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Ordinary concrete production is highly energy intensive and caused 

to greenhouse gas emission responsible for global warming. 

Geopolymer mixtures are the eco-friendly alternative for to protect 

the CO2 emission in concrete industry. In this study, the post-fire 

behavior of fiber reinforced geopolymer concrete (FRGPC) was 

investigated based on molarity changing approach. To do so, 

supplementary cementitious materials such as fly ash, metakaolin 

and zeolite are used to provide binary and ternary FRGPC 

mixtures. For this aim, FRGPC exposed to elevated temperature at 

the 200, 500, 800 °C. In addition, three molarity (12, 14, 16) of 

solution is studied for better strength performance. The result of 

this study presented that the ratio of the post-fire residual strength 

of the sample of Z10MK20 increased by 8.1% at 200 °C, 14.1% at 

500 °C, and decreased by 5.2% at 800 °C. The 28-day sample 

resistance, with 20% replacement of metakaolin, was measured at 

45.8 MPa after adding fibers (2% constant volume of 1-3% 

polypropylene fibers). Also, with increasing the molarity of 

FRGPC mixtures from 12 to 16, the heat resistance behavior in 

FRGPC had an increase about 6%. Increasing the volume of 

polypropylene (PP) fibers up to 3% by volume did not have much 

effect on the heat resistance behavior of FRGPC. Beside, post-fire 

strength of FRGPC was predicted using artificial neural network 

(ANN) and support vector machines (SVM) with the integration of 

water cycle algorithm (WCA). Based on the coefficient of 

determination obtained in the training and testing stages, ANN-

WCA model had an acceptable performance in predicting the post-

fire residual strength of FRGPC. Additionally, the sensitivity 

analysis manifested that the molarity of the FRGPC mixtures and 

the exposed temperature had the greatest effect and PP fibers had 

the least effect on post-fire residual strength of FRGPC. 
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1. Introduction 

Concrete is a commonly utilized material 

worldwide due to the widespread availability 

of ordinary Portland cement (OPC), which 

serves as the primary binder with simple 

preparation and exceptional mechanical 

characteristics[1]. However, the escalating 

need for concrete leads to amplified energy 

consumption and carbon dioxide emissions in 

the production of a significant quantity of OPC 

[2]. The excessive use of OPC is considered 

one of the primary drivers of global warming, 

and, therefore, several endeavors have been 

undertaken to identify eco-friendly alternatives 

to this material[3]. Geopolymer prepared to 

replace OPC by activating aluminosilicate 

supplementary cementitous materials (SCMs) 

with high alkali solution [4]. Geopolymer 

concrete (GPC) can be generated from a 

variety of sources, including industrial waste 

and geological materials such as fly ash (FA), 

metakaolin (MK), zeolite (ZE), among others 

[5]. 

Geopolymer composites based on fly ash (FA) 

have received extensive attention in the 

academic research community, owing to the 

fact that thermal power generation is 

responsible for the emission of a significant 

quantity of FA. [6]. Furthermore, the notable 

abundance of essential raw materials and 

favorable activity have rendered MK a subject 

of significant interest [7,8]. The incorporation 

of ZE in the Fly Ash-based GPC enhances the 

degree of geopolymerization, attributed to the 

micro-aggregate phenomenon of the finely 

divided zeolite particles. [9]. 

In the recent years, there has been a 

considerable amount of research undertaken 

by analysts exploring the potential utilization 

of various industrial byproducts and wastes 

such as waste glass powder, metakaolin, 

phosphate sludge, rice husk ash, fly ash, etc. as 

a primary raw material or as fine or coarse 

aggregates in the production of GPC [10]. The 

mechanical properties of GPC are subject to 

the influence of various industrial byproducts 

and wastes. Deb et al. [11] conducted an 

investigation whereby they utilized industrial 

blast furnace waste slag as a partial substitute 

for fly ash in the preparation of GPC. They 

observed notable enhancements in both tensile 

and compressive strengths upon the integration 

of slag. Similarly, Okoye et al. [12] found that 

the use of micro-silica to replace fly ash in 

GPC resulted in enhanced strength properties. 

Luhar et al. [13] employed rubber tire waste in 

fibrous form to partially substitute fine 

aggregates in the production of geopolymer fly 

ash concrete, and noted that while an increase 

in the percentage of the waste led to a decrease 

in compressive strength, there was an increase 

in both flexural and tensile strength. Park et al. 

[14] also observed a decrease in compressive 

strength when sand was replaced with crumb 

rubber in GPC that had fly ash as the base 

material. 

A systematic reduction in strength was 

observed by Aly et al. [15] through their 

investigation. This phenomenon was observed 

as the crumb rubber content was gradually 

increased to serve as a substitute for natural 

sand and aggregates in the structure of 

geopolymer concrete. Albitar et al. [16] 

utilized granulated lead smelter slag as a sand 

replacement in geopolymer concrete and 

observed that the compressive strength 

gradually decreased with the increasing 

amount of slag. Muttashar et al. 

