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The nonlinearity observed in high-performance concrete 

(HPC) can be attributed to its distinctive features. This study 

examines the effectiveness of expert frameworks in 

determining compressive strength, aiming to enhance 

accuracy through the development of a master artificial 

neural network (ANN) system utilizing the sonar inspired 

optimization (SIO) algorithm. The ANN model employs 

exploratory data to establish initial optimal weights and 

biases, thereby improving precision. Comparison with 

previous studies validates the accuracy of the proposed 

system, demonstrating that the SIO-ANN hybrid model 

offers finer estimation of high-performance concrete 

properties. Results consistently show a coefficient of 

determination (R
2
) exceeding 0.972 and a 50%-67% 

reduction in error rates compared to conventional fitting 

curve approaches. Parameters such as population, weight, 

and bias within the SIO-ANN framework are continuously 

updated and optimized to achieve optimal values efficiently. 

Additionally, the SIO-ANN model exhibits superior runtime 

performance compared to other models. Consequently, the 

proposed SIO-ANN approach emerges as a viable alternative 

for accurately assessing and predicting the compressive 

strength of high-performance concrete. 
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1. Introduction 

Recent advancements in civil engineering have 

seen a rise in High-Performance Concrete 

(HPC) use for structures like skyscrapers, 

high-speed railways, and massive bridges. 

These structures need to withstand extreme 

forces like explosions, impacts, and fires. HPC 

offers several advantages over traditional 

concrete, including superior strength, 

flexibility, and resistance to water penetration 

[1–7]. To achieve this enhanced strength, 

engineers incorporate additional materials like 

nano-silica, silica fume, and industrial 

byproducts like blast furnace slag and fly ash 

into the concrete mix [6–10]. Nonetheless, 

HPC properties rely upon numerous 

components, for instance, blend extents, 

quality of used material, and cement age [11]. 

Subsequently, estimating HPC’s compressive 

and tensile strength is a fundamental 

assignment since it can assist with planning 

tasks in the beginning phases of the underlying 

model, decreasing exploratory necessities. 

Hence, an exact strategy to predict HPC’s 

compressive strength is able to fundamentally 

lessen time and expenses. Numerous scientists 

have utilized simulation methods based on 

mechanics to evaluate the cement strength 

[12–16]. Rabczuk et al. displayed the fracture 

of a few strengthened solid constructions 

through a three-dimensional strategy, which 

has no mesh [15]. Rabczuk and Belytschko 

used particle strategies to find a solution for a 

few fracture issues, including strengthened 

solid constructions, and the computational 

outcomes demonstrated great concurrence with 

exploratory information [14]. Rabczuk et al. 

suggested a 2D method to simulate the fracture 

in structures consisted of reinforced concrete 

and considered the correlation between the 

reinforcement and the concrete [16]. 

Drzymałaa utilized a trial technique to explore 

the impacts of high temperatures on HPC 

characteristics [17]. In a preliminary study, 

Zhao et al. [18] examined how fly ash and 

ground granulated blast-furnace slag affect 

shrinkage in High-Performance Concrete 

(HPC). Moreover, a few techniques have been 

performed to discover the correlation between 

the critical items that may impact HPC’s 

compressive strength, for example, cement, 

superplasticizer, fly ash, water, and testing age 

[19]. Be that as it may, achieving an exact 

regression function is very difficult using these 

techniques as HPC’s compressive strength is 

influenced by numerous elements. Likewise, 

the concrete properties have an exceptionally 

nonlinear correlation with its components, 

which presents challenges in figuring HPC’s 

compressive strength from accessible 

information [20]. Subsequently, the standard 

strategies utilized for ordinary concrete are 

frequently unacceptable for determining 

HPC’s compressive strength. 

Much Artificial intelligence (AI) procedures 

were suggested to obtain a solution for the 

mentioned problem [21–35]. Chou and Pham 

acquainted new computing models to predict 

HPC’s compressive strength [36]. This model 

was made by joining numerous AI strategies. 

Prasad et al. utilized an ANN model to 

estimate HPC and self-compacting concrete 

[37]. Naderpour et al. focused on reused 

aggregate concrete, using a technique called 

ANN for estimating the compressive strength 

[38]. In another study, Ali et al. employed a 

tree algorithm to estimate the compressive 

strength of both regular concrete and HPC 

[39]. The association between the variables’ 

input and output is ignored in AI methods. 

