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Structural Health Monitoring (SHM) has gained significant 

importance in recent decades, with various methods 

developed to detect structural damage. Many non-destructive 

damage detection techniques are based on vibration response 

analysis, where changes in modal parameters provide 

insights into the condition of the structure. For long-term 

monitoring, utilizing operational loads as the source of 

vibration is more practical. This paper presents a 

methodology that processes the forced vibration response of 

a bridge deck subjected to traffic loading for modal 

parameter identification. Specifically, the free vibration 

response is estimated using the Random Decrement (RD) 

technique combined with Empirical Mode Decomposition 

(EMD). The natural frequencies and mode shapes are 

extracted using Frequency Domain Decomposition (FDD). 

To validate the proposed approach, numerical models of 2D 

and 3D bridge decks are employed, considering various 

loading scenarios and the effects of load path and speed. The 

results indicate that the proposed method is effective for 

modal identification under real traffic loads, with improved 

accuracy observed when more complex load patterns, closer 

to actual conditions, are used. Additionally, the proximity of 

degrees of freedom to the load path enhances the precision of 

the results. Quantitative comparisons of modal frequencies 

and mode shapes validate the robustness of the methodology. 

Keywords: 

Modal identification; 

Traffic load; 

Frequency domain 

Decomposition; 

Random decrement; 

Empirical mode decomposition. 

E-ISSN: 2345-4423 

© 2025 The Authors. Journal of Rehabilitation in Civil Engineering published by Semnan University Press. 

This is an open access article under the CC-BY 4.0 license. (https://creativecommons.org/licenses/by/4.0/) 

How to cite this article: Talebi, M. , Tabrizian, Z. and Ghodrati Amiri, G. (2025). Bridge Deck Modal Parameters 

Identification Using Traffic Loads. Journal of Rehabilitation in Civil Engineering, 13(3), 215-230. 

https://doi.org/10.22075/jrce.2025.34969.2157 

https://doi.org/10.22075/jrce.2025.34969.2157
https://civiljournal.semnan.ac.ir/
mailto:mei.talebi@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.22075/jrce.2025.34969.2157
https://orcid.org/0000-0003-3244-0943


216 M. Talebi et al./ Journal of Rehabilitation in Civil Engineering 13-3 (2025) 215-230 

1. Introduction 

Bridges serve as essential components of transportation networks, and their structural integrity is 

vital for ensuring both public safety and the efficient movement of goods and people. Recently, 

Structural Health Monitoring (SHM) systems have become increasingly important for assessing and 

preserving the functionality of highway bridges. SHM techniques can broadly be classified into 

signal-based and model-based methods, which use the structural responses to dynamic forces as the 

basis for health monitoring [1–3]. These structural responses, which include key modal parameters 

like natural frequencies, mode shapes, and damping ratios, provide valuable information for damage 

detection, condition evaluation, and updating finite element models [4–8]. 

Modal parameter identification can be accomplished using two primary techniques: Traditional 

Modal Analysis (TMA) and Operational Modal Analysis (OMA) [9–12]. TMA relies on controlled 

structural excitation (e.g., dynamic force) and measures the structure’s response in terms of 

acceleration, displacement, or velocity. On the other hand, OMA uses ambient vibrations caused by 

environmental factors such as traffic, wind, and earthquakes, thus eliminating the need for 

externally controlled forces [9–11,13,14]. While OMA is often preferred for practical applications 

in the field, challenges such as weak excitation and noise interference can complicate the accurate 

estimation of modal parameters. Nevertheless, ongoing research has led to significant advancements 

in improving the robustness and precision of these techniques for bridges[15]. 

As most modal identification techniques depend on free vibration data, it is important to separate 

free vibration responses from forced vibrations. The Random Decrement (RD) method has been 

widely adopted for isolating these free vibrations, especially when ambient excitation is present 

[15–17]. Initially developed to estimate damping in aerospace structures, the RD method has been 

adapted for multi-degree-of-freedom systems in civil engineering [12]. Additionally, to better 

manage non-stationary signals, advanced signal processing techniques such as Empirical Mode 

Decomposition (EMD) and time-frequency analysis have been explored in recent studies. EMD is 

particularly effective for decomposing complex non-stationary signals into Intrinsic Mode 

Functions (IMFs), which can then be analyzed to estimate modal parameters [12,16,18]. 

