectively.

model. Dynamic equations of the movement

Case A Case C

Fig. 2. Three MDOF systems with active tendons [37].

m3
N [
R+ koug R —kcu; m3
Ko oy N [
ma R—kouy R+ kouy
N @y

ms3 e
Rtk —ketz p_ g, R+ kouy
mi
N

u; R
Ka o
mi mi
(3% T 2% < o
o a
R=keuy Rtkan g — g, Rtkay R-kay R+ ko

Case A Case B Case C
Fig. 3. Tendon forces in dynamic state for all cases [43].

m 0 O c,+Cc, —¢C, 0 k,+k, -k, 0
M]=| 0 m, o0 |[C]=| -¢c, c,+c, —c, | [K]=| -k, k,+k; —k,
0 0 m 0 —-C, C, 0 -k, Ky
(16)
u1
MIX +[C]X +[K]X =-[M]L]X, — 4K, cosea| O
° (17)
-1 1 0]y
M]X +[C]X +[K]X =-[MJ]X, +4K cosal O -1 1 |u,
0 0 -1fu, (18)
u, cosa
MIX +[C]X +[K]X =-[MJ1]X, —4K_|u, cos B
u, cosé

(19)
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In the above equations c¢;, k;, and m; are
damping, stiffness, and mass, respectively,
related to the ith floor of the structure. The
situation of the activator is denoted by u.
Equations (17)- (19) can be formulated in a
matrix framework as:

M % +Cx+K,x=BUu-MTI,%,  (20)

If the state vector is defined asz =[x" X[,

Eq. (1) can be expressed in the framework of
the state-space matrices:

0 I 0 0
A= y B: ) E: 21
[_ M;le - M51C5:| [MslBs‘| [_rs:|( )

In this study, the simulation parameters, i.e.,
damping, stiffness, and mass, are Gaussian
random variables. A dispersion coefficient of
10% is considered for the random variables,
and the controller is assumed to be definite.
Table 2 lists the model parameters as
reported by Chung et al. [37].

Table 2. Three-story structure model parameters

[37]
Mean  Standard deviation
(1)) (o)
¢1 (Ib-s/in) 2.6 0.26
¢, (Ib-s/in) 6.3 0.63
¢; (Ib-s/in) 0.35 0.035
ki (Ib/in) 5034 503.4
k> (Ib/in) 10965 1096.5
k3 (Ib/in) 6135 613.5
my (Ib-s*/in) 5.6 0.56
my (Ib-s*/in) 5.6 0.56
ms (Ib-s’/in) 5.6 0.56
k. (Ib/in) 2124 0
0 (degrees) 65 0
B (degrees) 55 0
o (degrees) 36 0

6. Controller method

6.1. LQR controller

A state feedback LQR controller is
introduced by modeling the ground
acceleration as Gaussian white noise and
reducing the efficiency index in both the
SDOF and MDOF systems. The quadratic
performance indices for the SDOF and
MDOF systems are shown in Egs. (22) and
(23), respectively.

J :mTlEUJ (kx? +74<Cu2)dt} 22)
J=lim %E[ [ (x’KSx+7kcu2)dt} (23)

where y denotes the control scheme factor.
With increasing y, more weight is given to
incoming energy, while as y decreases, more
weight is imposed on the strain energy. An
infinite value for y denotes the uncontrolled
case [37].

6.2. Probabilistic fuzzy logic controller

As described for an ordinary FLS, a PFLS
contains  four  significant  segments:
probabilistic  fuzzification, fuzzy rules,
probabilistic fuzzy inference engine, and
probabilistic defuzzification (Fig. 4).

