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The accurate approximation is a benefit of the modern machine 

learning technique, which also disappeared the problems of 

traditional empirical methods, such as human and technical 

errors plus environmental pollution. Although there are many 

good samples on the state-of-the-art regarding the machine 

learning prediction of strength properties of steel fiber 

reinforced concrete, fewer articles are dedicated to proposing 

empirical formulations. This paper brings some novel empirical 

formulations to identify the strength properties of macro steel 

fiber-reinforced concrete. A 2650 multi-national data records 

are used to perform the regression, which is an exclusive 

dataset. This archive is the largest available dataset used in the 

state-of-the-art steel fiber-reinforced concrete prediction 

process, which is beneficial for supervised learning. Since the 

user must be careful regarding overtraining with such a vast 

resource, a successful strategy provided by the authors in 

previous research is utilized in which various machine learning 

techniques are compared to forecast the considered properties. 

So the Ridge, Lasso, and linear methods are used as regressors 

to predict the strength properties and the constants. Symbolic 

regression, a powerful tool for producing empirical 

formulations, is used for creating mathematical expressions 

regarding the strength properties. The performance is also 

evaluated based on well-known error analysis metrics. The 

formulations are presented for flat, waved, and hooked end 

fibers, the most common fibers used in construction 

engineering. The machine learning-driven formulations are 

exclusive due to the utilized strategy and the resources, and the 

precision of the relations are denoted, which presents the 

superiority to traditional methods. 
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1. Introduction 

Forecasting the strength properties of a broadly used construction material such as concrete would 

be possible with both direct and indirect approaches. The direct methods, as it first comes to mind, 

are methods in which the researchers spend huge costs and time to produce dozens of experimental 

specimens based on the 28-day prepared sample according to the standard and tested according to 

the regulations. In contrast, in the indirect methods, the scientists replace surrogate models, some 

numerical models developed based on the statistics to predict the properties in the non-sampled 

points to decrease the number of tests and, consequently, the time and cost. Many of these methods 

were promising in theory but were effective and efficient due to the high aggregated error values 

compared with the experimental outcome. One of the main reasons was the shortcomings in 

collecting adequate data for the primary dataset. The other was the inefficiency of the method in 

prediction due to some fundamental lacks. Many of the regression methods fail to face non-smooth 

objectives. In such cases, a perturbation in the objective functions may cause fast changes in the 

objective value. This phenomenon makes the objective look like a step function which is also non-

differentiable. A situation of occurring such a case is in the buckling of columns. So, proposing 

novel methodologies to improve the predictions in such instances and testing the available 

alternatives is highly important. For example, developing kriging models with some local 

regressions in the discontinuous parts of the objective [1] is a possible alternative but needs more 

progress. 

The background of using steel fibers in the concrete matrix backs to half a century. This research 

study comes with a vital context and is ongoing in state of the art. This type of reinforced concretes 

benefits the bridging of the fiber in the crack tips to prevent furthered propagation in the composite 

structure that finally leads to some ultimate possible strength properties. It must be noted that this 

facility will be highlighted in the performance of concrete in the post-peak cases. In some papers in 

the very beginning, the strength properties of the reinforced concrete are a function of two 

variables. These factors are the strength of unreinforced concrete and the percentage of fiber used in 

the mixture of the mentioned concrete. Some research works reported the strength properties to 

have a positive relationship with this percentage, while others recommended a second power law 

relation. 

In one of the vanguard studies, Wafa and Ashour [2] used all four types of steel fibers consisting of 

crimped, duo form, hooked end, and straight with the consideration of the volume fraction in a wide 

range of strength. The extremums for the strengths were 41 and 115 MPa for straight and hooked 

end fibers. The paper became the basis for many further studies. Some development trend in this 

research path is illustrated in Fig. 1, in which some significant studies are noted. According to the 

described process, the research by Khaloo and Kim [3] investigated the compressive, tensile, and 

flexural strength of steel fiber-reinforced concrete (SFRC) and derived the corresponding 

formulations as a function of fiber percentage and the strength of unreinforced concrete. 