[17]  investigated the use of fine garnets to 

replace sand in GGBS-based self-

consolidating GPC and concluded that an 

increase in the amount of garnets had a 

negative impact on the mechanical properties. 

Although the early strength of the geopolymer 

containing low calcium FA being less than that 

of the MK-based geopolymer, the MK-based 

geopolymer displays inferior resistance to high 

temperature when compared to FA-based 

geopolymer [18]. To address these limitations, 

some scholars have developed binary and 
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ternary blended geopolymer concrete (GPC) 

by incorporating a combination of fly ash 

(FA), metakaolin (MK), and ground granulated 

blast-furnace slag (GGBFS). The research 

findings indicate that geopolymer composed of 

FA-MK-GGBFS displays superior 

compressive and bending strengths and 

enhanced high-temperature endurance when 

compared to geopolymer concrete made with 

either MK or FA [19]. 

The sodium hydroxide (NaOH) is the only 

activator in the GPC that provides excellent 

mechanical properties compared to the OPC 

concrete [10]. The incorporation of sodium 

silicate, also known as Na2SiO3, into the 

mixture resulted in a notable improvement in 

the early strength, specifically during the 7-28 

day period, of the geopolymer system. [12]. 

The addition of a higher concentration of 

NaOH in the mixture has been observed to 

improve the concrete's strength, although it 

comes at the expense of reduced workability 

of the fresh mix. [18]. The GGBFS content in 

the GPC mix forms the calcium silicate 

hydrate (C-S-H) bond if the NaOH 

concentration is low or less alkalinity [20]. 

Of the above factors, incorporating fibers into 

concrete can improve its strength and 

toughness, as evidenced by numerous studies 

that have investigated various types of fibers, 

including synthetic, natural, and metal. Many 

studies have examined various types of fibers, 

including metal, synthetic, and natural. Adding 

fibers can increase tensile strength and 

decrease crack length in concrete. 

Consequently, fiber-reinforced concrete is 

more ductile and durable than non-fiber 

concrete [21,22]. Due to its good mechanical 

properties and environmental protection 

qualities, GPC is being considered as a 

replacement for silicate cement concrete. To 

evaluate its performance, various studies have 

examined fiber-reinforced GPC, with carbon, 

steel, glass, polyvinyl alcohol, polypropylene 

(PP), cotton, and natural fibers being used as 

reinforcement [23–26]. Moreover, in this 

study, machine learning (ML) approach was 

implemented to modeling the GPC 

characteristics. ML is well known approach in 

data science because of its capability to create 

predictive data-intelligence models [27–31]. 

According to the literature, it can be seen that 

researchers have not comprehensive 

investigation on utilizing ternary blended 

pozzolanic materials in fiber reinforced GPC 

under elevated temperature. Beside 

experimental investigation, compressive 

strength and post-fire strength of ternary 

blended fiber reinforced GPC is simulated 

using artificial intelligence models in order to 

formulate the target variable (i.e., post-fire 

strength). Consequent, the most important 

variables are prioritized using sensitivity 

analysis. 

2. Materials and methods 

2.1. Materials specifications 

a)SCMs 

In this research, the low calcium FA with a 

granule density of 2.66 g/cm
3
 was maintained 

from Foolad Mobarakeh Co. in Esfahan. In 

addition, the used Clinoptilolite type of ZE for 

this study was supplied from Semnan mines in 

Iran, and had a specific gravity of 2.14 and 

Blaine fineness of 6788 cm2/g. Moreover, 

Delijan MK was used as pozzolan which was 

supplied from the Ferro Alloy Industries Co. 

having a granule density of 2.59 g/cm
3
. The 

total amount of aluminum Oxide (Al2O3), 

SiO2, and Iron(III) oxide (Fe2O3) in the ZE was 

about 80%. This value is higher than the 

lowest required amount (70%) that is 

suggested by ASTM C 618 [32] for natural 

pozzolans. The chemical properties and loss on 

ignition (LOI) of the used pozzolans are given 

in Table 1. In the mentioned table due to the 

rounding of the values, the sum of the 

percentages of different components is not 

equal to 100%. 
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Table 1. Chemical composition of utilized materials. (%). 
Component (%) ZE FA MK 

SiO2 67.79 61.3 52.1 

Al2O3 13.66 28.8 44.7 

Fe2O3 1.44 4.98 0.8 

CaO 1.68 1.05 0.09 

MgO 1.2 0.63 0.03 

SO3 0.5 0.13 - 

Na2O 2.04 0.24 9.1 

K2O 1.42 1.4 0.03 

Loss of ignition 10.23 0.7 0.7 

Specific gravity 2.3 2.6 2.6 

Fineness (m
2
/kg) 320 310

a
 12000 

 

a) Alkaline solution 

The alkaline solution used in the presented 

study to activate the SCM (e, g., FA, MK and 

ZE) was a compound of glass water and 

sodium hydroxide. The solid sodium 

hydroxide 96% was prepared as a water-

soluble solution. The sodium silicate solution 

utilized in this research had a SiO2 / Na2O ratio 

equal to 2.27 (SiO2 = 35.9%, Na2O = 15.8 %,). 

a)Fibers 

The experimental investigation for 

development of eco-friendly and structural 

GPC mixtures were performed using 2-part 

hybrid fibers namely steel (ST) and PP. Table 2 

referred the details of used fibers. The PP fiber 

length of 6 mm was utilized to reinforce the 

GPC. Moreover, in this study, the hooked-end 

steel fibers having a maximum length equal to 

5mm and a diameter equal to 0.12 mm were 

used to develop and propose the optimal 

blends. To do so, PP at 0.75, 1, 1.25 vol% and 

St at 2 vol%, were added in GPC mixture 

proportions. 