The rule base develops from the expert
knowledge to specify a relationship between
input domainX; X X, X -+ X X, € R™ and
output domainY € R. These rules are in the
form of an IF-THEN expression as
follows[3]:

Rule i: If X, is ;&Li and X, is '&Z,i ---and X,

is A ., thenyis B, (24)

n,i?»

where A (=1, 2,... ) (i= 1, 2,..., J) is a

priori in the view of the /™ input variable Xj,
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. th = . .
in the 7 rule, and B, is a subsequent section

associated with the output parameter y [3]. In
contrast to traditional fuzzy sets, antecedent

~

parts A,
probabilistic fuzzy sets (PFSs) in PFLS.

and consequent parts B, are

6.2.1. Probabilistic fuzzification

One of the major differences between usual
fuzzy logic and probabilistic fuzzy logic is
that the fuzzification and defuzzification
methods in a probabilistic fuzzy logic system
focus on PFS. Thus, the significance of a
PFS is introduced as follows:

e Description 1(PFS): The probabilistic
fuzzy set A can be presented by a
likelihood space (U, , ¢, p) , where U,
is the collection of all probable
occurrences,U, =[01], and pis a o-
field. The input parameter is X e X
and the fuzzy degree is u €[0,1].

Fuzzy rules

Probshilistic Probabilistic Fuzzy Probabilistic
Fuzzilical i Inferene Logic Defuzzificat
P g
r"'z:’" MF : Mamdani | Probabistc Yo,
o : . inference - processing &
> : ' : : i
P Ap bal ¥
o Secondary ¥ . o »
o PoE . k =
v Frobiskilisk: Defuzzification

T inference
it

For any x4 in Ux, the PDF can be defined by
¢ as[3]:

p(1) 20, | p(u)du =1 (25)

PFS can be demonstrated as Eq.
shown in Fig. 5.

(26) as

A= UWU,.0.p) (26)

An important idea in the probabilistic fuzzy
approach is that a PFS is a combination of
primary MF and secondary PDF [31]. For an
input x, its fuzzy membership degreeu(x) is a
statistical parameter with the secondary PDF.

The primary MF of PFSs A” and gi can be
employed as [32]:

_ (Xj _Cj,i)2
u(x;;) = eXF{— TJZ.J (27)

where u(x;;) represents the primary fuzzy
membership degree, and ¢;, and c;; are,
respectively, the width and center of PFS. To
consider the ability to handle stochastic
uncertainty, the secondary PDF is presented
by the randomization of the variables in the
primary membership function (Fig. 5).In this
paper, the center ¢;; has been randomized to
follow a Gaussian distribution. The
secondary PDF can be written as [32]:

1 /—2§fi
- 'i’X' = :
pAJ’" (#J' J) 2\/2”/11,i0'j,i In K

expl (,/—2§ii Inu;; +X _uj)z . o8)

2
20'”

2
(—,/— 2§j21i In g +X; —uj)

2
20'j1i

exp| —

where x;; €[01] is the primary fuzzy degree
parameter, p; (#;;,X;)denotes the PDF, and

o;; and u;; are, respectively, the standard
deviation and mean of the Gaussian
distribution in the view of ¢;;. The full details
of Eq. (28) are presented in Appendix A [32].
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6.2.2. Operation techniques of PFS
e Description 2 (union operation of
PFS): probabilistic fuzzy sets Aand
B can be written as [3]:

p2|
I

U;.05,P5),

U
xeX (29)
XEJX U905 Pz)

oo}
Il

The union operation of Aand Bcan be
expressed as:

P, (X))

Secondary Probability Density Function

AU gzxyx(u i ®is Pis) (30)
with

p(,uz\vg) >0

P(uz,5) = Pluz v 15) (31)
= p(uz)P () + P(uz) p(ug)

[ pluz,5)=1 (32)

Fig. 5.Probabilistic fuzzy set.

The cumulative distribution functions of

fuzzy degrees pzand pg are P(u;)and
P(uz) , respectively.

e Description 3 (intersection of PFS):
The intersection ofprobabilistic fuzzy

sets Aand B can be written as [3]:

ANB= UWUz056 Pag)

(33)
where
pu; 5)20
Puz 5)= Pz A pt5) (34)

= Pz )= Pluz)) = P(uz) pug) + plus)

1

[ p(uz.5)=1 (35)

0

6.3. Probabilistic fuzzy inference engine

As previously described, the PFS consists of
continuous PDF, which is identified as Eq.
(28). Therefore, the inference engine of PFLS
can be obtained under a probabilistic
framework. The probabilistic fuzzy inference
engine is a nonlinear representation in the
input  domainX;xX,x---xX, and output
domain Y as follows [3, 32]:

R;&,ix"'x'&n,iﬁéi (X’ y) (36)

where A ; x---x A ;represent the Cartesian

product of ;&,i"”"&n,i' For an input x =
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(x7,...,x,) and associated membership
function wux(x), the fuzzy relation set R; in Y
can be computed as [32]:

'uRi(y) :'LlAl,i O‘qu,i O"'OluAm,i OluBi
(37)
where 4, and pp  define the fuzzy

membership. The symbol “o” indicates a t-
norm functioning [32]. The minimum
functioning has been exerted in this paper.
Equation (38) denotes the probabilistic fuzzy
inference in the ' rule[32]

Hg, (y) ~ Pr = p(;l;l Hp,. (V) * Uy (y) =
p(min(u,, (%), a, (X)) * 15, ()
(3%)

where pg denotes the PDF of i (y), and T

and * indicate the minimum functioning [32].
In Description 3, the PDF of the input firing
level can be presented as [3, 32]:

P(t, () = (T 115 ()
= pmin(us (%), 15, (X))

- S oty G-l ()

t j=t+l

+3 Pz, (%) (39)

Zp(ﬂ Xk)XH]' P(u Xj

k=t+1 j=t+1
J#k

+ Dl (%)

The firing level of the input variable in the /™
rule is 22, (X) . P(uz (x;)) is the cumulative

distribution function (CDF) of x; . The

PDF of inference PFS p(ug (y)) can be
written as [3, 32]:

P(ste, () = p(min(z,, (x), 45 (¥)))
= P, ()AL= Pz (¥)))

— Py, (X)) Pazz () + Ptz (¥))
(40)

where P(uz (y)) and P(u, (X)) are the
CDF of p; (y) and u, (X), respectively.

6.4. Probabilistic defuzzification

The defuzzification process is associated
with fuzzy sets. Since the inference engine is
based on the probabilistic fuzzy set, a
probabilistic defuzzification is proposed in
this paper. The mathematical expectation of a
stochastic output produces the ultimate
output by the concept of stochastic
defuzzification. In this case, the center-of-set
probabilistic  defuzzification method is
proposed. The probabilistic output of the
probabilistic fuzzy logic system can be
determined as [3]:

R @)

where Y; is the center of probabilistic fuzzy

set gi in rule 7, J is the number of rules, and
4, 1s the firing level in rule i; y;and u,; are
stochastic variables. One of the limitations of
the probabilistic theory 1is that it is
challenging to obtain the likelihood
distribution of the product of two parameters
[32]. To overcome this drawback, Zhang et
al. [32] suggested replacing y; by the
mathematical expectation of y; as follows:

Z E(Y:) i,
yPFLS I:1 (42)

Then, a discretization method is needed to
obtain yprs as Eq. (43) [32]. In this process,
firing level w4 (p(u4) > 0) should be
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discretized into Q regions [u NEYCHE

which are centered at ., 4,5, 44,0 and

the associated probability
P(,2),P(td,52)e- P10 ) can be estimated
as Eq. (44) [32].

Z E(y| )luAmi
Yers =1———p L €{L...Q} (43)
ZIUALH
Pl )= [ Plty)d (i) (44)

/lAi,Ii

Finally, every possible combination of
{,LlAl,tl l,LlAZ,tz l"'1‘l’lAJ‘IJ }
(t.=1...,Q,i=1...,J) and the concerned

probabilities are investigated to find all ypgs
and their associated P(ypr.s) as follows [32]:

P(Yeris) = H P(,uAi.t. ). (45)

As mentioned, the crisp output y can be
determined using the expected value of yprrg
as [32]:

y= E(yPFLS) :ZyPFLS 'P(YPFLS) (46)

The probabilistic fuzzy logic controller
scheme is shown in Fig. 6.