The compressive empirical formulation predicts the experiment with a 30 percent of error, and it is 

relative to both the first and second power low of the volume fraction of the fibers. The structure of 

the identified formulations for the flexural and compressive strength is the same, with different 

coefficients and a similar 30 percent error compared with the experiments. Next, using experimental 

specimens, Nataraja et al. [4] modified the relationship by producing the global stress-strain curve. 

Three values of volume fraction and two for aspect ratio were considered the permutations of the 

research study to generate the corresponding numerical formulations. The generated empirical 
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formulae forecast the compressive case with a 25 percent of error which was an improvement at the 

time. The reference [5] modified the model proposed in [3] to predict the properties of high-strength 

SFRC (more than 60 MPa), but the error analysis revealed an error of 35 percent in the prediction, 

which is not surprising. Also, about 98 percent of improvement was reported in the splitting tensile 

strength. 

 
Fig. 1. Some critical research in the context of steel fiber reinforced concrete [3–8]. 

The effect of aspect ratio plus volume fraction was first studied in [6], where three types of this 

ratio are utilized in ten mixes to produce specimens. The errors for these predictions depend on the 

strength property, so for compressive, tensile, and flexural cases, it is correspondingly 10, 28, and 

23 percent. Another study presented empirical formulations and reported error values of 10 percent, 

which was a considerable improvement [9]. The drop test was utilized to derive the empirical 

relationship for impact resistance of the SFRC in which the lightweight concrete is analyzed [10]. 

The formulations brought novel relations between flexural toughness and the impact energy. 

The machine learning technique has been widely used in the state-of-the-art as an alternative to the 

traditional surrogate modeling techniques, presenting higher efficiency and accuracy [11,12]. The 

community has broadly studied the integration of machine learning in predicting SFRC strength 

properties and the features of other types of concrete. Alilou and Teshnehlab [13] used a feed-

forward neural network to predict the strength of concrete under compression with consideration of 

3-day strength as an essential parameter. The technique is claimed to decrease the analysis duration 

due to using fewer samples. The artificial neural network is reported for the premiere performance 

in altering the prediction using the Lavenberg Marquardt gradient-based optimization [14]. 

The effect of the number of neurons designed in the hidden layer of the network of an artificial 

neural network (ANN) structure is reported to be directly influential on the outcome [15]. This 

study also performed an analysis of sensitivity for analyzing this parameter. More research on using 

ANN in predicting SRFC properties is available in [8,16–19]. In another study, available data from 

state-of-the-art and personal experiments are utilized to create empirical models predicting flexural 

strength [20]. The proposed model in the mentioned research had more than 80 percent 

confirmation from the validation technique. Some researchers suggested mathematical models for 

this study. For example, [21] used a numerically simplified formula derived by removing 

parameters such as water, cement, and water-to-cement ratio. Besides, the concrete strength gain 

specifications are simplified by eliminating polynomial equations and replacing them with a simple 

mathematical formula. 
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The considerable efficiency of the stepwise regression is presented in [22], where newly developed 

formulations are proposed based on the analysis of shear capacity. The research’s outcome is 

according to the statistical characteristics of seven single parameters. The gene expression 

programming -presented some of the most accurate results in the forecasting process of shear and 

compressive strength [23], and the keynote of the related study was that the shear strength decreases 

with the shear span to depth ratio. Another effective utilization of this method which led to new 

formulations can be found in [24]. Al-Musawi et al. [25] changed the general gradient-based solver 

of supported vector regression by the firefly algorithm, which is a population-based heuristic 

optimizer. This modification has significantly improved the efficiency of this method which was 

looser compared with many other regression methods [26]. Another idea for enhancing the 

supported vector regression in predicting the SFRC strength was the hybridization of the response 

surface to forecast the shear capacity [27]. This way, the supported vector machine was adjusted 

utilizing the corresponding response surface. The shear resistance of the SFRC has recently been 

investigated with multi-expression programming [28]. This method was used for analyzing the 

shear resistance. Also, in a recent study, Ahmadi et al. [29] proposed newly developed mathematical 

relations and correlations between some geometrical and material properties and the shear stress of 

