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The accurate approximation is a benefit of the modern machine 

learning technique, which also disappeared the problems of 

traditional empirical methods, such as human and technical 

errors plus environmental pollution. Although there are many 

good samples on the state-of-the-art regarding the machine 

learning prediction of strength properties of steel fiber 

reinforced concrete, fewer articles are dedicated to proposing 

empirical formulations. This paper brings some novel empirical 

formulations to identify the strength properties of macro steel 

fiber-reinforced concrete. A 2650 multi-national data records 

are used to perform the regression, which is an exclusive 

dataset. This archive is the largest available dataset used in the 

state-of-the-art steel fiber-reinforced concrete prediction 

process, which is beneficial for supervised learning. Since the 

user must be careful regarding overtraining with such a vast 

resource, a successful strategy provided by the authors in 

previous research is utilized in which various machine learning 

techniques are compared to forecast the considered properties. 

So the Ridge, Lasso, and linear methods are used as regressors 

to predict the strength properties and the constants. Symbolic 

regression, a powerful tool for producing empirical 

formulations, is used for creating mathematical expressions 

regarding the strength properties. The performance is also 

evaluated based on well-known error analysis metrics. The 

formulations are presented for flat, waved, and hooked end 

fibers, the most common fibers used in construction 

engineering. The machine learning-driven formulations are 

exclusive due to the utilized strategy and the resources, and the 

precision of the relations are denoted, which presents the 

superiority to traditional methods. 
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1. Introduction 

Forecasting the strength properties of a 

broadly used construction material such as 

concrete would be possible with both direct 

and indirect approaches. The direct methods, 

as it first comes to mind, are methods in which 

the researchers spend huge costs and time to 

produce dozens of experimental specimens 

based on the 28-day prepared sample 

according to the standard and tested according 

to the regulations. In contrast, in the indirect 

methods, the scientists replace surrogate 

models, some numerical models developed 

based on the statistics to predict the properties 

in the non-sampled points to decrease the 

number of tests and, consequently, the time 

and cost. Many of these methods were 

promising in theory but were effective and 

efficient due to the high aggregated error 

values compared with the experimental 

outcome. One of the main reasons was the 

shortcomings in collecting adequate data for 

the primary dataset. The other was the 

inefficiency of the method in prediction due to 

some fundamental lacks. Many of the 

regression methods fail to face non-smooth 

objectives. In such cases, a perturbation in the 

objective functions may cause fast changes in 

the objective value. This phenomenon makes 

the objective look like a step function which is 

also non-differentiable. A situation of 

occurring such a case is in the buckling of 

columns. So, proposing novel methodologies 

to improve the predictions in such instances 

and testing the available alternatives is highly 

important. For example, developing kriging 

models with some local regressions in the 

discontinuous parts of the objective [1] is a 

possible alternative but needs more progress. 

The background of using steel fibers in the 

concrete matrix backs to half a century. This 

research study comes with a vital context and 

is ongoing in state of the art. This type of 

reinforced concretes benefits the bridging of 

the fiber in the crack tips to prevent furthered 

propagation in the composite structure that 

finally leads to some ultimate possible strength 

properties. It must be noted that this facility 

will be highlighted in the performance of 

concrete in the post-peak cases. In some 

papers in the very beginning, the strength 

properties of the reinforced concrete are a 

function of two variables. These factors are the 

strength of unreinforced concrete and the 

percentage of fiber used in the mixture of the 

mentioned concrete. Some research works 

reported the strength properties to have a 

positive relationship with this percentage, 

while others recommended a second power 

law relation. 

In one of the vanguard studies, Wafa and 

Ashour [2] used all four types of steel fibers 

consisting of crimped, duo form, hooked end, 

and straight with the consideration of the 

volume fraction in a wide range of strength. 

The extremums for the strengths were 41 and 

115 MPa for straight and hooked end fibers. 

The paper became the basis for many further 

studies. Some development trend in this 

research path is illustrated in Fig. 1, in which 

some significant studies are noted. According 

to the described process, the research by 

Khaloo and Kim [3] investigated the 

compressive, tensile, and flexural strength of 

steel fiber-reinforced concrete (SFRC) and 

derived the corresponding formulations as a 

function of fiber percentage and the strength of 

unreinforced concrete. 