Crisp input
xXx

-

i Primary MF Secondary PDF iPmbablliSIiC
H(x), u(x) [P(x,u(x)), p(¥,u(x))| | fuzzification
i

= -
1 1
Fuzzy}..+-) Mamdani Probabilistic ! Probabilistic
sales| B9 Ainference * inference |! fuzzyinference
: 1200), p(pp(y)) s engine
e T
i . ——!
' | Probabilistic Defuzzification | | Probabilistic

| defuzzification
'

. [
processing Yerrs: POprrs)

— Ty :

Crisp output
¥y

Fig. 6. Flowchart of the utilized PFLC.

7. Probabilistic fuzzy logic design

A probabilistic fuzzy logic controller uses
uncertain information directly obtained from
the building model. This information is
defined as PFS. In this research, PFLC uses
two input variables, each with three primary
membership functions, and one output
variable with seven primary membership
functions. The velocity and displacement of
the structures are the inputs of PFLC and the
output parameter is the active control force.
The reason for using two input variables is to
illustrate the efficiency of the PFLS strategy
in the control problem. The primary
membership functions for the input and
output parameters are Gaussian, as denoted
in Eq. (27), and are introduced for the
common interval [-1,1]. Previous studies
have wused triangular linear membership
functions. However, Gaussian functions are
more capable of estimating and improving
the results. In this paper, PFLC is used as a
probabilistic active controller. Thus, the
membership functions are transformed from
a simple mathematical model into
probabilistic parameters. It is assumed that
the integration of Gaussian and probability
within membership functions can produce
better  responses.  Gaussian  functions
determine uncertainties more effectively than
other functions. In this study, PFS has been
constructed by randomly selecting the center
of the Gaussian fuzzy set; thus, the
membership function becomes a random
parameter that can be introduced by the
secondary PDF function. As presented in Eq.
(28), the standard deviation and mean of the
fuzzy sets are two secondary PDF features of
each primary membership function. The
proposed primary membership functions for
input and output parameters are presented in
Figs. 7 and 8, respectively. The same
standard deviation for the center of the fuzzy
sets is considered for both the inputs and
output. The mean centers of the primary
membership functions for the input variables
are -1, 0, 1 and for the output variable are -
0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75.Table 3
shows the fuzzy parameters to define the
fuzzy domain [21]. Table 4 presents the
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inference rules, which have been generated

61

] PB positive big
from expert's experiences. .. .
PM positive medium
Table 3. Fuzzy variables. Ps positive small
Membership Variable Definition
function Output Z Zero
P positive NS negative small
Input VA Zero NM negative medium
N negative NB negative big
N z P
g i
e- 06 7
’_).E 05— 7
g
E 04 T
g 03 7
a: 02 T
Input Variable

Fig. 7. Primary membership functions of input parameters.

NB NM NS

Z

PS PM PB

Primary Membership Function

Output Variable

Fig. 8. Primary membership functions of output parameters.

Table 4. Inference rules for PFLS

Displacement Velocity
N Z P
N PB PM PS
VA PS Z NS
P NS NM NB

8. Results and discussion

To study the efficiency of the proposed
probabilistic active control strategies for
decreasing the building responses under
Gaussian white noise excitation, an SDOF

and three MDOF structural systems are
chosen as sample problems. The results of
these building responses, which are
controlled by the PFLC method, are
compared with those controlled by the active
LQR control method. In the configuration of
the LQR controller, a full state feedback
closed-loop mechanism is utilized. For the
LQR controller, the control design parameter
y =1 is chosen for the performance index in
Egs. (22) and (23). Spencer et al. [38]
showed that, with the use of a smaller value
of y, more weight can be imposed on the
strain energy, so smaller covariance matrix
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(RMS) responses are obtained for Table 5. Transfer function of the LQR controller
displacement. In the optimal control theory, for SDOF.
finding the control gain matrix is the main Control gain matrix (G)
problem, which can be solved using the
Riccati algorithm. The gain matrices are SDOF  -1.0969 -0.0717
presented in Tables 5 and 6 for SDOF and
MDOF systems, respectively.
Table 6. Transfer function of the LQR controller for MDOF.
Control gain matrix (G)
Case A -2.6315 1.6872 -0.0281 -0.0646 -0.0273 -0.0099
-1.1264 0.1119 0.0453 -0.0365 -0.0158 -0.0132
Case B 1.0777  -1.1220  -0.0533  0.0207  -0.0308  -0.0137
-0.1181 1.1065 -1.-258 0.0026 0.0197 -0.0363
-1.3385 0.4691 0.1108 -0.0453 0.0021 0.0028
Case C -0.1124 -0.8408 0.3168 0.0015 -0.0425 0.0033
0.0585 -0.0819 -0.5044 0.0015 0.0024 -0.0393