SFRC using the gene programming method, which had high accuracy compared with many 

references. The well-known, fully developed machine learning techniques are compared based on 

standard Python implementation to find the most elite one in predicting the strength properties of 

SFRC [30]. Despite the available research items on the strength properties of SFRC [31], there are 

insufficient achievements in proposing machine learning-driven empirical formulations for the 

compressive, tensile, and flexural strengths of SFRC. Therefore, more symbolic machine-learning 

techniques must be used and developed for this purpose. 

The present research is dedicated to deriving empirical formulations using data-driven supervised 

machine-learning techniques. Since linear regression methods are widely and effectively used in 

recent research on composite structures [32], three linear regression techniques are investigated to 

approximate an objective function. The data for these methods are prepared based on a strategy to 

remove outliers from the huge prepared dataset to approach the highest accuracy. The influence of 

each feature is presented in the paper using signed parameters. An error analysis is also available in 

the text. The formulations presented in this paper are prepared using symbolic regression. The rest 

of this research paper is structured as follows: Section 2 explains the methods used to produce the 

outcome, Section 3 is dedicated to the results and discussions, and finally, Section 4 highlights the 

concluding remarks from the results and discussions section. 

2. Methodology 

In this paper, three well-known regression methods from the family of linear methods are used for 

the prediction process. The authors used these three methods in another research in which various 

methods were compared for the approximation of properties of SFRC [30]. The data regarding the 

considerable accuracy of these methods is available in the article. The factor of effectiveness for 

these methods is broadly discussed for each feature. It must be noted that an exclusive strategy is 

used for preparing the data the authors proposed in another research article, and the efficiency of 

this approach is proven. The symbolic regression is used to derive the empirical formulations for the 

strength properties. Also, the k-fold validation technique [33] ( 5k  ) is used to prevent 

overtraining. Using more values of this parameter was not beneficial and increased the 

computational cost. It must be mentioned that the outcome of the training process is an average of 
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30 repetitions progresses to avoid the unreliability of the non-deterministic comport of the regressor 

algorithms. 

2.1. Feature selection strategy 

The strategy for data preparation and feature selection [34] is illustrated in Fig. 2. The adopted 

strategy prevents overtraining [35] and numerical errors to receive the best regression performance 

and accuracy. This strategy was proposed, and its effectiveness is proven in another research [30]. 

 
Fig. 2. The process illustration for the data preparation and feature selection. 

According to the illustration, the first step is dedicated to data division based on the fiber type. In 

the next section, it is visible that each strength property depends on the fiber type, which is so 

important. After this essential step, the data for unreinforced concrete is removed from the dataset. 

This effort helps to remove outlier data from the input of the forecasting algorithm. Finally, the 

features are analyzed separately based on the fiber type and each strength property. 

2.2. Symbolic regression 

This method produces tree branches using problem features and mathematical operators [36]. Each 

of these branches is then sorted by their accuracy. Finally, the formulation with the best 

performance will be combined. Also, some modifications might be applied randomly to the same as 

a mutation operator. Then previous iterations’ trees are combined and rated again, and this 

procedure continues until the termination criteria. 

2.3. Linear regression 

This method is recommended in the state-of-the-art as a general and well-established technique in a 

supervised branch of machine learning. The reason is the ease of implementation and availability of 

the code in Python script. It must be noted that the linear approximation has shown approximately 

good applicability in the engineering community, although the natural phenomenon is always 

nonlinear. In this method, a linear correlation is performed to present the regressed function as 

follows [37]: 

0 1 1 2 2 1 1... ,n n n nB                 (1) 
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Deviding 
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The above formulation, B stands for the dependent variable, 
n is a bias, and the independent 

variable denoted as
i . 