This paper proposes a novel approach that integrates RD with EMD to extract free vibration 

responses from non-stationary ambient data. Specifically, the data are first decomposed into IMFs 

using EMD, and then the RD technique is applied to these IMFs to extract the free vibration 

response. This combined method enhances the accuracy of modal parameter estimation and proves 

to be highly effective for health monitoring of bridge structures. 

The paper is organized as follows: Section 2 discusses the Frequency-Domain Decomposition 

(FDD) technique used to identify modal frequencies and mode shapes. Section 3 introduces the RD-

EMD method for estimating free vibration responses. Section 4 presents a hybrid approach that 

combines FDD and RD-EMD for modal parameter identification. Finally, Section 5 validates the 

proposed approach through numerical simulations of 2D and 3D bridge deck models. 

2. Frequency domain decomposition approach 

Frequency Domain Decomposition (FDD) is a technique used for identifying the modal parameters 

of a structure from its response to broadband excitation. It is an extension of the classic frequency 
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domain approach, often referred to as the Basic Frequency Domain (BFD) method or the Peak-

Picking (PP) technique. In the PP approach, the Frequency Response Function (FRF) of a system 

exhibits distinct peaks at the system’s natural frequencies. These peaks represent the resonance 

frequencies of the structure, which correspond to its dominant modal frequencies. By analyzing the 

imaginary component of the FRF at each modal frequency, ωi, the corresponding mode shape, ϕi, 

can be extracted for the ith mode of the structure [19,20]. 

2.1. Theoretical background of FDD 

When a structure is subjected to ambient vibrations, the relationship between unknown input X(t) 

and measured responses Y(t) can be expressed as: 

𝐺𝑋𝑋(𝑗𝜔) = 𝐻(𝑗𝜔)𝐺𝑌𝑌(𝑗𝜔)𝐻(𝑗𝜔)𝑇 (1) 

Where GXX(jω) is the r×r Power Spectral Density (PSD) matrix of the inputs and GYY(jω) is the 

m×m PSD matrix of the responses. In this equation, r and m represent the number of inputs and 

outputs, respectively, 𝐻(𝑗𝜔) is the 𝑚 × 𝑟 Frequency Response Function (FRF) matrix, Also, “¯” 

and superscript “T” denote a complex conjugate and transpose, respectively [19,21]. The FRF 

matrix can be expressed in partial fraction form as: 

𝐻(𝑗𝜔) = ∑ (
𝑅𝑘

𝑗𝜔−𝜆𝑘
+

𝑅𝑘

𝑗𝜔−𝜆𝑘
)𝑛

𝑘=1  (2) 

where n is the number of modes, 𝜆𝑘 is the pole, 𝑅𝑘 = 𝜙𝑘𝛾𝑘
𝑇 is the residue, and 𝜙𝑘 and 𝛾𝑘

𝑇 are the 

mode shape vector and modal participation vector, respectively [19,22]. 

2.2. FDD identification algorithm 

The FDD method is an output-only modal extraction approach, which allows for the identification 

of closely spaced modes by decomposing the spectral density matrix into a set of single degree of 

freedom (SDOF) systems. This procedure is performed by estimating the output Power Spectral 

Density (PSD) matrix GYY(jωi) for each discrete frequency ω=ωi. The PSD matrix is calculated 

from an array of frequency response functions (FRFs) using the Fast Fourier Transform (FFT) from 

each degree of freedom (DOF), as [21,23]: 

𝐺𝑌𝑌(𝑗𝜔𝑖) = {𝐹𝑌(𝑗𝜔𝑖)}{𝐹𝑌
*(𝑗𝜔𝑖)}

𝑇
 (3) 

where {FY(jωi)} is an array of complex FFT values for each DOF at frequency ωi and {FY
*(jωi)}

T is 

the complex conjugate transpose of that array. By applying Singular Value Decomposition (SVD) to 

the PSD matrix, singular values and singular vectors can be extracted from the PSD matrix as: 

𝐺𝑦𝑦(𝑗𝜔𝑖) = 𝑈𝑖𝑆𝑖𝑈𝑖
𝐻 (4) 

where ui=[ui1, ui2, … , uim] is a matrix containing m singular m×1 vectors uij, Si is a diagonal matrix 

holding scalar singular values Sij and 𝑈𝑖
𝐻 is the Hermitian transpose of Ui. If a SVD is performed 

near a modal peak, the first singular vector 𝑢1, can be interpreted as an estimate of corresponding 

mode shape ϕi [23]. 