Table 2. Fiber properties. 

ST PP  

5 6 Length (mm) 

7.8 0.93 Density (gr/cm
3
) 

2500 400 Tensile strength (MPa) 

No No Water absorbency 

Excellent Excellent Alkaline and acid resistant 

0.12 - Diameter (mm) 

 

a) Aggregates 

Fine aggregate (Fa) and coarse aggregate (Ca) 

constituted about 77% of the concrete volume. 

The natural sand used as fine aggregate was 

prepared from a local quarry having a fineness 

modulus equal to 3.05, which was in the 

recommended range by ASTM C33 [33]. The 

used recycled coarse aggregate had a 

maximum grain size of 12.5 mm. Also, the 

specific gravity and water absorption values 

were equal to 2.57 and 1.52%, respectively. 

Figure 1 demonstrates the sieve analyses 

corresponding to the recycled and fine coarse 

aggregates. 
 

Fig. 1. Gradation curve for the used. 
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2.2. Mix design, specimen preparation and 

testing procedure 

The mixing of the GPC mixtures was 

conducted in a mixer. For this aim, dry 

materials such as Fa and Ca and SCMs were 

mixed for approximately 3 minutes in the 

mixer, next the alkaline solution was added to 

the mixture and the wet mixing continued for 

another 4–6 minutes until a consistent mixture 

was prepared. The fresh mixtures were 

dumped into steel cube molds with 

150×150×150 mm and cylindrical specimens 

with 150×300 mm. The molds were filled in 

two layers and each layer was vibrated for 

about 25 second using a vibrating table. Table 

3 presents the mix design of reinforced GPC 

mixtures. 

Table 3. Mix design of GPC specimens. 

Specimen 

SCM 
Fa 

(Kg/m
3
) 

Ca 

(Kg/m
3
) 

PP 

(%) 

Na2Sio3 

(Kg/m
3
) 

NaOH 

(Kg/m
3
) FA 

(Kg/m
3
) 

ZE 

(w%) 

MK 

(w%) 

GR0 500 0 0 500 1036 0 162 108 

MK10 450 0 10 500 1036 0 162 108 

MK20 400 0 20 500 1036 0 162 108 

Z10-MK10 400 10 10 500 1036 0 162 108 

Z10-MK20 350 10 20 500 1036 0 162 108 

Z20-MK10 350 20 10 500 1036 0 162 108 

Z20-MK20 300 20 20 500 1036 0 162 108 

GR0-PP1 500 0 0 500 1036 1 162 108 

MK10-PP1 450 0 10 500 1036 1 162 108 

MK20-PP1 400 0 20 500 1036 1 162 108 

Z10-MK10-PP1 400 10 10 500 1036 1 162 108 

Z10-MK20-PP1 350 10 20 500 1036 1 162 108 

Z20-MK10-PP1 350 20 10 500 1036 1 162 108 

Z20-MK20-PP1 300 20 20 500 1036 1 162 108 

GR0-PP2 500 0 0 500 1036 2 162 108 

MK10-PP2 450 0 10 500 1036 2 162 108 

MK20-PP2 400 0 20 500 1036 2 162 108 

Z10-MK10-PP2 400 10 10 500 1036 2 162 108 

Z10-MK20-PP2 350 10 20 500 1036 2 162 108 

Z20-MK10-PP2 350 20 10 500 1036 2 162 108 

Z20-MK20-PP2 300 20 20 500 1036 2 162 108 

GR0-PP3 500 0 0 500 1036 3 162 108 

MK10-PP3 450 0 10 500 1036 3 162 108 

MK20-PP3 400 0 20 500 1036 3 162 108 

Z10-MK10-PP3 400 10 10 500 1036 3 162 108 

Z10-MK20-PP3 350 10 20 500 1036 3 162 108 

Z20-MK10-PP3 350 20 10 500 1036 3 162 108 

Z20-MK20-PP3 300 20 20 500 1036 3 162 108 
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2.3. Compressive strength test 

The compressive strength test referred to as 

the most prevalent evaluation conducted on 

concrete in construction is widely recognized 

for providing a comprehensive overview of all 

the characteristics of concrete. On the basis of 

this assessment, the concrete work can be 

either accepted or declined. The compressive 

strength, regarded as a concrete property, is 

influenced by numerous factors linked to the 

quality of the materials employed, the mix 

design, and the quality control throughout the 

concrete production process. Depending on the 

code implemented, the test sample may be a 

cylinder with diameter 15 cm and height of 30 

cm or a cube of size 15 × 15 × 15 cm. 