2.4. Ridge regression 

It is a kind of square-type regulation regression method and can be formulated as follows [38]: 

   
2

2

1 1

arg min ,
E R

e i i

e r

F g g   
 

   
 (2) 

where, 
i is an individual of the vector of observation, 

i is an individual for the regression matrix, 

and finally g stands for the vector of regression coefficients. The term 2

1

E

e

e

g


 is known as the 

regulation term multiplied by the hyperparameter  is multiplied in this phrase. 

2.5. Lasso regression 

With a similar formulation compared with the previous regressor, this method contains a term

argmin , but the L1-norm is replaced with the first term with the penalty parameter denoted as  . 

The formulation can be described as follows [39]: 

   
2

1 1

arg min ,
E R

c i i

e r

Y g g   
 

   
 (3) 

3. Results and discussions 

The results of this prediction process are divided into three sections. The first section presents the 

effectively signed indicators for the considered features of the steel fiber-reinforced concrete. 

Secondly, the formulations derived by parametric regression are presented. Thirdly, the error 

analysis regarding the regressions introduced by Ridge, Lasso, and the linear method is presented as 

bar charts. 

3.1. Feature indicators for each regressor 

The effective parameters for the Linear regression, Ridge, and Lasso method are available in Table 

(1). In this Table, Table, MA stands for the max aggregation based on millimeters; E is Young’s 

modulus in GPa; PCCS stands for plain concrete compression strength; PTS is the plain tensile 

strength. Also, fiber percentage is denoted as (%); L is the length of fiber in millimeters; The aspect 

ratio is represented as L/D. The feature constant indicates the constant variable in the regression 

formulae. The multipliers describe the value of features’ positive or negative effects of a feature in 

the corresponding strength properties. 

According to Table 1, the maximum aggregation parameter has a considerable positive effect on all 

strength properties for all flat fibers regardless of the regression method. However, the linear 

regression has proposed higher values for all constants. For the waved type fiber, the maximum 

aggregation harms both compressive and tensile strength of waved type fiber, while it works 

positively on the flexural strength. The MA parameter would have a nullifying consequence for the 

hooked end fiber. The constant parameter is also a perpetual positive parameter. 
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Regarding the flat-type fiber, Young’s modulus is forecasted to positively affect the compressive 

strength with the minimum value of 10.8012 predicted by Lasso and the maximum of 14.5873 

indicated by the Ridge method. This parameter is not entirely practical for the two other strength 

properties. The Ridge method reported the most pessimistic value of -13.2573 for flexural strength. 

In the wave-type fiber-reinforced concrete, the flexural strength benefits from Young’s modulus in 

contrast with the flat type. This parameter is also beneficial in the tensile and flexural strength of 

hooked-end reinforced concrete fiber while partially unfavorable for compressive cases. 

The plain concrete compression strength is observed to significantly and positively affect altering 

the compressive strength of the flat and hooked-type fibers. The most optimistic effectiveness was 

predicted by the Lasso method, with a value of 100.7482 for the flat fiber. The linear process 

predicts the hooked end with a factor of 141.1466 in compressive strength. The compressive 

strength would be improved by increasing this feature in the wave type fiber in the compressive 

strength, but not as much as the other two other types. The other values for the tensile and flexural 

strength are also available in Table 1. 

Table 1. The parameters identified from each regressor. 

M
eth

o
d
 

F
T

 

Feat 

/ Rel 
Const. 