A reference point should be selected to determine the dominated frequencies and estimating the 

scaled mode shapes. This should be placed such that all modes contribute to the response. Typically, 

a point that is neither at a nodal nor peak deflection would be ideal for this purpose[24]. If the rth 
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measuring point is chosen as the reference point, the kth component of the ith real mode shape can 

be calculated as: 

𝜙𝑘𝑖 =
𝑢𝑖𝑘(𝑘)×𝑢𝑖𝑘(𝑟)

(𝑢𝑖𝑘(𝑟))
2  (5) 

where 𝑢𝑖1(𝑘) is the kth component of vector 𝑢𝑖1 and 𝜙𝑘𝑖 is the kth component of the ith mode 

shape. Since FDD is based on the structural free vibration response, the forced vibration response of 

structures under loading must first be converted into a free vibration response using the Random 

Decrement (RD) technique. 

3. Random decrement method 

In the previous section, it was assumed that modal parameters could only be estimated under 

stationary or white noise excitations. However, ambient vibrations from sources such as 

earthquakes, wind, and traffic are inherently non-stationary. Therefore, methods capable of 

estimating modal parameters from non-stationary ambient excitation are needed. In this section, the 

Random Decrement (RD) method is introduced. This method estimates modal parameters from 

non-stationary excitation by utilizing response signatures evaluated at a fixed time point under 

specific triggering conditions. 

The RD signature is a sequence of response records that are extracted by segmenting the structure's 

dynamic response at specific triggering points (often referred to as "windows"). These segments are 

then averaged to reduce the effect of noise and irregularities, leaving a signature that resembles the 

free vibration response of the system. This signature captures the underlying dynamics of the 

structure, providing valuable information about its modal characteristics, such as natural 

frequencies and damping. By applying this technique to non-stationary data, the RD method enables 

accurate modal parameter estimation in real-world conditions where excitation sources are 

unpredictable and variable. 

3.1. RD signature and autocorrelation relationship in stationary gaussian random vibration 

The Random Decrement (RD) technique is based on the assumption that the structural dynamic 

response is a superposition of two components: (1) the vibration caused by initial displacement or 

velocity conditions and (2) the vibration due to random excitation (often caused by ambient forces 

like wind, traffic, or earthquakes) [25,26]. For a structure subjected to random excitation, the 

equation of motion in terms of displacement X(t), velocity Ẋ(t), and acceleration 𝑋̈(t) is expressed 

as[27]: 

𝑀𝑋̈(𝑡) + 𝐶𝑋̇(𝑡) + 𝐾𝑋(𝑡) = 𝐹(𝑡) (6) 

where M, C, and K represent the mass, damping, and stiffness matrices, and F(t) is the external 

excitation force. 

The RD signature is obtained by averaging time segments of a time history in which certain 

triggering conditions are satisfied. These time segments are selected such that they are synchronized 

with the occurrence of similar response patterns, often referred to as "trigger points." Once these 

segments are isolated, they are averaged to produce a signal that resembles the free vibration 

response of the system, effectively filtering out the effects of random excitation [16,25,26]. 
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𝑋(𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡 + 𝜏)𝑁

𝑖=1  (7) 

The autocorrelation function RX(τ) is used to assess the correlation between the structure's response 

at two different time points, t1 and t2: 

𝑅𝑋(𝑡1, 𝑡2) = 𝐸[𝑋(𝑡1), 𝑋(𝑡2)]
 (8) 

This function is crucial for understanding how the response at one time is related to that at another, 

especially in random vibration conditions. When the RD signature is derived from the 

autocorrelation, it becomes a weighted sum of these correlations, conditioned by the initial state of 

the structure [16,25,28]. 

The key idea is to filter out the random excitation through the relationship between the RD 

signature and the autocorrelation of the response. For stationary Gaussian random vibrations, the 

probability distribution of the response X(t) is Gaussian, and the RD signature can be related to the 

autocorrelation as [25,26]: 

𝐷(𝑋0)(𝜏) =
𝑅𝑋(𝜏)

𝑅𝑋(0) (9) 

where X0 is the initial displacement and τ represents the time lag between the response points. This 

relationship shows how the RD signature at a particular time interval is influenced by the 

autocorrelation function and the initial response of the system. 

The RD method’s effectiveness is further improved by choosing appropriate triggering conditions, 

such as level crossings or positive points, which ensure that the response segments used for 

averaging are statistically relevant and reflect the underlying modal behavior. 