As outlined by ASTM C39 [33], a 

standardized method exists to obtain the 

compressive strength of concrete. This entails 

the careful pouring of concrete into a mold, 

with adequate compaction to minimize void 

volume. Subsequently, the molds are removed 

and the resulting test specimens undergo water 

curing for a period of 3, 7, 28, 56, or 91 days, 

as specified. At the end of this curing period, 

the specimens are subjected to compression 

testing using a machine, with an incremental 

application of load until failure occurs. 

2.4. Artificial neural network (ANN) 

Artificial neural networks (ANNs) are a form 

of parallel processing that consist of a large 

number of processing elements or neurons 

interconnecting through layers and weights, 

alike the structure of biological nervous 

systems [34,35]. The calibration process 

involves a comparison between the model's 

target variables and the measured outputs, 

followed by the back-propagation of errors to 

modify the initially assigned weights. 

consequently, the final weights are calculated 

via error minimization [36]. 

The input x variable is evaluated through the 

application of a weighted summation of the 

outputs generated by the first layer. This 

resultant value is then allotted to each 

respective neuron within the second and third 

layers. As an example, the computation of the 

value for y within the jth neuron of the second 

layer is determined by the ensuing algorithm: 

𝑦𝑝𝑗 =  ∑ 𝑊𝑖𝑗𝑂𝑝𝑖 + 𝜃𝑗
𝐼
𝑖=1  (1) 

where 𝜃𝑗 , 𝑂𝑝𝑖 and 𝑊𝑖𝑗 represent the bias for 

neuron j, the i
th

 output of the first layer and the 

weights between first and second layers, 

respectively. A nonlinear activation function is 

employed on the dependent variable, y, and 

subsequently, the resulting output, denoted as 

𝑓(𝑦), is computed for each neuron located in 

the second and third layers [37]. Eq. 2 is 

defined to calculate logistic function as a most 

common activation function: 

𝑓(𝑦) =  
1

1+𝑒−𝑦 (2) 

2.5. Support vector machine (SVM) 

Derived from Support Vector Machines, a 

prevalent machine learning approach utilized 

in the fields of soft computing and concrete 

technology, this precise method is proficient in 

resolving nonlinear classification, regression, 

and function prediction tasks.[38,39]. In 

contrast to the traditional support vector 

machine (SVM) approach, which involves 

solving a convex quadratic programming 

problem, the SVM solution is arrived at 

through the utilization of the least squares 

method to solve a linear equation system. [40]. 

The SVR function can be derived from the 

provided input and output variables in the 

following manner: 

𝑦 = 𝑤𝑇𝜑 (𝑋) + 𝑏 (3) 

where 𝑤 is the m-dimensional weight vector, 

𝜑 is the mapping function and 𝑏 is the bias 

term. Cortes and Vapnik [41] proposed the 

integration of an additional slack variable in 

the linear SVR classifier to allow for 

generalization of the classification model to 

include non-separable data instances. The 

introduction of this auxiliary variable brings 
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about notable modifications to the existing 

system of inequalities. 

𝑞𝑘[𝑤𝑇𝑝𝑘 + 𝑏] ≥ 1 − 𝜉𝑘        𝑘 = 1,2,3, … , 𝑁(4) 

Now, the issue at hand has been greatly 

simplified in the SVR framework. The 

resolution now entails solving a mere set of 

linear equations, in contrast to a convex 

quadric program. [42]. In the primal space, the 

SVM classification method is expressed as 

follows: 

𝑞(𝑝) = 𝑠𝑖𝑔𝑛[𝑤𝑇𝑝 + 𝑏] (5) 

𝐶(𝐵) = (𝐵 + 1) + 𝑑𝐵 (6) 

2.6. Water cycle algorithm (WCA) 

The concept of WCA is derived from the 

careful observation of natural phenomena, 

particularly the movement of rivers and 

streams towards the sea. The majority of these 

water bodies originate from elevated 

mountainous regions, where the melting of 

snow and glaciers initiates their flow towards 

lower elevations. During this journey, they 

accumulate additional water from rainfall and 

other streams before ultimately draining into 

the sea. The hydrologic cycle, which governs 

the movement of water, involves the 

evaporation of water from lakes and rivers, as 

well as transpiration by plants and trees during 

photosynthesis. This water is then transferred 

to the atmosphere, where it gives rise to the 

formation of clouds. When the atmospheric 

temperature decreases, these clouds condense 

and precipitate back to the earth in the form of 

rain or snow [43]. Underground water 

resources and aquifers are replenished through 

the processes of snow melting and rainfall. 

The subterranean water flows beneath the 

terrain with a similar dynamic to that of 

surface water flow. Moreover, the water 

present in rivers and streams undergoes an 

evaporation process, thus perpetuating the 

cycle [44]. 