The simulation analyses of the single and
three-story benchmark models with tendon
systems are conducted using unit intensity

SDOF structure, and for each story of cases
A, B, and C. The calculation of the response
reduction percentage is introduced as

white noise. The covariance matrix responses follows:

are compared with the LQR controller and ) o

PFLC under the same simulation conditions. Response reduction (%) = {(Uncontrolled
covariance  response-Controlled  covariance

Tables 7, 8, 9, and 10 show the simulation

response)/(Uncontrolled covariance response)} *

results of the covariance matrix of
displacement and velocity of the uncontrolled
and controlled models for the top story of the

100. (47)

Table 7. RMS displacement and velocity responses of SDOF model with LQR controller and PFLC.

Covariance response

o,(in) o,(in/s)
No control LQR PFLC No control LQR PFLC
0.1688 0.0162 0.0099 3.6862 0.4940 0.2442

Table 8. RMS displacement and velocity responses of case A using LQR controller and PFLC

Floor Covariance response (Case A)

number o,(in) 6,(in/s)
No control LQR PFLC No control LQR PFLC
1 0.3986 0.0306 0.0254 6.0211 0.5409 0.4342
2 0.5319 0.0445 0.0338 7.9492 0.8104 0.7379
3 0.6648 0.0624 0.0546 9.9477 1.1646 0.9598

Table 9. RMS displacement and velocity responses of case B using LQR controller and PFLC.

Floor Covariance response (Case B)

number o,(in) o(in/s)
No control LQR PFLC No control LQR PFLC
1 0.3796 0.0183 0.0146 5.8932 0.4113 0.3760
2 0.5320 0.0255 0.0175 8.1934 0.5703 0.4745
3 0.6133 0.0310 0.0198 9.4697 0.6576 0.5929
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Table 10. RMS displacement and velocity responses of case C using LQR controller and PFLC.

Floor Covariance response (Case C)

number o,(in) ox(in/s)
No control LQR PFLC No control LQR PFLC
1 0.3596 0.0133 0.0116 5.5017 0.3711 0.2591
2 0.4863 0.0183 0.0149 7.3076 0.4690 0.3844
3 0.6582 0.0236 0.0189 9.9450 0.5766 0.4887

The results in Tables 7, 8, 9, and 10 reveal
that the efficiency of the probabilistic fuzzy
controller is higher than the case of the LQR
controller. As shown in Table 7 for the SDOF
model, the controlled covariance response
decreases in both LQR controller and PFLC

methods. Tables 8, 9, and 10 reveal that the
proposed intelligent control system also
reduces the controlled covariance responses
of displacement and velocity for each floor of
cases A, B, and C, respectively.

Table 11. Displacement covariance response reduction using PFLC and LQR control systems.

Floor Covariance response reduction of displacement (%)

number SDOF Case A Case B Case C
LQR PFLC LQR PFLC LQR PFLC LQR PFLC
1 90.4 94.1 92.3 93.6 95.2 96.2 96.3 96.8
2 - - 91.6 93.7 95.2 96.7 96.2 97.0
3 - - 90.7 91.8 94.9 96.8 96.4 97.1

Table 12. Velocity covariance response reduction using PFLC and LQR control systems.