The compressive empirical formulation 

predicts the experiment with a 30 percent of 

error, and it is relative to both the first and 

second power low of the volume fraction of 

the fibers. The structure of the identified 

formulations for the flexural and compressive 

strength is the same, with different coefficients 

and a similar 30 percent error compared with 

the experiments. Next, using experimental 

specimens, Nataraja et al. [4] modified the 

relationship by producing the global stress-

strain curve. Three values of volume fraction 

and two for aspect ratio were considered the 
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permutations of the research study to generate 

the corresponding numerical formulations. The 

generated empirical formulae forecast the 

compressive case with a 25 percent of error 

which was an improvement at the time. The 

reference [5] modified the model proposed in 

[3] to predict the properties of high-strength 

SFRC (more than 60 MPa), but the error 

analysis revealed an error of 35 percent in the 

prediction, which is not surprising. Also, about 

98 percent of improvement was reported in the 

splitting tensile strength. 

 
Fig. 1. Some critical research in the context of steel fiber reinforced concrete. 

The effect of aspect ratio plus volume fraction 

was first studied in [6], where three types of 

this ratio are utilized in ten mixes to produce 

specimens. The errors for these predictions 

depend on the strength property, so for 

compressive, tensile, and flexural cases, it is 

correspondingly 10, 28, and 23 percent. 

Another study presented empirical 

formulations and reported error values of 10 

percent, which was a considerable 

improvement [7]. The drop test was utilized to 

derive the empirical relationship for impact 

resistance of the SFRC in which the 

lightweight concrete is analyzed [10]. The 

formulations brought novel relations between 

flexural toughness and the impact energy. 

The machine learning technique has been 

widely used in the state-of-the-art as an 

alternative to the traditional surrogate 

modeling techniques, presenting higher 

efficiency and accuracy. The community has 

broadly studied the integration of machine 

learning in predicting SFRC strength 

properties and the features of other types of 

concrete. Alilou and Teshnehlab [11] used a 

feed-forward neural network to predict the 

strength of concrete under compression with 

consideration of 3-day strength as an essential 

parameter. The technique is claimed to 

decrease the analysis duration due to using 

fewer samples. The artificial neural network is 

reported for the premiere performance in 

altering the prediction using the Lavenberg 

Marquardt gradient-based optimization [12]. 

The effect of the number of neurons designed 

in the hidden layer of the network of an 

artificial neural network (ANN) structure is 

reported to be directly influential on the 

outcome [13]. This study also performed an 

analysis of sensitivity for analyzing this 

parameter. More research on using ANN in 

predicting SRFC properties is available in [14-

18]. In another study, available data from 

state-of-the-art and personal experiments are 

utilized to create empirical models predicting 

flexural strength [19]. The proposed model in 

the mentioned research had more than 80 

percent confirmation from the validation 

technique. Some researchers suggested 

mathematical models for this study. For 

example, [20] used a numerically simplified 

formula derived by removing parameters such 

Khaloo and Kim 
[3]: 
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concrete 

Nataraja et al. [4]: 

High strength 
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as water, cement, and water-to-cement ratio. 

Besides, the concrete strength gain 

specifications are simplified by eliminating 

polynomial equations and replacing them with 

a simple mathematical formula. 

The considerable efficiency of the stepwise 

regression is presented in [21], where newly 

developed formulations are proposed based on 

the analysis of shear capacity. The research’s 

outcome is according to the statistical 

characteristics of seven single parameters. The 

gene expression programming -presented some 

of the most accurate results in the forecasting 

process of shear and compressive strength 

[22], and the keynote of the related study was 

that the shear strength decreases with the shear 

span to depth ratio. Another effective 

utilization of this method which led to new 

formulations can be found in [23]. Al-Musawi 

et al. [24] changed the general gradient-based 

solver of supported vector regression by the 

firefly algorithm, which is a population-based 

heuristic optimizer. This modification has 

significantly improved the efficiency of this 

method which was looser compared with many 

other regression methods [25]. Another idea 

for enhancing the supported vector regression 

in predicting the SFRC strength was the 

hybridization of the response surface to 

forecast the shear capacity [26]. This way, the 

supported vector machine was adjusted 

utilizing the corresponding response surface. 