For practical implementation, triggering conditions are often used to isolate segments of the time 

history. Common triggering conditions include [25]: 

Level Crossing:
𝑇𝑋

𝐿(𝑡) = {𝑋(𝑡) = 𝑎}
 (10) 

Positive Point: 
𝑇𝑋

𝑃(𝑡) = {𝑎1 ≤ 𝑋(𝑡) ≤ 𝑎2}
 (11) 

Local Extermum: 
𝑇𝑋

𝐸(𝑡) = {𝑎1 ≤ 𝑋(𝑡) ≤ 𝑎2, 𝑋̇(𝑡) = 0}
 (12) 

Zero Crossing: 
𝑇𝑋

𝑍(𝑡) = {𝑋(𝑡) = 𝑎, 𝑋̇(𝑡) ≥ 0}
 (13) 

Among these, the positive point condition is the most versatile, as it allows for flexible control over 

the number of triggering points by adjusting the levels. 

3.2. RD signature of a non-stationary random vibration 

Building on the RD method's foundations established in Sections 3.1, this section focuses on its 

application to non-stationary vibration signals. The key challenge in analyzing non-stationary 

responses lies in capturing their transient and evolving characteristics, which conventional methods 

designed for stationary signals may fail to address [16,18]: 
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To overcome this, the Empirical Mode Decomposition (EMD) is employed as a preprocessing step. 

EMD decomposes the non-stationary response into a finite number of Intrinsic Mode Functions 

(IMFs), each representing oscillatory components with distinct frequency ranges. This process 

ensures that the non-stationary data is transformed into quasi-stationary components suitable for RD 

analysis. The resulting RD signatures for these IMFs reflect the underlying structural dynamics, 

enabling modal parameter identification [16,28]. 

The EMD process iteratively sifts the original response signal X(t), isolating components by 

identifying local extrema and calculating their envelopes. These envelopes are averaged to produce 

a residual, progressively yielding IMFs. Each IMF captures a specific frequency range, from the 

highest oscillations in the first IMF to slower trends in subsequent IMFs. The final residual 

represents the long-term trend or monotonic component of the response. 

Once the IMFs are extracted, those with frequencies matching the structure’s expected response are 

selected, combined, and subjected to RD analysis. By reconstructing the signal from these IMFs, an 

accurate representation of the structure’s free vibration is obtained. 

The EMD-based RD method allows for direct application to non-stationary signals without 

requiring predefined basis functions, making it ideal for ambient vibration data. However, care must 

be taken to mitigate end effects, where boundary distortions may impact the accuracy of the IMFs. 

Advanced techniques, such as mirror extensions, can be applied to reduce such errors. 

The reconstructed signal X(t), composed of selected IMFs, can then be expressed as [29–31]: 

𝑋(𝑡) = ∑ (𝐶𝑗 + 𝑟𝑛)𝑛
𝑗=1  (14) 

where Cj represents the selected IMFs, and rn is the residual. To confirm the relevance of chosen 

IMFs, their frequency content is analyzed using evolutionary spectra. The evolutionary spectrum 

analysis is an additional step that helps assess how well the selected IMFs represent the frequencies 

of interest in the signal over time. By examining the spectral density of both the IMFs and the 

original signal through a moving window, we ensure that the IMFs are relevant and align with the 

structural dynamics we're trying to capture. This ensures the reconstructed signal accurately 

represents the structure's dynamic behavior [16,28]. 

The combination of EMD and RD offers an innovative approach to analyzing non-stationary 

responses, bridging the gap between theoretical techniques and real-world applications in structural 

dynamics. 

4. Modal identification using ERF method 

The modal parameters of a structure, such as natural frequencies and mode shapes, are critical for 

Structural Health Monitoring (SHM). This study introduces a new method, the ERF method, to 

identify structural modal parameters by processing the structural response to operational loads. The 

ERF method follows three main steps: 

• EMD (Empirical Mode Decomposition): This step converts the non-stationary forced 

vibration response of the structure into a quasi-stationary signal, effectively reducing noise 
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and isolating the dominant structural response, much like a filtering process. This enhances 

the clarity of the signal for subsequent analysis. 

• RD (Random Decrement): The quasi-stationary signal obtained from EMD is then 

transformed into a free vibration response. This step bridges the gap between operational 

response data and modal identification techniques traditionally applied to free vibration data. 

• FDD (Frequency Domain Decomposition): Finally, the free vibration response is analyzed 

using the FDD technique to estimate key modal parameters, including the structure's natural 

frequencies and mode shapes. 