MA 

(mm) 

E 

(GPa) 
PCCS (MPa) W/C % L(mm) (L/D) 

PTS 

(MPa) 

L
asso

 

F
lat 

Comp 88.6812 32.4810 10.8012 100.7482 -74.9379 29.3741 -22.2810 -14.3059 … 

Tens 2.1291 3.8588 -0.7084 -13.2339 -3.5783 12.8055 -1.7652 2.6532 26.7338 

Flex 25.7340 0.4064 -6.6852 -29.1643 -26.7981 74.2826 -0.5694 9.7344 0.1777 

W
av

ed
 

Comp 110.2469 -14.3321 1.2361 15.8769 -96.6819 0.3380 -4.6043 23.2749 … 

Tens 3.2953 -0.3379 -0.0264 1.1055 0.2077 -0.5895 0.4878 0.5874 0.0628 

Flex 0.0162 1.1172 0.1636 -0.9660 -7.9564 18.0019 -3.1494 10.0503 27.1749 

H
o

o
k

ed
 

Comp 56.4388 
-9.6256e-

02 

-2.8403e-

03 
1.4018e+02 -5.5487e+01 2.1091e01 -7.8441e+00 1.1552e+01 … 

Tens 4.1638 -1.1408 1.0656 -1.6700 -5.8725 5.7278 1.7960 -0.7311 6.2756 

Flex 6.6688 -0.9312 0.2434 -1.8802 -13.8507 33.4757 5.0533 -1.7062 17.9830 

L
in

ear 

F
lat 

Comp 87.1948 37.5246 12.8602 102.1857 -77.0943 30.1850 -23.2134 -19.5005 … 

Tens 2.2060 4.1218 -0.8906 -17.1768 -3.7331 12.8664 -2.2505 3.7447 30.9267 

Flex 29.9491 3.2882 -13.2573 -37.6045 -31.2828 76.9769 -1.7381 17.0591 6.5929 

W
av

ed
 

Comp 106.2378 -15.5955 6.7084 20.4515 -93.5729 0.5469 -7.5380 29.6110 … 

Tens 2.4071 -1.1185 -0.1796 2.5538 1.3043 -1.4733 0.5230 1.8571 -0.3753 

Flex 0.9745 4.4275 0.2695 -6.9930 -12.7347 20.0089 -4.6397 10.3723 32.6163 

H
o

o
k

ed
 

Comp 57.4016 -0.2196 -1.6094 141.1466 -56.0155 24.9601 -8.9083 12.9077 … 

Tens 3.8254 -1.2295 1.4281 -1.8581 -5.9369 5.7630 1.8652 -0.7794 6.5961 

Flex 6.3440 -1.8289 1.3634 -3.6366 -14.6543 36.5674 5.8133 -2.2504 17.8638 

R
id

g
e 

F
lat 

Comp 88.7459 28.2381 14.5873 96.0972 -71.5904 30.0103 -24.3841 -16.1291 … 

Tens 2.3868 3.7944 -0.8326 -10.299 -3.8382 12.4547 -1.5332 2.2522 23.4465 

Flex 29.2814 1.5214 -11.9347 -30.4330 -28.7797 72.3811 -1.9838 12.9535 1.6131 

W
av

ed
 

Comp 97.6521 -17.1898 4.2288 26.0555 -81.1298 -1.7368 -8.2408 30.0343 … 

Tens 3.0708 -0.5808 -0.0592 1.2781 0.3254 -0.8935 0.6354 0.8291 0.2263 

Flex -0.3891 1.7940 0.2390 2.0908 -7.8479 17.9341 -4.9114 10.9892 22.8218 

H
o

o
k

ed
 

Comp 57.3501 -0.4641 -0.7945 139.5486 -55.5563 24.1628 -9.0875 12.7326 … 

Tens 4.3204 -1.1398 1.0670 -1.4407 -5.7940 5.4271 1.7873 -0.7728 5.7788 

Flex 6.9542 -1.6495 1.4568 -2.9443 -14.6110 30.7881 5.3051 -2.3622 17.6997 
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The W/C is an already negative factor in the strength of concrete and must be avoided, especially 

for the compressive strength. 