The shear resistance of the SFRC has recently 

been investigated with multi-expression 

programming [27]. This method was used for 

analyzing the shear resistance. Also, in a 

recent study, Ahmadi et al. [28] proposed 

newly developed mathematical relations and 

correlations between some geometrical and 

material properties and the shear stress of 

SFRC using the gene programming method, 

which had high accuracy compared with many 

references. The well-known, fully developed 

machine learning techniques are compared 

based on standard Python implementation to 

find the most elite one in predicting the 

strength properties of SFRC [29]. Despite the 

available research items on the strength 

properties of SFRC [30], there are insufficient 

achievements in proposing machine learning-

driven empirical formulations for the 

compressive, tensile, and flexural strengths of 

SFRC. Therefore, more symbolic machine-

learning techniques must be used and 

developed for this purpose. 

The present research is dedicated to deriving 

empirical formulations using data-driven 

supervised machine-learning techniques. Since 

linear regression methods are widely and 

effectively used in recent research on 

composite structures [31], three linear 

regression techniques are investigated to 

approximate an objective function. The data 

for these methods are prepared based on a 

strategy to remove outliers from the huge 

prepared dataset to approach the highest 

accuracy. The influence of each feature is 

presented in the paper using signed 

parameters. An error analysis is also available 

in the text. The formulations presented in this 

paper are prepared using symbolic regression. 

The rest of this research paper is structured as 

follows: Section 2 explains the methods used 

to produce the outcome, Section 3 is dedicated 

to the results and discussions, and finally, 

Section 4 highlights the concluding remarks 

from the results and discussions section. 

2. Methodology 

In this paper, three well-known regression 

methods from the family of linear methods are 

used for the prediction process. The authors 

used these three methods in another research 

in which various methods were compared for 

the approximation of properties of SFRC [29]. 

The data regarding the considerable accuracy 

of these methods is available in the article. The 

factor of effectiveness for these methods is 

broadly discussed for each feature. It must be 

noted that an exclusive strategy is used for 

preparing the data the authors proposed in 
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another research article, and the efficiency of 

this approach is proven. The symbolic 

regression is used to derive the empirical 

formulations for the strength properties. Also, 

the k-fold validation technique [32] ( 5k  ) is 

used to prevent overtraining. Using more 

values of this parameter was not beneficial and 

increased the computational cost. It must be 

mentioned that the outcome of the training 

process is an average of 30 repetitions 

progresses to avoid the unreliability of the 

non-deterministic comport of the regressor 

algorithms. 

2.1. Feature selection strategy 

The strategy for data preparation and feature 

selection [33] is illustrated in Fig. 2. The 

adopted strategy prevents overtraining [34] 

and numerical errors to receive the best 

regression performance and accuracy. This 

strategy was proposed, and its effectiveness is 

proven in another research [29]. 

 
Fig. 2. The process illustration for the data preparation and feature selection. 

According to the illustration, the first step is 

dedicated to data division based on the fiber 

type. In the next section, it is visible that each 

strength property depends on the fiber type, 

which is so important. After this essential step, 

the data for unreinforced concrete is removed 

from the dataset. This effort helps to remove 

outlier data from the input of the forecasting 

algorithm. Finally, the features are analyzed 

separately based on the fiber type and each 

strength property. 

2.2. Symbolic regression 

This method produces tree branches using 

problem features and mathematical operators 

[35]. Each of these branches is then sorted by 

their accuracy. Finally, the formulation with 

the best performance will be combined. Also, 

some modifications might be applied 

randomly to the same as a mutation operator. 

Then previous iterations’ trees are combined 

and rated again, and this procedure continues 

until the termination criteria. 

2.3. Linear regression 

This method is recommended in the state-of-

the-art as a general and well-established 

technique in a supervised branch of machine 

learning. The reason is the ease of 

implementation and availability of the code in 

Python script. It must be noted that the linear 

approximation has shown approximately good 

applicability in the engineering community, 

although the natural phenomenon is always 

nonlinear. In this method, a linear correlation 

is performed to present the regressed function 

as follows [36]: 

0 1 1 2 2 1 1... ,n n n nB                 (1) 

Considering 
nine features 

to be 
analyzed 

Removing 
the data rows 

for the 
unreinforced 

concrete 

Deviding 
based on the 

fiber type 
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The above formulation, B stands for the 

dependent variable, 
n is a bias, and the 

independent variable denoted as
i . 