At the onset of the proposed method, a 

raindrop is designated as the initial population, 

in accordance with established practice for 

other metaheuristic algorithms. The presence 

of precipitation is presupposed in the first 

instance. Subsequently, the most exemplary 

raindrop (or individual) is identified as the sea, 

while a multitude of commendable raindrops 

are deemed the river. In a Nvar dimensional 

optimization program, a raindrop is an array of 

1× Nvar. This array is expressed as following 

function: 

𝑅𝑎𝑖𝑛𝑑𝑟𝑜𝑝 =  [𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑁] (7) 

2.7. Performance metrics 

In this study, to evaluate the proposed models, 

several performance measures (Eqs. (8)- (10)) 

were used. The correlation coefficient (R), root 

mean square error (RMSE), mean absolute 

error (MAE), were used as the measure of 

precision which are expressed as following: 

𝑅 =
∑ (𝑂𝑖−𝑂).(𝑃𝑖−𝑃)𝑀

𝑖=1

√∑ (𝑂𝑖−𝑂)
2𝑀

𝑖=1 ∑ (𝑃𝑖−𝑃)
2𝑀

𝑖=1

    𝑅 ≥ 0.8 (8) 

𝑅𝑀𝑆𝐸 =
∑ (𝑃𝑖−𝑂𝑖)2𝑀

𝑖=1

𝑀
   RMSE= (0, +∞) (9) 

𝑀𝐴𝐸 =
∑ |𝑃𝑖−𝑂𝑖|𝑀

𝑖=1

𝑀
       RMSE= (0, +∞) (10) 

3. Analysis of experiments and review 

of results 

3.1. The results of the effect of molarity on 

compressive strength 

Using the samples made at the age of 28 days 

in a thermal furnace at temperatures of 200, 

500, and 700 
o
C for the investigation of 

ternary blended GPC's resistance behavior 

under heat, Figure 2 shows how the samples 

were tested for stability and sample authority. 

Figures 3-5 shows the results of a study that 

looked at the effect of molarity on compressive 

strength under the heat of a ternary blended 

geopolymer based on metakaolin, zeolite and 

fly ash. At 20 degrees’ Celsius laboratory 

temperature, the 28-day compressive strength 

under the heat of mixtures containing 
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metakaolin, including MK20 and Z10-M20 

with 12 molarity, was 45.8 MPa and 45.4 MPa, 

respectively. In the design and construction of 

geopolymer mixtures, by reducing the amount 

of fly ash and increasing metakaolin and 

zeolite, the results of resistance behavior have 

grown significantly. By applying heat in a 

thermal furnace up to 500 
o
C, the trend of 

thermal resistance is increasing, and from this 

temperature, the resistance of the samples 

decreased by applying higher heat. 

    

Fig. 2. Fiber reinforced GPC specimens and exposing to the heat temperature. 

The compressive strength increased at both 

laboratory and elevated temperatures by 

increasing the molarity of the alkaline solution 

from 12 to 14, while it decreased at 16 

molarity. To produce geopolymeric gel, 

alkaline activating solutions, particularly 

sodium hydroxide, dissolve Si and Al in 

aluminosilicate sources and produce SiO4 and 

AlO4. 

When an alkaline activator solution is mixed 

with sodium silicate, the amount of SiO4 and 

the rate of the geopolymerization reaction 

increase, thus resulting in an increase in the 

compression strength of geopolymer concrete 

to a certain extent due to the presence of 

soluble Si. Additionally, if less sodium silicate 

solution is added than is optimal, the amount 

of dissolved Si decreases, reducing the amount 

of SiO4, thereby decreasing the compressive 

strength. 

3.2. The results of the effect of PP fiber on 

compressive strength 

Figure 4 shows the results of a 28-day 

compressive strength test on ternary blended 

fiber reinforced GPC (FRGPC). In samples 

without fibers containing 10% substituted 

metakaolin, the 28-day compressive strength 

was 26.64 and 37.5 MPa. 28-day concrete 

samples increased by 3% when 0.5% of 

polypropylene fibers were added. 

 
Fig 3. Compressive strength results of the reinforced fiber GPC with 12 molarity content. 
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Fig. 4. Compressive strength results of the reinforced fiber GPC with 14 molarity content. 

 

Fig. 5. Compressive strength results of the reinforced fiber GPC with 16 molarity content. 

When the amount of fibers was increased to 

1%, the compressive strength of geopolymer 

concrete at 28 days decreased by 43.6, and 

when the amount of fibers was increased 

further, the compressive strength of the 

concrete was further decreased. The process 

was repeated for 20% and 30% substitutions of 

metakaolin base material, increasing 

compressive strength by adding 0.5% 

polypropylene fibers and decreasing it by 

adding 1% and 1.5% volume percent of fibers, 

respectively. Using 0.3% polypropylene fibers 

increased compressive strength by 6%, 

according to Asrani et al [35]. Their results 

showed that as the fiber amount increased, the 

compressive strength decreased, which may be 

associated with the contact zone. It can be 

concluded from the obtained results that PP 

fibers have a negative impact on FRGPC 

compressive strength, and only at the optimal 

percentage do they increase it by 

approximately 5%. The addition of PP fibers 

up to 0.5% may increase compressive strength 

due to increased bonding forces between the 

components of the FRGPC mixtures. Figure 6 

shows that the compressive strength decreases 

as the fiber percentage increases at 800 

degrees Celsius. When fibers are increased, the 

decreasing slope between 200 and 500 degrees 

Celsius shows a greater value. 