The fiber percentage, which is known as one of the crucial factors, is also investigated. This study 

reports a negative influence on the tensile strength of wave fiber-reinforced concrete. The plain 

tensile strength, which is not available for the compressive strength, significantly affects the tensile 

strength of the concrete reinforced with flat fiber and the flexural strength in the waved-type 

reinforced structure. Overall, slight incoherence is present in these three regression methods’ results 

regarding the sign that presents the mentioned strategy’s effectiveness. 

3.2. Derived parametric formulations 

The predicted formulation for the compressive strength for the flat, waved, and hooked end fiber 

types can be expressed as follows: 

    

 

   

 

1
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(4) 
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 (6) 

where 
0X is the maximum aggregation size in millimeters; 

1X is Young’s modulus in GPa; 
2X is the 

plain concrete plain strength in MPa; the ratio of water to cement is denoted as 
3X ; fiber 

percentage is denoted by 
4X and the length of fiber is presented by 

5X ; 
6X  is the aspect ratio; 

7X  

is the Plain Tensile/Flexural strength based on the output type. The coefficients are: 
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1 239.497890205207, 0.166   , 

3 4 5 65.43478260869565, 0.028399474521698, 0.999596762026504, 39.497890205207       , 

7 8 9144.229010561867, 1.02564102564103, 3.67624725795418     . 

According to these formulations, the compressive strength of flat fiber reinforced concrete depends 

on PCPS and W/C. For the waved-type reinforced structure, the compressive strength also depends 

on L, fiber percentage, W/C in addition to the mentioned features. For flexural strength, 
2 3 5, ,X X X  

are the influential factors. Similarly, the relations regarding the tensile strength for the flat, waved, 

and hooked end fibers correspond as follows: 

   4 1 2 4
4 0 1 2 3 4 5 3

5 0

, , , , , log 0.044 ,
X X X X

F X X X X X X X
X X

 
  

 
(7) 

 5 6 6 3.53356890459364,F X X   (8) 

  4
6 3 4 7

7 3

1
, , 7.57575757 ,

0.0132

X
F X X X

X X
  


 

(9) 

 

For the flexural strength, the corresponding formulations for the flat, waved, and hooked end fibers 

are: 

 
   
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X
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 (12) 

 

Where 
10 4.97512437810945  . Fig. 3-5 shows the three-dimensional plots of the driven 

formulations. It must be noted that the real part of the formulations is plotted, and the imaginary 

parts are removed consequently. Since some of these equations are functions of more than one 

feature, to create three-dimensional plots, some features are considered as a constant equal to the 

averaged values correspondingly. These averaged values for the features 

0 1 2 3 4 5 6 7, , , , , , ,X X X X X X X X  are 13.27 mm, 58.67 MPa, 0.4 (dimensionless), 38.39 mm, 84.17 

(dimensionless), 7.27 MPa for flexural strength, and 4.12 MPa for tensile strength. 
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(a) 

 
(b) 

 
(c) 

Fig. 3. Compressive strength behavior based on fiber type (a) Flat (b) Waved (c) Hooked end. 
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(a) 

 
(b) 

 
(c) 

Fig. 4. Tensile strength behavior based on fiber type (a) Flat (b) Waved (c) Hooked end. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. Flexural strength behavior based on fiber type (a) Flat (b) Waved (c) Hooked end. 
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3.3. Error analysis 

The error analysis is presented for the three types of fibers and all strength properties for the 

compressive, tensile, and flexural cases. Four types of errors consisting of root mean square 

(RMSE) [40], mean absolute percentage error (MAPE) [40], which is presented in the scale of 0.01 

percent, mean absolute error (MAE) [40] [39], and mean error (ME) [40]. It must be noted that ME 

is presented based on 10 MPa in the boxplot. 

 
Fig. 6. The error analysis for the compressive strength. 