Furthermore, the trained data’s input 

parameters ought to cover the input of the 

estimative data that is a weakness of these 

models [40]. These are largely encouraging 

methodologies, yet they are profoundly reliant 

on the initial parameters that are a solid 

limitation that restrains the function. 

Subsequently, these AI procedures should be 

joined with optimization algorithms [41]. 

Several researchers have proposed using 
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machine learning models to solve problems in 

various fields of engineering. For example, 

Nazari and Sanjayan improved a method 

called Support Vector Machine (SVM) to 

better estimate the compressive strength of 

mortar, geopolymer, and concrete [42]. Their 

approach involved using five different 

optimization algorithms to fine-tune the 

SVM's parameters. In another study, Marek 

employed a combination of neural networks 

and Bayesian statistics to predict the 

compressive strength of HPC. The firefly 

algorithm is an effective optimization 

instrument among numerous optimization 

algorithms applied to enhance the performance 

of machine learning techniques in several 

research cases. Chou et al. solved numerous 

civil engineering estimation problems using 

least square support vector regression based on 

the firefly algorithm [43]. Ibrahim and Khatib 

[44] applied the firefly algorithm to estimate 

the global solar radiation in an hourly manner 

to optimize the random forests technique. 

Nonetheless, utilizing the FA for improving the 

capacity of ANN has not gotten much 

consideration, particularly in civil engineering. 

The purpose of this research is to optimize the 

ANN weights and biases to better estimate 

HPC’s compressive strength using modified 

firefly algorithm. The chaotic map and Lévy 

flights components were combined with the 

firefly algorithm to achieve a high dimensional 

optimization. Besides, SIO updated, retained, 

and optimized the ANN parameters during the 

training, which dramatically reduced the 

computing time. This examination additionally 

expects to confirm the master system by 

utilizing a k-fold cross-validation algorithm. 

Then, the hypothesis testing was conducted to 

compare the SIO-ANN performance with 

different strategies utilized in similar studies 

[45–47]. Then, the paper was presented in five 

parts. The following part provides a review of 

the research subject regarding the estimation 

of HPC compressive strength through machine 

learning techniques. The third part depicts the 

exploration procedure and execution 

assessment techniques. The fourth part 

blueprints the characteristics that influenced 

the HPC compressive strength and two test 

datasets utilized in this research. The fifth part 

consequently shows the preprocessing of data, 

the application of the model, the estimation of 

the SIO-ANN results, and checks the model’s 

function compared to different techniques 

dependent on the results. The last part will sum 

up the study and give concluding up 

comments. 

2. Literature review 

Compressive strength is a critical undertaking 

in civil engineering given because of needing 

numerous inputs from different design 

rehearses [48,49]. Having a reliable model that 

can accurately predict the compressive 

strength of materials early in a project can 

shorten the overall project timeline [49]. 

Lately, numerous examinations utilizing 

different methodologies for assessing the 

strength of concrete have been accounted [50–

54]. AI was previously proved to work well in 

construction materials description 

[55,56,65,57–64]. Erdal [66] estimated the 

HPC compressive strength with two-section 

and mixed ensembles for decision trees. This 

study proposed three different ways to 

combine machine learning models (ensemble 

methods). These methods included using 

multiple decision trees, combining two 

separate models, and a combination of both 

approaches. The results showed that these 

combined models were significantly more 

accurate at predicting the compressive strength 

of HPC compared to using a single model. 

Yuvaraj et al. [67] inspected the pertinence of 

SVM to estimate the fracture attributes of 

concrete beams at high strength and ultra-high-

strength levels. According to results, SVR 

could get comparative outcomes with those 

from tests. Yeh [20] showed the prospects of 

utilizing ANN to estimate HPC’s compressive 
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strength. Accordingly, acquired more precise 

outcomes than a model dependent on 

regression-based analysis. ANN was able to 

review the impacts of every concrete mix 

ingredient as numerical experiments. 