 
Fig. 6. Compressive strength of GPC with regard 

to the percentage of PP under elevated temperature 

(12 molarity mix designs). 

This contact zone, which is sometimes called 

the border layer or transition zone, is the 
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boundary between the cement paste or base 

material and the aggregate, fiber, or bar 

surface and plays a significant role in the 

durability, permeability, and strength of 

concrete. Contact zones have a different 

microstructure and more porosity than cement 

paste. The type of fiber, type of cement, type 

of pozzolan used, etc., determine the thickness 

of the contact zone. The fibers used in this 

article are polymer fibers, and, due to their 

high flexibility, tend to pelletize and create 

holes in the matrix of base material when used 

in a high-volume percent. This results in 

internal defects in the contact zone, leading to 

a reduction in the compressive strength of 

geopolymer concrete. Furthermore, in 

conclusion, adding fibers to geopolymer 

concrete did not significantly increase its 

compressive strength. Figure 7 shows the 

failure of the 28-day geopolymer concrete 

sample without the presence of steel fibers and 

PP. 

 
Fig. 7. The Z10-MK20-PP2 specimen. 

3.3. Simulating the compressive strength of 

geopolymer concrete 

After making geopolymer concrete samples 

and performing mechanical tests, the results 

were collected in an Excel file. Forecasts 

usually choose independent variables that are 

easy to measure and cost little to measure. In 

addition, the prediction results depend on the 

parameters selected, and the predicted 

accuracy is used to evaluate the correctness of 

the prediction. The first stage of this research 

was to determine whether the selected 

variables (model input) can easily be 

determined by laboratory experiments and, 

second, that the results are accessible at the 

lowest cost. Based on the results of the 

laboratory tests, the database contains 336 data 

from 28 geopolymer three-component mix 

designs with molarities 12, 14, and 16, which 

were prepared at temperatures of 20, 200, 500, 

and 700 degrees Celsius in order to evaluate 

resistance behavior. During modeling, coarse 

grain (C), fine grain (F), and the volume 

percentage of steel fibers in geopolymer 

concrete, which are fixed characteristics in the 

mix design, were not considered. The model 

input variables are fly ash (FA), zeolite (ZE), 

metakaolin (MK), total fiber volume (Vf), 

molarity (M), and temperature (T), and the 

model output parameter is concrete 

compressive strength (CS). In order to prevent 

overfitting, the data set was divided into two 

groups; training and testing. This technique 

uses 75% of the data for training, and 25% of 

the data for evaluating the network built 

during training. The fundamental difference 

between the training data and the testing data 

lies in the fact that the former constitutes a 

subset of the original data that is utilized to 

train the model of artificial intelligence, while 

the latter is utilized to verify the precision of 

the model. Typically, the training dataset is 

more larger as compared to the testing dataset. 

3.3.1. Development of ANN model to predict 

compressive strength under the heat of 

multi-component fibrous geopolymer 

concrete 

In this research, a perceptron multi-layer 

neural network is used, which has a hidden 

layer. In the pursuit of identifying the ideal 

quantity of neurons situated within the hidden 

layers, a total of twenty neural network models 

were generated and thoroughly assessed. This 

was accomplished by increasing the number of 

nerves in the first hidden layer one by one (1-
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20) and checking their performance. The 

Levenberg-Marquardt algorithm was used to 

train the neural network. The backpropagation 

algorithm is widely acknowledged for its 

swiftness and frequently suggested as the 

foremost choice for supervised training. A 

sigmoidal and linear logarithm function was 

used to determine the optimal stimulation 

function in the hidden layer as well as the 

output in the sigmoidal tangent. The sigmoidal 

tangent function in the hidden layer and the 

linear function in the output layer gave the best 

result. For training and testing networks, 25% 

(83 data) and 75% (253 data) of the 

information have been used. In the test phase, 

the final model is determined by its 

performance. Every time the artificial neural 

network model is analyzed in MATLAB 

software, different weights are assigned. 

Consequently, each analysis produces a 

different answer. An ANN model with 7 

neurons in the hidden layer, 0.1 training rate, 

0.1 momentum, and 1000 training rounds was 

recognized as the best neural network model in 

this study. The training rate was 0.01-0.9, the 

momentum index was 0.01-0.9, and the 

number of model repetitions was 1000-5000. 

The diagram in Figure 8 shows the evaluation 

criteria for each artificial neural network 

model. During the teaching and learning 

process, the repetition loop (Epoch) is stopped 

after 1000 rounds and the error is below 0.05. 