By transforming the non-stationary response into a quasi-stationary free vibration signal, the ERF 

method enables the application of free vibration-based identification techniques, which typically 

yield more accurate results. Moreover, the EMD step plays a crucial role in filtering out noise, 

ensuring that the extracted modal parameters accurately represent the structural dynamics. Fig. 1 

provides a schematic representation of this process, illustrating the conversion of an operational 

forced response into a form suitable for accurate modal parameter estimation. 

 
Fig. 1. ERF Method for Modal Identification. 

5. Evaluating modal identification techniques for bridge decks 

This section outlines the validation of the proposed modal identification method through both 2D 

and 3D numerical models of bridge deck. The 2D model is a simply supported beam with an INP80 

cross-section, 4100 mm in length, and a free span of 4000 mm. The beam is supported by a hinge at 

one end and a roller at the other, as described in [32]. The model Geometry and its loading 

arrangement are shown on Fig. 2. Also in natural frequencies and mode shapes are given in Fig. 3. 

Sensor Instalation Birdge Loading
Vibration Response

(Non-Stationary Signal)

Emprical Mode 
Decomposition 

(EMD)

Intrinsic Mode 
Function/IMF

(Stationary Signal)

Random 
Decrement

(RD)

FreeVibration Response
Frequncy Domain 

Decomposition 
(FDD)

Modal Parameters
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a) Steel beam in 2D model [32] 

 
b) Loading arrangement in 2D model 

Fig. 2. 2D beam model. 

 
Fig. 3. Mode shapes of 2D model. 

Acceleration responses to moving loads are recorded using numerical sensors placed at 200 mm 

intervals along the beam. The loading scenarios for this model are outlined in Table 1. 

Table 1. Loading scenarios of 2D model. 

 Loading Scenario 1 2 3 4 5 6 7 8 9 

Velocity (m/s) 

1st Load (70 N) 0.4 0.3 0.2 0.4 0.3 0.3 0.4 0.3 0.3 

2nd Load (70 N) - - - 0.4 0.3 0.2 0.4 0.3 0.2 

3rd Load (70 N) - - - - - - 0.4 0.3 0.8 

 

The 3D model represents a composite bridge deck, as shown in Fig. 4, where the concrete slab has a 

thickness of 75 mm at the center and 113 mm at the girders. It is supported by two structural WT 
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girders spaced 1.5 m apart, spanning 6 m. Shear studs are applied to ensure full composite action, 

and straps are used at 5-meter intervals to prevent lateral buckling of the beams. More details about 

this model could be found in [33,34]. Fig. 5a provides natural frequencies and mode shapes of 3D 

Model. 

 
Fig. 4. 3D model of composite bridge [34]. 

For data acquisition, acceleration sensors are placed along three lines on the bridge, as shown in 

Fig. 5b. Two load paths are examined to study the effect of load location, and various loading 

scenarios are considered. The vehicle model for loading is shown in Fig. 5d, with specific loading 

scenarios provided in Table 2. 

Table 2. Loading scenarios for 3D model. 

Velocity (m/s) Load path 
Loading scenario 

1st 2nd 3rd 

1st Vehicle (Front Axle 7920 N, Rear Axle 7140 N) 
1st 1.8 1.4 1.8 

2nd - - - 

2nd Vehicle (Front Axle 7920 N, Rear Axle 7140 N) 
1st 0.9 - 0.9 

2nd - -1.4 - 

3rd Vehicle (Front Axle 7920 N, Rear Axle 7140 N) 
1st - - - 

2nd - - -0.9 
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a) Mode shapes and natural frequencies. 

 
b) Sensor locations. 

 
c) Loading path. 

 
d) Vehicle model for loading [35]. 

Fig. 5. 3D model detail. 
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From the measured acceleration responses to various loading scenarios in 2D-model, natural 

frequencies and mode shapes were estimated using the ERF method. The accuracy of the ERF 

method is influenced by the range of the signal (specifically τ=x% of T), to which the 

autocorrelation function is applied. As illustrated in Fig. 6, the average Modal Assurance Criterion 

(MAC) of the first three estimated mode shapes for different values of τ for the final loading 

scenario reveals that the most accurate results are obtained when 50%≤x≤70%. Table 3 presents the 

natural frequencies and mode shape similarities for the 2D model, derived using the ERF method 

under various loading scenarios for τ = 0.6T. 