Moreover, Sobhani et al. estimated no-slump 

concrete’s compressive strength by comparing 

ANN models and fuzzy systems based on an 

adaptive network [51]. This study found that 

ANNs were a more effective way to predict 

the compressive strength of concrete that 

doesn't flow easily (no-slump concrete) after 

28 days, compared to traditional mathematical 

models [68]. To improve the performance of 

ANNs, researchers have explored various 

optimization algorithms. One example is the 

work of Lee et al., who used a technique called 

the harmony search algorithm to find the best 

starting values for the weights in the ANN 

during the training process [68]. Alavi and 

Gandomi presented estimated the ANN 

optimal initial coefficients by simulating 

annealing techniques [69]. Chang et al. found 

the optimal weights to increase the precision 

of ANN using genetic algorithms [70]. Liu et 

al. executed the ensemble technique to 

increase the exactness of the basic model [71]. 

The mentioned types of research confirmed the 

high-performance of hybrid models in solving 

problems. However, a few examinations 

utilized hybrid models explicitly, ANN-based 

firefly algorithm (FA) to estimate HPC’s 

compressive strength. This algorithm achieved 

a better performance as an optimization 

algorithm in many types of research [28,72]. 

Moghaddam et al. estimated the polyethylene 

terephthalate’s fatigue life changed asphalt 

mixtures using an FA-based support vector 

machine [72]. Kazemivash and Moghaddam 

assessed digital image watermarking using a 

regression tree with the help of FA [73]. 

Subsequently, this investigation utilized SIO-

ANN to estimate HPC’s compressive 

parameter through the 10 cross-fold validation 

and multi-function criteria to fix this problem. 

According to comparisons, the hybrid master 

system had a finer precision with minimum 

computational expenses. 

3. Methodology 

3.1. Dataset 

Published datasets were used to assess the 

efficiency of the suggested master system [74–

78]. Dataset incorporates 1133 samples of 

HPC with 1 output variable and 8 inputs 

variables. The amount of cement (X1), blast 

furnace slag (X2), water (X3), fine aggregate 

(X4), coarse aggregate (X5), fly ash (X6), 

superplasticizers (X7), and the testing age 

(X8) were the eight inputs, and the 

compressive strength (Y) was the output. The 

concrete’s compressive strength was affected 

by each input parameter. For instance, Johnson 

and Bawa indicated that the ratio of fixed 

water test to cement was increased by the 

compressive strength [79]. The density of 

concrete will be increased by an expanding 

aggregate-cement ratio, which affects the 

compressive strength, as well as the dynamic 

modulus [79]. Moreover, the impact of each 

independent on the output ought to be 

researched. For example, Vu-Bac et al. 

quantified the input parameters’ influence on 

uncertain outputs using a software framework 

[80]. Hamdia et al. assessed the input 

parameters’ sensitivity through a polynomial 

model [81]. Also, the concrete compressive 

strength is affected by many other parameters, 

such as formation, slump, and curing 

conditions. Be that as it may, the research’s 

primary purpose is to assess the presentation 

of the suggested SIO-ANN in assessing HPC’s 

compressive strength. Consequently, the 

investigation utilizes similar 8 inputs, 1 output, 

and some datasets to acquire fitting 

correlations. Fig. 1 provides 8 scatter plots for 

all inputs. 
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Fig. 1. The scatter plot of all data. 
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3.2. Machine learning models 

ANNs are inspired by the structure and 

function of the human brain. Similar to how 

our brains work with interconnected neurons, 

ANNs rely on a network of interconnected 

units called artificial neurons (Fig. 2). Neuron 

transmit signals to each other through a 

synapse or a weighed connection that can alter 

the strength of the signal [31,82,83]. The 

development of ANN is separated into three 

fundamental advances: 

a) Characterizing inputs and outputs; 

b) Optimizing the structure by altering the 

layers’ weights and bias; and 

c) Examining the network function by 

contrasting the estimated and actual values. 

 
Fig. 2. The structure developed for the present study. 

Eq. (1) is a linear function, which calculates 

the sent signals to the hidden nodes from the 

inputs depending on input weights and bias 

before going to a transfer function to obtain 

the target of the hidden node [84]. 

𝑛𝑒𝑡𝑖 = ∑ 𝑤𝑖,𝑗𝐼𝑗 + 𝑏𝑖
8
𝑖=1  (1) 

This describes the calculations within an ANN. 