During this process, the Mean Square Error 

(MSE) will be calculated as follows: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝐶𝑆𝑃𝑟 − 𝐶𝑆𝑒𝑠)2𝑁

𝑖=1  (5) 

3.3.2. Development of SVM model to predict 

compressive strength under the heat of 

multi-component fibrous geopolymer 

concrete 

Based on the theory of optimization, support 

vector machines (SVM) are modeled with 

linear functions with high dimensions, and 

their learning algorithm is based on the theory 

of optimization. SVMs and radial basis 

function kernels were used in this study. As 

part of SVM modeling, the user sets 

parameters, such as the kernel type setting 

parameter (C), as well as kernel specific 

parameters and (GAMA), and (EPSILON). 

The choice of C and Epsilon was made by the 

user based on trial and error. Consequently, 25 

SVM models were created based on the 

changes in the parameters, and finally, the 

SVM model with the following specifications 

was selected as the best (Table 4). 

 
Fig. 8. schematic framework of ANN. 

Table 4. hyper parameter values of SVM. 

GAMA EPSILON C 

3.72 232.2 0.15 

 

3.3.3. Development of an optimized model 

of artificial neural network and support 

vector machines and water cycle algorithm 

to predict geopolymer concrete compressive 

strength 

Coding for this method was done using 

MATLAB software. Artificial neural network 

training and support vector machines are both 

critically affected by weights and bias, despite 

constant architectures and other parameters. A 

method of trial and error was used to 

determine an optimal architecture in this study. 

MATLAB was used to write the program that 

performed trial-and-error automatically in 

order to select the best network architecture. 

Based on Root Mean Square Error (RMSE), 

this program finds the best architecture for a 

diverse number of neurons and hidden layers. 

As described in the previous section, this 
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architecture also uses the learning functions 

and algorithms of the ANN method. In the end, 

the WCA algorithm was used to optimize 

weights, and network bias. The best network 

architecture consists of six neurons in the 

hidden layer, eight neurons in the input layer, 

and one neuron in the output layer, according 

to the evaluations. According to Table 5 of the 

WCA algorithm, the number of repetitions per 

time and the numbers of particles are 100 and 

50 respectively for optimizing the weight and 

bias of the network. As shown in Figure 9, 

artificial neural networks are used in the 

training phase to predict the compressive 

strength of geopolymer concrete. Additionally, 

this figure displays relative error values for the 

predictions made by the methods studied. 

Based on the value coefficient of 0.990, the 

optimized artificial neural network method 

with the water cycle algorithm predicted the 

compressive strength of the geopolymer 

concrete well. 

Table 5. Values of parameters for WCA. 

Value Parameter 

3 Hyper parameters 

30 Population number 

1 Lower bound 

4 Upper bound 

4 NSR 

16−10 DMAX 

 

At this stage, the highest average error was 

1.281, which is analytically small and ignored. 

According to Figure 10, geopolymer concrete 

compressive strength values at the test stage 

are predicted based on laboratory compressive 

strength values. From a simulation 

perspective, the ANN-WCA model's 

performance with a drop in percentage has 

been acceptable. For this stage, the 

determination coefficient in the simulation of 

geopolymer concrete compressive strength 

was approximately 0.988, with a mean error of 

1.269 MPa. 

In Figure 11, the linear diagram shows the 

comparison between the computational 

compressive strength data and the 

observational data. Figure 9 shows how the 

ANN-WCA model, in the test stage, with 

considerable precision predicted the 

compressive strength of geopolymer concrete 

under heat, compared to other proposed 

methods. With the innovative water cycle 

algorithm integrated, the models displayed 

lower production errors and higher 

convergence rates. In this research, the WCA 

is evaluated as a stochastic search algorithm, 

which exhibits high convergence and 

simplicity, while also boasting low-cost and 

flexible computational performance [43] 

which is firstly utilized for tuning of ANN and 

SVM control parameters herein. The WCA 

algorithm enhances the average fitness of 

solutions, which present that this algorithm is 

able to effectively enhance the initial random 

population. 
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Fig. 9. Observed compressive strength vs. predicted values using ANN, SVM, ANN-WCA, and SVM-WCA 

models for training stage. 

 
Fig. 10. Observed compressive strength vs. predicted values using ANN, SVM, ANN-WCA, and SVM-WCA 

models for testing stage. 

  

Fig. 11. The ANN-WCA predictions for compressive strength of reinforced GPC. 
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Sensitivity analysis is the analysis of the 

impact of dependent variables on independent 

variables, and their impact on each other. This 

study used an optimized artificial neural 

network model with a water cycle algorithm to 

perform a sensitivity analysis of each input 

parameter on the compressive strength of a 

three-component geopolymer concrete. For 

this purpose, an input parameter is removed 

and its effect on the output of the model is 

analyzed. According to the results of the 

sensitivity analysis, removing molarity input 

variables (R=0.71) and temperature (R=0.65) 

had the greatest impact on the developed 

model in predicting geopolymer concrete 

compressive strength. Also, the volume of 

fibers (R=0.84) has the lowest impact on the 

model output. Table 6 shows the full 

description of the sensitivity analysis of the 

parameters. 