The MAC equation generally calculates the similarity between two mode shapes ϕi and ϕj as follows 

[36]: 

𝑀𝐴𝐶(𝜙𝑖, 𝜙𝑗) =
(𝜙𝑖

𝑇,𝜙𝑗)
2

(𝜙𝑖
𝑇,𝜙𝑖)(𝜙𝑗

𝑇,𝜙𝑗)
× 100 (15) 

 
Fig. 6. Effect of τ on ERF accuracy in 2D model. 

Table 3. Natural frequencies and MAC of different mode shapes for 𝜏 = 0.6𝑇 in 2D model. 

Loading Scenario 
1st Mode 2nd Mode 3rd Mode 4th Mode 

  MAC (%)   MAC (%)   MAC (%)   MAC (%) 

1 3.80 99.92 16.00 99.95 33.00 12.3 55.00 0.08 

2 3.80 99.97 16.00 98.01 33.00 1.87 55.00 0.06 

3 3.80 99.97 16.00 97.69 32.00 0.12 - 0 

4 4.00 100 14.00 2.52 - 0 - 0 

5 4.00 99.99 16.00 99.47 30.00 0.03 - 0 

6 4.00 99.99 16.00 97.85 - 0 - 0 

7 3.90 99.93 16.00 91.48 32.00 4.22 45 0.02 

8 4.00 99.99 16.00 97 33.00 82.13 - 0 

9 4.00 99.95 16.00 100 34.00 91.92 52.00 0.01 

 

Table 4 provides the natural frequencies and mode shape similarities for the 3D model, obtained 

using the ERF method across different loading scenarios for τ=0.6T. The first three mode shapes 

were compared with the analytical mode shapes for each measuring line, as shown in Fig. 7. 

Different parts of this figure, illustrate the effects of various loading scenarios. As observed, for the 

3D model, the estimated frequencies and mode shapes were closer to the analytical values when the 

loading scenario was more complex. 
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a) first measuring line. 

 
b) second measuring line. 

 
c) third measuring line. 

Fig. 7. First three mode shapes with analytical mode shape. 



 M. Talebi et al./ Journal of Rehabilitation in Civil Engineering 13-3 (2025) 215-230 227 

Table 4. Natural frequencies and MAC of different mode shapes for 0.6T =  in 3D model. 

Load scenario Acquiring Line 
1st Mode 2nd Mode 3rd Mode 

  MAC (%)   MAC (%)   MAC (%) 

1 

1st 7.5 88 16.7 70 24.8 95 

2nd 7.1 85 16.5 50 24 95 

3rd 7.8 55 16.9 95 25 91 

2 

1st 7.3 35 19.1 50 26.8 70 

2nd 6.9 35 18.9 20 25 35 

3rd 7.4 40 19.2 70 27.7 90 

3 

1st 7.3 85 16.7 65 25 91 

2nd 7.1 70 16.1 50 24.5 95 

3rd 7.46 80 16.8 90 25 95 

 

5. Conclusions 

This study presents a novel method for the identification of modal parameters of a bridge deck 

using its acceleration response to traffic loading. The key steps of the method involve: 

1. EMD-based RD technique: This technique is employed to estimate the bridge’s free-

vibration response from its acceleration data under operational loads. 

2. FDD: The natural frequencies and mode shapes are then predicted using the Frequency 

Domain Decomposition method. 

The proposed method was validated using both 2D and 3D numerical bridge models, with various 

loading conditions applied and Key Findings from the Study are as follow: 

• Effect of Load Pattern: The results demonstrated that more complex load patterns, 

resembling real traffic conditions, produced the most accurate modal parameters. This 

finding highlights the importance of considering realistic loading scenarios when using 

operational data for structural health monitoring (SHM). 

• Accuracy by Location: Modal parameters, especially natural frequencies and mode shapes, 

were found to be most accurately identified when measuring degrees of freedom (DOFs) 

adjacent to the load path. This suggests that the positioning of sensors is crucial for optimal 

results. 

• Higher-Mode Accuracy: For loading patterns that are more realistic and intricate, higher-

mode information proved to be more accurate. This underscores the value of capturing 

higher modes for comprehensive structural analysis. 

• Reference Sensor Placement: The study also touches on the importance of selecting a 

reference sensor for mode shape estimation. It suggests that the reference sensor should not 

be placed near the beginning, middle, or end of the bridge span, but rather at a more optimal 

location. The study indicates that further research is needed to determine the best placement 

for reference sensors and to identify the optimal number of data acquisition points for 

improved accuracy. 

This method shows great promise for practical SHM applications, as it provides a way to estimate 

modal parameters under operational loading, which is critical for ongoing monitoring and 

maintenance of bridges and similar structures. 
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