Covariance response reduction of velocity (%
Floor P y (%)

number SDOF Case A Case B Case C
LQR PFLC LQR PFLC LQR PFLC LQR PFLC
1 86.6 934 91.0 92.8 93.0 93.6 93.2 95.3
2 - - 89.8 90.7 93.0 94.2 93.5 94.7
3 - - 88.3 90.4 93.1 93.7 94.2 95.1

Tables 11 and 12 show the covariance
response reduction for displacement and
velocity, respectively. The LQR controller
reduces the covariance responses of
displacement and velocity for the SDOF
system by 90.4% and 86.6%, respectively.
The corresponding reductions for PFLC are
94.1% and 93.4%, respectively. As shown in
Tables 11 and 12, simulation results for case
A indicate that PFLC can decrease the
covariance responses of displacement and
velocity of the top floor by 91.8% and
90.4%, respectively. However, the associated
reductions are, respectively, 90.7% and
88.3% for the LQR controller. In case B, in
which there are tendons on all floors, PFLC
reduces the covariance responses of velocity
and displacement of the roof level by 93.7%
and 96.8%, respectively. Further, the
reductions corresponding to the LQR
controller are93.1% and 94.9%, respectively

(Tables 11 and 12). It is evident in Tables 11
and 12 that, for case C, PFLC reduces the
covariance responses of displacement and
velocity, respectively, by about 97% and 95%
compared to the uncontrolled responses for
the top floor. Tables 11 and 12 demonstrate
that the response reductions in displacement
and velocity for the LQR controller are
96.4% and 94.2%, respectively, for the top
floor. Table 13 shows the reduction in
covariance response of PFLCascompared to
the LQR controller. The results indicate that
PFLC reduces the displacement and velocity
responses of the SDOF system by 38.6% and
50.6%, respectively, compared to the LQR
controller. As shown, the displacement
covariance response reduction compared to
the LQR controller for the top floor of cases
A, B, and C are 12.5%, 36.1%, and 20%,
respectively. Besides, these results for the
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velocity covariance response are 17.6%,

9.83%, and 15.2%, respectively.

Table 13. Reduction in covariance response in PFLC as compared to LQR controller.

Covariance response reduction (%)

nﬁiﬁggr SDOF Case A Case B Case C
Displacement Velocity Displacement Velocity Displacement Velocity Displacement Velocity
1 38.6 50.6 16.8 19.7 20.2 8.58 12.5 30.2
2 - - 24.1 8.95 31.4 16.8 18.1 18.0
3 - - 12.5 17.6 36.1 9.83 20.0 15.2

The RMS control force (o,) for SDOF and
MDOF are presented in Tables 14 and 15.
The results show that the RMS for the
control force in the SDOF structure in PFLC
is about 130.70 1b, while that in LQR
controller is about 91.27 Ib. As can be
observed from the results, the control force
of PFLC for case A increases by about 30%
compared to the LQR controller. In case B,
the control force of PFLC for the first and
second floors decreases by about 65% and
16%, respectively, compared to the LQR
controller. However, in the third floor, it
increases by about 99%. The results of Table
15 for case C indicate that the control force
of PFLC increases in all floors. The
maximum and minimum values of increase
for the second and first floors are about
176% and 47%, respectively. As a result, in
PFLC, long tendons of structure in case C
produce greater control forces compared to
other cases. The active tendons on the top
floor provide a side effect so that the tendons
experience reaction forces in the opposite
direction to the major control forces. One of
the important reasons for the small top floor
RMS displacement response in case C
compared to case B is that the resistance

control forces in case C are protected by the
land surface. Because the tendons are very
long in case C, the utilization of this structure
1S not reasonable, so case B is more
preferable. As observed from the analytical
results, the active control force that is needed
to reduce the structural responses of
displacement and velocity is greater in PFLC
than in the LQR controller. Therefore, greater
response reduction in PFLC compared to that
in the LQR controller causes a significant
reduction in the member size of structures.

By studying and analyzing the results, it can
be understood that the LQR controller is not
efficient in considering the uncertainty in
structural control. However, the ability of the
PFLC approach to handle the stochastic
uncertainties in fuzzy rules results in a
reduction in the structural responses in all
floors. These reductions are greater in PFLC
than in the LQR approach. Therefore, the
PFLC provides more reliable results than the
classic LQR system.

It is worth mentioning that the reported
results correspond to the analysis of a
specific case and a wider range of analyses
seems necessary.