Here, 'neti' represents the sum of weighted 

inputs to a specific hidden neuron (i). Each 

input from another node (j) is multiplied by its 

corresponding weight (wi,j) and then summed. 

An additional bias parameter (bi) is also 

included for the hidden neuron. This research 

uses a mathematical function called the 

sigmoid function (see Equation (2)) to process 

this combined value (neti) within the hidden 

neuron. 

𝑦𝑖 = 𝑓(𝑛𝑒𝑡𝑖) =
1

1+exp(−𝑛𝑒𝑡𝑖)
 (2) 

In which, yi is the ith hidden node output 

signal; exp (-neti) is Euler’s number to the neti 

power. The training process was evaluated by 

the mean square error as the objective 

function. The actual error (€) is calculated 

using a formula that will be explained next: 

𝐸 =
1

𝑁×𝑁𝑜𝑢𝑡
∑ ∑ (𝑒𝑛,𝑜)

2𝑁𝑜𝑢𝑡
𝑜=1

𝑁
𝑛=1  (3) 

In which, en,o = �̅�n,o – yn,o is the training error 

of output o in the case of applying instance n; 

n is the training instance index; N is the 

instance number; o is the output index, Nout is 

the output number; �̅� is the estimated data by 

ANN, and y is the real data. Then, the bias and 

weights parameters are changed to reduce the 

error E to the minimum level through the 

learning process. This research uses a specific 

method called the Levenberg-Marquardt 

algorithm [85,86] to train the ANN. This 

algorithm has been modified for this particular 
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application, and the details of the 

modifications are provided below: 

𝑊𝑘+1 = 𝑊𝑘 − (𝐽𝑘
𝑇
𝐽𝑘 + 𝜇𝐼)̅−1𝐽𝑘

𝑇
𝑒𝑘 (4) 

In which, l > 0 is the coefficient of 

combination; I is the matrix of identity; w
k
 is 

the matrix of weight at kth repetition, and w is 

a dimension vector W 1, with the total weight 

number of W; wk+1 is the matrix of weight at 

(k + 1)th repetition, and The Jacobian matrix 

(J), mentioned in the reference source [87], 

likely plays a role in calculating the 

adjustments to the weights.. 

3.3. Optimization 

3.3.1. The actual sonar mechanism 

The main concept this mechanism is the 

utilization of a sonar system by warships for 

detection of submarines [88]. The sonar device 

releases an ultrasound wave to strike an object 

and back-propagate. The wave after reflection 

by the target is received by the sonar system, 

by help of which the size of the object can be 

estimated and the crew of warship can easily 

detect the location of the target (refer to Fig. 

3). 

 
Fig. 3. Sonar mechanism in a schematic view. 

The sonar system periodically submits waves 

to the environment surrounding the warship. 

Intensity of sound is realized so as to provide a 

modeling of the mentioned event [89]. To this 

end, we need to find the Acoustic Power 

Output or Sound Power (P): 

𝑃 = 𝜂. 𝑃𝑒 (5) 

In the above equation, Pe denotes the input 

power and η shows the efficiency of the 

transducer. The latter parameter is calculated 

by dividing the output power to the input 

power and is expressed in percent. Once P is 

found, the following equation is used to obtain 

the intensity of sound which is defined by 

dividing P over the surveyed area (refer to Fig. 

4): 
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𝐼 =
𝑃

𝑎𝑟𝑒𝑎
 (6) 

The scanned area is obtained by: 

𝑎𝑟𝑒𝑎 = 4. 𝜋. 𝑟2 (7) 

where, r shows the radius of the imaginary 

sphere (area) surveyed by the sonar system. 

It can be seen that if the value of intensity (I) 

is decreased the effective radius r will 

increase. The suggested method in this work 

has also employed this equation. 

 
Fig. 4. The relationship between sound power and sound intensity. 

3.3.2. The proposed SIO algorithm 

Individual agents given in Xi = {x1, x2, x3, 

…, xn} (i ϵ 1, 2, …, N), where N = the 

maximum number of agents and n represents 

the maximum dimensions of problem. The 

ship number is initially determined to save 

computational power. In general, if the number 

of agents is big, the probability of reaching the 

optimal solution will increase. Nevertheless, 

this is not true for the suggested algorithm 

[88]. According to the following subsections, 

the mass of points produced in the vicinity of 

individual agents yields a wider solution space 

without manipulating the number of agents. 