2.4. Ridge regression 

It is a kind of square-type regulation 

regression method and can be formulated as 

follows [37]: 

   
2

2

1 1

arg min ,
E R

e i i

e r

F g g   
 

   
 (2) 

where, 
i is an individual of the vector of 

observation, 
i is an individual for the 

regression matrix, and finally g stands for the 

vector of regression coefficients. The term 

2

1

E

e

e

g


 is known as the regulation term 

multiplied by the hyperparameter  is 

multiplied in this phrase. 

2.5. Lasso regression 

With a similar formulation compared with the 

previous regressor, this method contains a term

argmin , but the L1-norm is replaced with the 

first term with the penalty parameter denoted 

as  . The formulation can be described as 

follows [38]: 

   
2

1 1

arg min ,
E R

c i i

e r

Y g g   
 

   
 (3) 

3. Results and discussions 

The results of this prediction process are 

divided into three sections. The first section 

presents the effectively signed indicators for 

the considered features of the steel fiber-

reinforced concrete. Secondly, the 

formulations derived by parametric regression 

are presented. Thirdly, the error analysis 

regarding the regressions introduced by Ridge, 

Lasso, and the linear method is presented as 

bar charts. 

3.1. Feature indicators for each regressor 

The effective parameters for the Linear 

regression, Ridge, and Lasso method are 

available in Table (1). In this Table, Table, MA 

stands for the max aggregation based on 

millimeters; E is Young’s modulus in GPa; 

PCCS stands for plain concrete compression 

strength; PTS is the plain tensile strength. 

Also, fiber percentage is denoted as (%); L is 

the length of fiber in millimeters; The aspect 

ratio is represented as L/D. The feature 

constant indicates the constant variable in the 

regression formulae. The multipliers describe 

the value of features’ positive or negative 

effects of a feature in the corresponding 

strength properties. 

According to Table 1, the maximum 

aggregation parameter has a considerable 

positive effect on all strength properties for all 

flat fibers regardless of the regression method. 

However, the linear regression has proposed 

higher values for all constants. For the waved 

type fiber, the maximum aggregation harms 

both compressive and tensile strength of 

waved type fiber, while it works positively on 

the flexural strength. The MA parameter would 

have a nullifying consequence for the hooked 

end fiber. The constant parameter is also a 

perpetual positive parameter. 

Regarding the flat-type fiber, Young’s modulus 

is forecasted to positively affect the 

compressive strength with the minimum value 

of 10.8012 predicted by Lasso and the 

maximum of 14.5873 indicated by the Ridge 

method. This parameter is not entirely 

practical for the two other strength properties. 

The Ridge method reported the most 

pessimistic value of -13.2573 for flexural 

strength. In the wave-type fiber-reinforced 

concrete, the flexural strength benefits from 

Young’s modulus in contrast with the flat type. 

This parameter is also beneficial in the tensile 

and flexural strength of hooked-end reinforced 

concrete fiber while partially unfavorable for 

compressive cases. 
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The plain concrete compression strength is 

observed to significantly and positively affect 

altering the compressive strength of the flat 

and hooked-type fibers. The most optimistic 

effectiveness was predicted by the Lasso 

method, with a value of 100.7482 for the flat 

fiber. The linear process predicts the hooked 

end with a factor of 141.1466 in compressive 

strength. The compressive strength would be 

improved by increasing this feature in the 

wave type fiber in the compressive strength, 

but not as much as the other two other types. 

The other values for the tensile and flexural 

strength are also available in Table 1. 

Table 1. The parameters identified from each regressor. 

M
eth

o
d
 

F
T

 

Feat 

/ Rel 
Const. 

MA 

 (mm) 

E 

(GPa) 

PCCS 

(MPa) 
W/C % L(mm) (L/D) 

PTS 

(MPa) 

L
asso

 

F
lat 

Comp 88.6812 32.4810 10.8012 100.7482 -74.9379 29.3741 -22.2810 -14.3059 … 

Tens 2.1291 3.8588 -0.7084 -13.2339 -3.5783 12.8055 -1.7652 2.6532 26.7338 

Flex 25.7340 0.4064 -6.6852 -29.1643 -26.7981 74.2826 -0.5694 9.7344 0.1777 

W
av

ed
 

Comp 110.2469 -14.3321 1.2361 15.8769 -96.6819 0.3380 -4.6043 23.2749 … 

Tens 3.2953 -0.3379 -0.0264 1.1055 0.2077 -0.5895 0.4878 0.5874 0.0628 

Flex 0.0162 1.1172 0.1636 -0.9660 -7.9564 18.0019 -3.1494 10.0503 27.1749 

H
o

o
k

ed
 

Comp 56.4388 -9.6256e-02 -2.8403e-03 1.4018e+02 -5.5487e+01 2.1091e01 -7.8441e+00 1.1552e+01 … 