According to Fig. 2, for the compressive case study, the value of RMSE peaked for the flat type 

fiber and dropped nine times smaller for the waved shape steel fiber reinforced concrete. Compared 

with the available formulations in the state-of-the-art, the presented formulation has an error value 

of 0.207 percent for MAPE for the waved fiber, which is much lower than the 25 percent, which is 

about 0.00828 lower [4]. Regarding the hooked end fibers, the reported error in this study is 0.0124 

times lower than the 35 percent available in [5]. Another comparison for the hooked end fiber can 

be made by [6], where the MAPE value of 10 percent was reported, and similarly, the 10 percent of 

error is possible by the formulation presented in [6]. Also, the formulation shown in [9] for the 

hooked end fiber had a MAPE error of 30 % for the compressive strength. For the flat fiber, the 

MAPE error reached 0.219 %, which is acceptable compared with the available empirical 

formulation error analysis [3]. It must be noted that the maximum value of ME error for the 

compressive strength is observed for the flat type fiber, equal to 310.582 MPa. As illustrated in Fig. 

7, the maximum observed error from all types is the ME for the flat fiber. The MAPE errors are 

already less than 1, which is approximately on the scale of 0.01 of the available formulations 

presented in [3–6,9]. Similarly, according to Fig. 8, the maximum MAPE error for the flexural 

strength is 0.17838 % which is approximately negligible compared with the empirical formulations 

presented in the state-of-the-art. 
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Fig. 7. Error analysis presented for the tensile strength of SFRC. 

 
Fig. 8. The error analysis for the flexural strength. 

The benefit of using the discussed strategy in section 2 compared with the recent research is in Fig. 

9 for the compressive and flexural strength. It is visible that the percent of MAPE error for this 

research is considerably more minor than others. To compare based on MAE and RMSE errors, the 

reference [41] reached the corresponding values of 4.74,7.12 MPa for Random Forest, 2.91,3.26 
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MPa with Gradient Boosting, and 2.76,3.10 MPa with extreme Gradient Boosting in the fifth 

folding stage. In the present paper, these items are equal to 8.052 and 3.148 correspondingly, which 

is approximately close to the mentioned recent research while considering a much bigger dataset. 

Please note that the values of these errors increase with the size of the considered dataset, so the 

method is still competitive. Another recent research [42] for predicting the compressive strength, 

which is comparable with the present study, reached its minimum values errors for the MAE and 

RMSE errors using supported vector regression (SVR) AdaBoost and SVR bagging with values 

equal to 4.4, 7.6 MPa, which is lower than the present research due to smaller dataset but still 

keeping close. 

 
(a) 

 
(b) 

Fig. 9. Comparing errors from the present paper with recent machine learning implementations (a) 

Compressive strength based on MAPE error (b) Flexural strength. 
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4. Conclusions 

This paper presented novel empirical formulations for the strength properties of SFRC using 

international data from state-of-the-art and well-known machine learning techniques. An error 

analysis is performed to evaluate the regression. Some key features of this article are as follows: 

 A vast amount of data is collected from all available worldwide resources containing 2650 

data sets to present the most accurate formulations compared to recent research 

 The Ridge, Lasso, and Linear regression forecast the considered objective function. The 

influence of each feature is investigated for these methods and divided by fiber type based on 

the effectiveness factor 

 It is observed that the influence factors for the three regression methods are approximately 

similar in the sign, which presents the accomplishment of data preprocessing and feature 

selection techniques 

 The formulations are derived with the symbolic regression technique, proven more efficient 

than polynomials and other available techniques 

 The error analysis is performed based on the four aggregative formulations containing RMSE, 

MAE, ME, and MAPE 

 According to the presented error analysis, the MAPE error values are about 0.01 of the 

available empirical formulations in the state-of-the-art, presenting the effectiveness of 

machine learning-driven formulations and the feature selection strategy. 
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