One significant advantage provided by the 

presented method is that the space within 

which the solution is searched is wide enough 

to maintain the number of agents. Initially, the 

positions of agents are randomly selected 

within the solution space. One straightforward 

technique to accomplish this is to utilize the 

normal distribution function. Yet, the positions 

can be changed with regard to the values each 

of the decision variables can adopt. The initial 

radii and intensities of individual agents are 

found according to Eqs. (6) and (7). The input 

power is set as the fitness of agents: 

𝑃𝑒 = 𝑓𝑖𝑡𝑖, 𝑖 ∈ {1,2, … ,𝑁} (8) 

Also, Eq. (8) can be rewritten to turn the 

fitness values into positive quantities: 

𝑃 = 𝑒𝑃𝑒 (9) 

This task is a necessity as a logarithm function 

is used for changing the scale of intensities. 

Logarithm functions cannot take negative 

values, but fitness values can take negative 

values in specific problems. Therefore, this 

issue is tackled in this work using a 

transformation inspired by a physical 

interpretation. The maximum number of 

iterations, here called “number of scans” has 

been adopted is the termination criterion in the 

experiments performed. The fitness function 

values are found for each of the warships to 

reach the best answer. The best answer is 
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recorded and all agents alter their intensities 

concerning the answer already obtained. In the 

case the new answer is better than the previous 

one, the intensity is increased; otherwise, it is 

decreased. Thus, the effective radii are 

correspondingly changed. In the end, the 

proposed method adopts another mechanism. 

Practically, if no suspicious object is detected 

by the warship, the ship leaves that region. 

One simple approach to change the location of 

an agent is to consider the position of the best 

answer attained hitherto: 

𝑥𝑖
𝑑 = 𝑏𝑒𝑠𝑡𝑑 + 𝑟0

𝑖. 𝑟𝑎𝑛𝑑 (10) 

Here, xi
d
 represents the location of agent 

number ith on a specific dimension (d). best
d
 

refers to the most favorable position found so 

far in the current round. r0
i
 indicates the 

effective search area (radius) for agent 'i'. 

Finally, 'rand' is a random number chosen 

uniformly, meaning it has an equal chance of 

being any value within a specific range. 

Nonetheless, we can rewrite the above 

equation to change the location of an agent in 

areas that have not been searched up to this 

point. Using a comparable concept of the 

mutation rate [90]: 

𝜇𝑜𝑝𝑡 =
1

𝜏
 (11) 

where, 𝝁𝒐𝒑𝒕 represents the interval between 

significant environmental changes. 

3.3.3. Intensity parameter 

Intensity is the most significant parameter in 

the proposed algorithm and impacts the 

variations of the effective radius and, 

consequently, the maximum area the agents 

search. Definition of this parameter is updated 

after each iteration according to the solution 

achieved by the corresponding agent: 

𝐼𝑖 = 𝐼𝑖. 𝑒
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 (12) 

By defining magnitude we can indicate the 

significance of the target detected by the 

agent/warship. A definition of magnitude is 

given here: 

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝑠𝑐𝑎𝑛_𝑏𝑒𝑠𝑡𝑖 − 𝑏𝑒𝑠𝑡 + 𝑠 (13) 

In this equation, scan_besti denotes the fitness 

of the best solution achieved by the ith agent 

in the current scan and best represents the best 

global solution obtained so far. A trivial value 

(s) is also added to the previous terms so as to 

prevent a zero magnitude for the agent with 

the global best solution. Equations 13 is 

written according to the graph of e
x
 referring 

to Fig. 5, in the case x for e
x
 is smaller than 

zero, y is smaller than one. The intensity level 

helps agents adjust their search behavior. 

When the agent finds a solution that's better 

than its previous one (negative magnitude), the 

intensity decreases. This encourages the agent 

to take smaller steps and refine its search 

around the improved solution. Conversely, if 

the agent finds a worse solution (positive 

magnitude), the intensity increases. This 

pushes the agent to explore further and 

potentially take larger steps to find a better 

solution. Furthermore, the farther the optimal 

solution is, the greater the increase in intensity. 

This means the agent will make bigger jumps 

in its search when it's far away from the ideal 

solution, gradually adjusting its steps as it gets 

closer. 