Tens 4.1638 -1.1408 1.0656 -1.6700 -5.8725 5.7278 1.7960 -0.7311 6.2756 

Flex 6.6688 -0.9312 0.2434 -1.8802 -13.8507 33.4757 5.0533 -1.7062 17.9830 

L
in

ear 

F
lat 

Comp 87.1948 37.5246 12.8602 102.1857 -77.0943 30.1850 -23.2134 -19.5005 … 

Tens 2.2060 4.1218 -0.8906 -17.1768 -3.7331 12.8664 -2.2505 3.7447 30.9267 

Flex 29.9491 3.2882 -13.2573 -37.6045 -31.2828 76.9769 -1.7381 17.0591 6.5929 

W
av

ed
 

Comp 106.2378 -15.5955 6.7084 20.4515 -93.5729 0.5469 -7.5380 29.6110 … 

Tens 2.4071 -1.1185 -0.1796 2.5538 1.3043 -1.4733 0.5230 1.8571 -0.3753 

Flex 0.9745 4.4275 0.2695 -6.9930 -12.7347 20.0089 -4.6397 10.3723 32.6163 

H
o

o
k

ed
 

Comp 57.4016 -0.2196 -1.6094 141.1466 -56.0155 24.9601 -8.9083 12.9077 … 

Tens 3.8254 -1.2295 1.4281 -1.8581 -5.9369 5.7630 1.8652 -0.7794 6.5961 

Flex 6.3440 -1.8289 1.3634 -3.6366 -14.6543 36.5674 5.8133 -2.2504 17.8638 

R
id

g
e 

F
lat 

Comp 88.7459 28.2381 14.5873 96.0972 -71.5904 30.0103 -24.3841 -16.1291 … 

Tens 2.3868 3.7944 -0.8326 -10.299 -3.8382 12.4547 -1.5332 2.2522 23.4465 

Flex 29.2814 1.5214 -11.9347 -30.4330 -28.7797 72.3811 -1.9838 12.9535 1.6131 

W
av

ed
 

Comp 97.6521 -17.1898 4.2288 26.0555 -81.1298 -1.7368 -8.2408 30.0343 … 

Tens 3.0708 -0.5808 -0.0592 1.2781 0.3254 -0.8935 0.6354 0.8291 0.2263 

Flex -0.3891 1.7940 0.2390 2.0908 -7.8479 17.9341 -4.9114 10.9892 22.8218 

H
o

o
k

ed
 

Comp 57.3501 -0.4641 -0.7945 139.5486 -55.5563 24.1628 -9.0875 12.7326 … 

Tens 4.3204 -1.1398 1.0670 -1.4407 -5.7940 5.4271 1.7873 -0.7728 5.7788 

Flex 6.9542 -1.6495 1.4568 -2.9443 -14.6110 30.7881 5.3051 -2.3622 17.6997 
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The W/C is an already negative factor in the 

strength of concrete and must be avoided, 

especially for the compressive strength. 

The fiber percentage, which is known as one 

of the crucial factors, is also investigated. This 

study reports a negative influence on the 

tensile strength of wave fiber-reinforced 

concrete. The plain tensile strength, which is 

not available for the compressive strength, 

significantly affects the tensile strength of the 

concrete reinforced with flat fiber and the 

flexural strength in the waved-type reinforced 

structure. Overall, slight incoherence is present 

in these three regression methods’ results 

regarding the sign that presents the mentioned 

strategy’s effectiveness. 

3.2. Derived parametric formulations 

The predicted formulation for the compressive 

strength for the flat, waved, and hooked end 

fiber types can be expressed as follows: 

    

 

   

 

1
1 2 3 1 2 0 2 3 1 2

2 3
4

2 3

4
1 3 2 3 2 3

2 3 0

2 3 2 3 2 3
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1
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cos sin
log

1
... log log log ...