Table 14. RMS horizontal control force of SDOF for LQR controller and PFLC.

Floor LQR PFLC
number o,(lb) c,(Ib)
top floor 91.27 130.70
Table 15. RMS horizontal control force of MDOF for LQR controller and PFLC.
Case A Case B Case C
Floor LQR PFLC LQR PFLC LQR PFLC
number o, o, Gy Oy Oy Ou
(Ib) (Ib) (Ib) (Ib) (Ib) (Ib)
1 130.14 169.23 35.07 12.20 35.81 52.70
2 - - 19.38 16.24 32.70 90.33
3 (top) 29.87 59.60 30.20 60.80
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9. Conclusion

This study presented a probabilistic active
control using a probabilistic fuzzy logic
system for civil engineering structures with
uncertain characteristics subject to dynamic
random loads, which were modeled as
Gaussian white noise. The mass, stiffness,
and damping variables of structures were
considered to be random Gaussian
parameters. The dispersion coefficient of
random parameters was assumed to be 10%.
Fuzzy and stochastic theories were integrated
using a PFLC for response control of
structures. For numerical evaluation, the
active tendon system was implemented in
two types of the structural models, one using
a SDOF system and the other one using a
three-story MDOF system. The results of
PFLC were compared with those of an
uncontrolled structure and an LQR controller.
The following conclusions can be drawn
from this study:

(1)The results of this study demonstrated that
PFLC is quite efficient in decreasing the
structural covariance responses compared to
the LQR controller. The results of
comparison of controlled covariance
responses of building floors in cases A, B,
and C showed that PFLC reduces the
responses of the floor smore effectively than
the LQR controller.

(2) The SDOF system with PFLC produced
better covariance response values than with
the LQR controller.

(3) Case C of the MDOF system with PFLC
showed the greatest reduction in the
covariance response.

(4) Because the tendons are very long in case
C, and there are six activators on the land
surface, the use of case C is not feasible and
case B is more feasible for application.

(5) The results also showed that the control
force required to reduce the covariance

response in PFLC was greater than that in the
LQR controller.

It is worth noting that these results were
obtained by an assumption that earthquake
excitation is a Gaussian white noise. It is
strongly recommended that this research be

continued using far-field and near-field
earthquakes.
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Appendix A The probability distribution function is:

Derivation of probability 1 (c i j'i)z A2
distribution function (PDF) of fuzzy P(C;0) = 2@0—].. P~ 20,/ (A-2)
set YI '

. .. ) Because 4. €(0,1) increments in (—oo, X;
Using central limit theory, the center ¢;; in #y:. € (0) ( )

Eq. (27) is a normally distributed parameter and reduces in(X;,+), its PDFis obtained
as: when  u;; <0, F(uj) =P <p;)=
Oand when 0 < u;; < las described below.

¢, ~N(u;.0,7) (A1)

CImIn /
E(uj)) =Pu<up;)=P (exp (— ﬁ) < /,tj,l-> =P (Cj,i <xj— —Zfﬁi Inu;;orc;; > x; +

xj+ =285 Inpj;
/—26 Filn u,-,i) =1-[ " Y——— P(g,;)dg. (A3)
Xj— _ij,i lnuj'i

Therefore,

xj+ /_ijz,i Inpj;
F ( ) ) _ 1- f P(Cj,i) de'i,O < .u'j,i <1
uHji) = xj= |-283 g

0, otherwise

(A.4)

pa; (W) = (B ))' =

! /2_% x (exp <_ (-2t ﬂf.i“‘f'”j'i)Z) + exp (‘ . Jfﬁimwx}._uh)z) (A.5)
Inpj;

2V2mpioj; 20,2 20,2

Therefore, the PDF of the PFS can be summarized as [3]:

2 2
1 /—erf,i exo _(J—Zﬁii In g5 +X; —uj) (—J—Zfii N, +X —uj)
In 5,

+exp -
p[\“(/uj,i!xj): Zmijiaj,i 20" 20"

3l N

O<u;; <1

0, otherwise
(A.6)
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