 
Fig. 5. The defined function for intensity 

parameter. 

The following equation is used to turn the high 

value of Ii into a helpful value by realizing a 

physical analogue: 

𝐼𝑖 = 10. log
𝐼𝑖

𝐼0
 (14) 
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here, Ii shows the intensity of the ith agent and 

I0 represents the Threshold of Hearing [89] as 

follows: 

𝐼0 =
10−12𝑤𝑎𝑡𝑡𝑠

𝑚2 = 10−16𝑤𝑎𝑡𝑠𝑠/𝑐𝑚2 (15) 

In the conducted experiments, we set the value 

of I0 equal to 10-12, although we can vary the 

value based on the problem under study. 

3.3.4. Effective radius (r0) 

The solution space determines the initial value 

of r0. The algorithm takes smaller steps if r0 is 

a small value. By the same token, for larger 

values of radius, there will be larger jumps in 

the algorithm towards reaching better optima. 

However, in the latter case, potential solution 

might be missed. The effective radius can be 

found via reversing Eq. (16): 

𝑟0 = √𝑎𝑟𝑒𝑎𝑖
𝑘

4.𝜋
 (16) 

where, areai
k
 gives the area analyzed by the ith 

agent in the kth iteration. The provided model 

reveals the actual relationships among the 

measures. For larger values of intensity, the 

scanned area is larger than that obtained for 

lower values of intensity. As a result, the 

effective radius will be smaller as well. We try 

to increase the value of r0. In the case no better 

solution is achieved, agents should search 

farther areas. 

3.3.5 Full Scan Loop 

To explore more of the possible solutions, 

agents use a technique called the Full Scan 

Loop. In each round (iteration), agents 

investigate their surrounding area, limited by 

their effective search radius (r0). The name 

"Full Scan Loop" reflects the repetitive nature 

of this process – agents perform three steps 

repeatedly until they've thoroughly searched 

their designated area. By starting from 0o, 

random rotations with maximum coverage of 

a
o
 are performed in each dimension. 

𝑎𝑛𝑔𝑙𝑒𝑑 = 𝑎𝑛𝑔𝑙𝑒𝑑 + 𝑟𝑎𝑛𝑑 × 𝑎° (17) 

In the above equation, rand is a random 

number generated by a uniform distribution 

function and angled represents the rotation 

angle in the dimension d. When angled 

exceeds 360o, the loop is terminated. In every 

dimension, the vector of angles is transformed 

into a vector of movements: 

𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛
𝑑 = 𝑟2 (18) 

Here, r is the random radius inside a cycle 

formed by r0 and n shows the number of 

dimensions of the problem. Fig. 6 illustrates an 

example of 36 points explored in a single 

dimension for a mathematical function called 

Ackley's function. This approach allows each 

agent to investigate multiple points around its 

current location simultaneously. In contrast, 

some other algorithms limit each agent to 

examining only one point per round. The new 

position is found by: 

𝑥𝑖
𝑑 = 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑑 + 𝑥𝑖

𝑑  (19) 

 
Fig. 6. A sample of points generated for the 

Ackley’s function. 

where, xid shows the position of the ith agent 

in the dth dimension and movementd 

represents the dth element in Eq. 20. In each 

rotation phase, the fitness value of the new one 

is computed. A correction procedure has also 

been carried out to prevent violating the 

acceptable range of possible solutions. If there 

is a xi
d
 that violates the bound constraints, its 

new location will be calculated by: 

𝑥𝑖
𝑑 = 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑑 + (𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑑 −

𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑𝑑). cos(𝑥𝑖
𝑑) (20) 
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so that the inequality lower_bound
d
 < xid < 

upper_bound
d
 is satisfied. 

4. Performance evaluation 

4.1. Data preprocessing 

In this section, firstly, the relationship between 

independent and non-independent data is 

examined. Fig. 7 indicates all attributes of 

dataset. There is a strong non-linear correlation 

between HPC’s compressive strength and 

these components. Accordingly, it is trying to 

locate HPC’s compressive strength dependent 

on these datasets. 

 
Fig. 7. The correlation matrix between all data. 

The high strength concrete’s compressive 

strength was estimated through performance 

tests, as well as the SIO-ANN master system. 