1 1 1
... log log
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F X X X X X X
XX

X X

X
X X X X X

X X

X X X X X X
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1
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X
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3 0 1

2 0 1 3 4 5 6 3 4 5 3 0 5

1 5 6 1 4

1
1 4 1 3 1 4 6

0 6

cos cos
, , , , , , , , log cos ...

sin

... 1 / 2 cos log ,
0.397

X X
F X X X X X X X

X X X X

X
X X X X X
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6
3 2 3 6 6 7 8 9 6 7

2
6

3 2

2

2

2 9 2

2

6
6

6 2
2

3

0.089
, , , , , , log / ...

1 0.089

log
... / 2log ...

1 1
... log cos ,

1cos 0.241 cos
0.089

F X X X
X

X X

X
X i X

X

X X
X

X


     



 




 
  
    
      
 

 
     
 
 

  
  
    
      

  

 (6) 

 

where 
0X is the maximum aggregation size in 

millimeters; 
1X is Young’s modulus in GPa; 

2X is the plain concrete plain strength in MPa; 

the ratio of water to cement is denoted as 
3X ; 

fiber percentage is denoted by 
4X and the 

length of fiber is presented by 
5X ; 

6X  is the 
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aspect ratio; 
7X  is the Plain Tensile/Flexural 

strength based on the output type. The 

coefficients are: 

1 239.497890205207, 0.166   , 

3 4 5 65.43478260869565, 0.028399474521698, 0.999596762026504, 39.497890205207       , 

7 8 9144.229010561867, 1.02564102564103, 3.67624725795418     . 

According to these formulations, the 

compressive strength of flat fiber reinforced 

concrete depends on PCPS and W/C. For the 

waved-type reinforced structure, the 

compressive strength also depends on L, fiber 

percentage, W/C in addition to the mentioned 

features. For flexural strength, 
2 3 5, ,X X X  are 

the influential factors. Similarly, the relations 

regarding the tensile strength for the flat, 

waved, and hooked end fibers correspond as 

follows: 

   4 1 2 4
4 0 1 2 3 4 5 3

5 0

, , , , , log 0.044 ,
X X X X

F X X X X X X X
X X

 
  

 
(7) 

 5 6 6 3.53356890459364,F X X   (8) 

  4
6 3 4 7

7 3

1
, , 7.57575757 ,

0.0132

X
F X X X

X X
  


 

(9) 

 

For the flexural strength, the corresponding 

formulations for the flat, waved, and hooked 

end fibers are: 

 
   

 
 

   

30
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      4
8 0 3 4 7 0 0 6

3 3

4 7

2

0

3 0

1
, , , log log 0.426 ...

...
1 0.592

log 0.426

X
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X X
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X
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  4
8 3 4 6 7 7 7

6 3 3

2 1 1
, , , 28.5714285714286 3.003003003003

X
F X X X X X X

X X X

 
     

 
 (12) 

 

Where 
10 4.97512437810945  . Fig. 3-5 shows 

the three-dimensional plots of the driven 

formulations. It must be noted that the real part 

of the formulations is plotted, and the 

imaginary parts are removed consequently. 

Since some of these equations are functions of 

more than one feature, to create three-

dimensional plots, some features are 

considered as a constant equal to the averaged 

values correspondingly. These averaged values 

for the features 
0 1 2 3 4 5 6 7, , , , , , ,X X X X X X X X  

are 13.27 mm, 58.67 MPa, 0.4 
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(dimensionless), 38.39 mm, 84.17 

(dimensionless), 7.27 MPa for flexural 

strength, and 4.12 MPa for tensile strength. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Compressive strength behavior based on fiber type (a) Flat (b) Waved (c) Hooked end. 
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(a) 

 
(b) 

 
(c) 

Fig. 4. Tensile strength behavior based on fiber type (a) Flat (b) Waved (c) Hooked end. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. Flexural strength behavior based on fiber type (a) Flat (b) Waved (c) Hooked end. 
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3.3. Error analysis 

The error analysis is presented for the three 

types of fibers and all strength properties for 

the compressive, tensile, and flexural cases. 

Four types of errors consisting of root mean 

square (RMSE) [39], mean absolute 

percentage error (MAPE) [39], which is 

presented in the scale of 0.01 percent, mean 

absolute error (MAE) [39], and mean error 

(ME) [39]. It must be noted that ME is 

presented based on 10 MPa in the boxplot. 