Table 6. Sensitivity analysis results. 

R Input parameters 

0.8 CS =   𝑓  (𝑍𝐸, 𝑀𝐾, 𝑉𝑓, 𝑇, 𝑀) 

0.78 CS =   𝑓  (𝐹𝐴, 𝑀𝐾, 𝑉𝑓, 𝑇, 𝑀) 

0.74 CS =   𝑓  (𝐹𝐴, 𝑍𝐸, 𝑉𝑓, 𝑇, 𝑀) 

0.84 CS =   𝑓  (𝐹𝐴, 𝑍𝐸, 𝑀𝐾, 𝑇, 𝑀) 

0.65 CS =   𝑓  (𝐹𝐴, 𝑍𝐸, 𝑀𝐾, 𝑉𝑓, 𝑀) 

0.71 CS =   𝑓  (𝐹𝐴, 𝑍𝐸, 𝑀𝐾, 𝑉𝑓, 𝑇) 

 

4. Conclusion 

The resistive and thermal behavior of a fiber 

reinforced geopolymer concrete (FRGPC) 

containing fly ash, zeolite, and metakaolin 

pozzolans was investigated in this study. 

Mixes were made and analyzed by examining 

how molarity influences geopolymer concrete 

behavior and fiber consumption. 

 In the presence of molarity 12, under heat 

up to 500 °C, the residual post-fire strength 

increased, and heat, as a concrete 

microstructure generator, led to better 

setting and greater resistance. Compressive 

strength decreased significantly at 800 °C. 

The Z10MK20 sample's 28-day 

compressive strength is 45.4 MPa with 

10% zeolite and 20% metakaolin as fly ash 

replacements. As a result of the 10% 

metakaolin replacement of fly ash, the 

compressive strength increased by 11.6% 

and 6.2%, respectively, for molarities 14 

and 16. 

 As a result of the obtained laboratory 

results, the ratio of the compressive 

strength of the sample of Z10MK20 

increased by 8.1% at 200 °C, 14.1% at 500 

°C, and decreased by 5.2% at 800 °C. The 

28-day sample resistance, with 20% 

replacement of metakaolin, was measured 

at 45.8 MPa after adding fibers (2% 

constant volume of 1-3% polypropylene 

fibers). 

 The compressive strength of FRGPC’s 28-

day was increased to 27.3 MPa with the 

addition of 1% polypropylene fibers. By 

increasing the amount of fibers to 2%, 

geopolymer concrete's compressive 

strength decreased for 28 days to 41.4 

MPa. 

  In this research, after achieving laboratory 

results and analysis, we developed an 

optimized innovative model that combined 

artificial neural network (ANN) methods 

and support vector machines (SVM) with 

water cycle optimization algorithm (WCA) 

to simulate the resistance behavior under 

the geopolymer multi-component mixed 
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heat. Simulated results indicate that the 

optimized ANN method in conjunction 

with the WCA is effective in predicting 

FRGPC residual post-fire strength based 

on the value coefficient of 0.990 based on 

performance metrics as presented in 

litteratutue [45,46], 

 As a result of the experimental stage, the 

accuracy of the ANN-WCA and SVM-

WCA model was acceptable in terms of 

modeling performance in the prediction of 

FRGPC’s strength was approximately 

0.988 and 0.948, respectively. In order to 

achieve maximum strength, the constituent 

materials in geopolymer concrete were 

prioritized based on sensitivity analysis. 

 A sensitivity analysis of the developed 

model revealed that the removal of the 

molarity and temperature input variables 

had the highest impact on predicting the 

compressive strength under the heat of 

mixed multi-component fiber geopolymer 

with a coefficient of determination of 0.71 

and 0.65, respectively. 

Although, the geopolymer mixtures needs 

higher temperature curing but the more casting 

and curing parameters like moisture and 

pressure are important. Also efflorescence is 

also a critical challenge for GPC. Therefore, 

using the mineral and industrial by-product 

materials in micro and Nano-size could be 

improve curing challenges and enhance the 

mechanical behavior and post-fire strength. 

Moreover, to better understanding of the 

performance of GPC mixtures, microstructural 

test such as X-ray diffraction (XRD) analysis 

and scanning electron microscopy (SEM) were 

necessitated for investigate the performance of 

GPC mixtures. 

Besides, the findings of this study identified 

the superiority of the ANN-WCA and SVM-

WCA in constructing innovative and precise 

approaches. It was shown that the proposed 

evolutionary algorithm with the optimized 

ANN and SVM control parameters not only 

enhanced the accuracy but also increased the 

robustness and reliability of the modeling of 

the GPC compared to the standard ANN and 

SVM method. In a forthcoming investigation, 

it might be achievable to overcome the 

modeling restriction by combining efficient 

data mining methodologies like input feature 

selection and data pre-processing, with 

advanced global optimization algorithms 

which possess high convergence speed. 
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