K-fold cross-validation was used to reduce 

errors and prevent over-fitting among models 

and results [91]. Some researcher showed that 

10-fold is the optimal number to acquire a 

decent outcome inside a worthy time span 

[92]. Similar results are obtained by a few 

cross-approval strategies, for example, leave-

one-out cross-approval and examining test-set 

cross-approval. For instance, Badawy et al. 

chose the most delegate training and test 

sample sets using the scanning test [93]. 

Similar to other recent research, this study 

employed a technique called 10-fold cross-

validation to evaluate the performance of the 

proposed model. A total of 1133 samples are 

randomly elected from dataset 1 and divided 

into 10 particular folds to build up the 

framework for assessing HPC’s compressive 

parameter. The primary fold is utilized for 

testing in the first validation round, while the 

remaining nine folds are used to train the 

model. This process is repeated ten times, 

ensuring all data points are used for both 

testing and training. Essentially, the folds are 

rotated, with each fold serving as the testing 

set once during the 10 rounds (Fig. 8). The 

model's presentation is then determined by 
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taking the normal execution of the ten models 

in ten approval rounds. A total of six cases 

with a restoring age of 3, 7, 28, 90, and 180 

days, just as a whole dataset were evaluated. 

The outcomes will be contrasted and those in 

the past investigation. In the preprocessing 

step, it is critical to scale the all types of data 

through training ANN. A key benefit of this 

research is that it addresses a common issue in 

machine learning. When data points have 

vastly different numerical ranges (some values 

are much larger or smaller than others), it can 

lead to attributes with larger ranges 

dominating the analysis and masking the 

importance of attributes with smaller ranges. 

This study helps prevent this from happening 

[94]. The other advantage is to forestall 

numerical problems. The range of [0, 1] is 

used to normalize the study data utilizing the 

min-max normalization algorithm: 

𝑋′ =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
 (21) 

 
Fig. 8. The process of cross validation for the current research. 

The main features for the SIO-ANN hybrid 

technique are given in Table 1. To obtain the 

parameters, parametric analysis was performed 

for each of the parameters. Using this process, 

the optimal state of each was determined. 

4.2. Discussion 

The system function in estimating HPC’s 

compressive is demonstrated in Table 2. The 

results of other studies were also compared in 

this section. The hypothesis test was used to 

validate the SIO-ANN improvement by 

comparing it with other methods. According to 

Table 2 in which reveals a lower MAE (1.801 

MPa) in the suggested system rather than 

Multi-gene genetic programming (M-GGP) 

[95], Gene Expression Programming (GEP) 

[96], ensemble model (ANN + SVR) [36] and 

the Least Square Support Vector Regression 

based on the smart firefly algorithm (SFA-

LSSVR) [43]. SIO-ANN likewise 

accomplishes the most reduced MAPE (5.88 

MPa) and the least RMSE (2.732 MPa) 

contrasted with different strategies. 

In general, the suggested master system’s error 

rates are 50 %–67% finer than other studied 

techniques. According to hypothesis tests, SIO 

-ANN results are significantly (8%–20%) finer 

than other techniques. Additionally, SIO-ANN 

has a higher R
2
 (0.95) esteem than different 

techniques (Table 2). This implies that a high 

potential of the relationship between the real 
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and target compared other in past 

examinations. Fig. 9 and 10 indicate the 

relationship between the real and target result 

for one case in 10-cross folds. 

Table 1. The main parameters for the expert 

systems. 

Model Feature Value/setting 

SIO 

Number of iteration 500 

Number of population 50 

Number of run 100 

The maximum 

rotation angle 
15 

the small value s 0.00065 

d the value of 

Threshold of Hearing 

I0 

10-12 

Training data 80% 

Testing data 20% 

ANN 

Objective function RMSE 

Learning function 
Levenberg–

Marquardt 

Number of layer 1 

Number of neuron 12 

Transfer function Tangh 

 

Also, the processing time in running 1 

repetition of cross-fold validation is 

significantly diminished from 15.90 min (SFA-

LSSVR) to 4.10 min (SIO-ANN). Updating 

ANN’s weight and bias parameters can lead to 

time improvement in the training. The 

regularization and the sigma parameter of the 

RBF kernel were optimized through the firefly 

algorithm in SFA-LSSVR, which are constant 

in the training process. In the interim, the layer 

weight and coefficients are updated in SIO-

ANN during the ANN training process. 