 
Fig. 6. The error analysis for the compressive strength. 

According to Fig. 2, for the compressive case 

study, the value of RMSE peaked for the flat 

type fiber and dropped nine times smaller for 

the waved shape steel fiber reinforced 

concrete. Compared with the available 

formulations in the state-of-the-art, the 

presented formulation has an error value of 

0.207 percent for MAPE for the waved fiber, 

which is much lower than the 25 percent, 

which is about 0.00828 lower [4]. Regarding 

the hooked end fibers, the reported error in this 

study is 0.0124 times lower than the 35 

percent available in [5]. Another comparison 

for the hooked end fiber can be made by [6], 

where the MAPE value of 10 percent was 

reported, and similarly, the 10 percent of error 

is possible by the formulation presented in [6]. 

Also, the formulation shown in [7] for the 

hooked end fiber had a MAPE error of 30 % 

for the compressive strength. For the flat fiber, 

the MAPE error reached 0.219 %, which is 

acceptable compared with the available 

empirical formulation error analysis [3]. It 

must be noted that the maximum value of ME 

error for the compressive strength is observed 

for the flat type fiber, equal to 310.582 MPa. 

As illustrated in Fig. 7, the maximum observed 

error from all types is the ME for the flat fiber. 

The MAPE errors are already less than 1, 

which is approximately on the scale of 0.01 of 

the available formulations presented in [3-7]. 

Similarly, according to Fig. 8, the maximum 

MAPE error for the flexural strength is 

0.17838 % which is approximately negligible 

compared with the empirical formulations 

presented in the state-of-the-art. 



40 M.H. Taghavi Parsa et al./ Journal of Rehabilitation in Civil Engineering 13-1 (2025) 27-44 

 

 
Fig. 7. Error analysis presented for the tensile strength of SFRC. 

 
Fig. 8. The error analysis for the flexural strength. 

The benefit of using the discussed strategy in 

section 2 compared with the recent research is 

in Fig. 9 for the compressive and flexural 

strength. It is visible that the percent of MAPE 

error for this research is considerably more 

minor than others. To compare based on MAE 

and RMSE errors, the reference [41] reached 

the corresponding values of 4.74,7.12 MPa for 
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Random Forest, 2.91,3.26 MPa with Gradient 

Boosting, and 2.76,3.10 MPa with extreme 

Gradient Boosting in the fifth folding stage. In 

the present paper, these items are equal to 

8.052 and 3.148 correspondingly, which is 

approximately close to the mentioned recent 

research while considering a much bigger 

dataset. Please note that the values of these 

errors increase with the size of the considered 

dataset, so the method is still competitive. 

Another recent research [42] for predicting the 

compressive strength, which is comparable 

with the present study, reached its minimum 

values errors for the MAE and RMSE errors 

using supported vector regression (SVR) 

AdaBoost and SVR bagging with values equal 

to 4.4, 7.6 MPa, which is lower than the 

present research due to smaller dataset but still 

keeping close. 

 
(a) 

 
(b) 

Fig. 9. Comparing errors from the present paper with recent machine learning implementations (a) 

Compressive strength based on MAPE error (b) Flexural strength. 

4. Conclusions 

This paper presented novel empirical 

formulations for the strength properties of 

SFRC using international data from state-of-

the-art and well-known machine learning 

techniques. An error analysis is performed to 

evaluate the regression. Some key features of 

this article are as follows: 
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 A vast amount of data is collected from 

all available worldwide resources 

containing 2650 data sets to present the 

most accurate formulations compared to 

recent research 

 The Ridge, Lasso, and Linear regression 

forecast the considered objective 

function. The influence of each feature is 

investigated for these methods and 

divided by fiber type based on the 

effectiveness factor 

 It is observed that the influence factors 

for the three regression methods are 

approximately similar in the sign, which 

presents the accomplishment of data 

preprocessing and feature selection 

techniques 

 The formulations are derived with the 

symbolic regression technique, proven 

more efficient than polynomials and 

other available techniques 

 The error analysis is performed based on 

the four aggregative formulations 

containing RMSE, MAE, ME, and 

MAPE 

 According to the presented error 

analysis, the MAPE error values are 

about 0.01 of the available empirical 

formulations in the state-of-the-art, 

presenting the effectiveness of machine 

learning-driven formulations and the 

feature selection strategy. 
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