Furthermore, the updated layer weight and 

coefficients parameters are restored in SIO and 

optimized according to them. Thus, SIO-ANN 

can essentially decrease figuring time running 

compared with chou et al. reserach [43]. 

Figure 11 shows a comparison between the 

results of different models based on Table 2, 

considering the two factors of R
2 

and MAE. As 

can be seen, the SIO-ANN model has provided 

the highest amount of R
2 

and the lowest 

amount of MAE for forecasting the HPC’s 

compressive, which indicates the superior 

performance of this model. Figures 12 to 15 

show the HPC’s compressive results for 

different samples based on time. As can be 

seen, there is a high correlation for different 

samples with time. Due to this issue, it can be 

mentioned that the SIO-ANN model has been 

able to provide high performance in various 

dimensions. 

Table 2. The performance of the developed model and compare its progress with previous models for the 

data set. 

Models 
Performance value 

Running Time (minutes) 
Improvement (%) 

R
2
 MAPE MAE RMSE R

2
 MAPE MAE RMSE 

GEP 0.828 N/A 5.20 N/A N/A 17 - 65 - 

M-GGp 0.810 N/A 5.48 7.31 N/A 20 - 67 62 

ANN+SVR 0.884 15.20 4.24 6.17 N/A 9.9 61 57 55 

SFA-LSSVR 0.893 12.28 3.86 5.62 15.9 8.8 52 53 51 

SIO-ANN 0.972 5.88 1.801 2.732 4.1 - - - - 
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Fig. 9. Training result in estimating HPC’s compressive. 

 
Fig. 10. Testing result in estimating HPC’s compressive. 

 
Fig. 11. A comparison between various modes based on R

2 
and MAE. 
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Fig. 12. The outputs of HPC’s compressive for 3 

days based on SIO-ANN. 

 

 

 
Fig. 13. The outputs of HPC’s compressive for 7 

days based on SIO-ANN. 

 
Fig. 14. The outputs of HPC’s compressive for 14 

days based on SIO-ANN. 

 

 

 
Fig. 15. The outputs of HPC’s compressive for 28 

days based on SIO-ANN. 

5. Conclusions 

A productive approach was investigated using 

SIO-ANN to estimate the compressive 
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strength of HPC for the first time. This novel 

methodology was evaluated using two datasets 

of HPC samples obtained from different 

laboratories, totaling 1133 cases. To address 

overfitting, a 10-fold cross-validation 

technique was employed. The accuracy of 

SIO-ANN in predicting HPC compressive 

strength was compared with various methods 

used in previous studies. SIO-ANN exhibited 

lower error rates across three error indicators 

compared to other techniques applied to the 

dataset. Additionally, SIO-ANN demonstrated 

a higher correlation coefficient (R
2
=0.972) 

between actual and predicted results compared 

to alternative methods. The results consistently 

showed an R
2
 exceeding 0.972, along with a 

50%–67% reduction in error rates compared to 

the fitting curve approach. Consequently, this 

study confirms that the proposed framework 

effectively assesses HPC compressive strength 

and significantly reduces the need for 

extensive testing in the future. 

The SIO-ANN hybrid model also contributed 

to reducing computation time. The proposed 

approach enhances precision and achieves 

nearly five times faster computation compared 

to the research by Chou et al. [43]. This is 

facilitated by constant optimization, retention, 

and development of parameters such as 

population, weight, and coefficients within the 

SIO-ANN framework, aiming for swift 

attainment of optimal values. Consequently, 

the proposed method offers efficient and 

timely estimations as a valuable tool. 

Additionally, this study employed a single 

hidden layer comprising 12 nodes. While 

increasing hidden layers or nodes may enhance 

the effectiveness of ANN training, it prolongs 

the optimization process for weight and bias 

parameters. Nonetheless, the methodology 

adopted in this study yielded commendable 

results within short processing times. Thus, the 

selected quantity of hidden layers and nodes 

proves suitable. Ultimately, the proposed 

approach emerges as an apt tool for rapid and 

accurate estimations, making it applicable to a 

broad spectrum of engineering challenges. 
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