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It is essential to precisely estimate the liquefaction potential 

because soil liquefaction is a factor that raises the quantity 

and intensity of losses in an earthquake. In the past, the 

prediction of soil liquefaction was based on multiple 

analytical inferences. The purpose of this research is to 

develop an M5 model for both classification and regression 

in order to investigate the suitability of the M5 decision tree 

for liquefaction assessment. Additionally, the divisional 

approaches of fuzzy clustering means (FCM), kfold 

clustering, and grid search cross-validation (Gridsearch CV) 

are investigated in order to create effective regression and 

classification models. In this work, specific models are 

developed using a data set of 200 boreholes from standard 

penetration tests on soils in the Dinajpur region. The efficacy 

of the constructed models is assessed using several 

performance measures, such as root mean squared error 

(RMSE), mean absolute error (MAE), and coefficient of 

correlation (R) for regression models, and accuracy, 

precision, and AUC value for classification models. Based 

on the results, it was found that the M5 decision tree 

regression model shows R = 0.95, IoA = 0.86, and IoS = 0.96 

for testing and R = 0.93, IoA = 0.88, and IoS = 0.96 for 

training data. On the other hand, the classification model 

shows accuracy = 95%, recall = 1, and F1 score = 0.97 for 

testing and 98.75%, 1, and 0.99 for training, respectively. 

Both of these results were found for the Kfold technique, 

which predicts a more accurate value than other divisional 

approaches. 
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1. Introduction 

Earthquake-induced liquefaction is a disastrous type of geohazard that may result in slope failure, 

foundation damage, and various types of structural failure [1]. This catastrophic phenomenon 

occurs when cyclic loading goes through the unpacked granular soil with water table cases, causing 

shear strength loss and transforming the soil into a liquid state [2]. A well-known example of 

liquefaction is the 1964 Niigata (Japan) and 1964 Great Alaskan Earthquake, in which large-scale 

soil liquefaction occurred, causing wide-spread damage to building structures and underground 

facilities [3]. 

In soil mechanics and geotechnical engineering, soil liquefaction is still a challenging but popular 

research issue, mostly because of the soil structure's complexity, unpredictability, and uncertainty 

[4]. To determine soil liquefaction, various researchers have proposed different approaches, such as 

field approaches [5,6], empirical approaches [7,8], laboratory approaches [9], numerical methods 

[10], artificial intelligence, and machine learning models [11–14], and the like. Innovative 

computing methods like machine learning and artificial intelligence have become increasingly 

popular in geotechnical engineering in the past few years [15]. Soft computing techniques are also 

becoming popular in other subdivisions of civil engineering [16,17]. A neural network-based model 

was suggested by Goh [18], to predict and assess the chance of liquefaction in saturated, sandy soil. 

Later, other geotechnical researchers developed several machines learning approaches, including 

neural network training, support vector machines (SVM), genetic code programming (GP), least 

squares support vector machines (LSSVM), and stochastic gradient boosting (SGB), to do the 

liquefaction study [19–21]. Artificial neural networks (ANNs) were employed by Ramakrishnan et 

al. [22] to forecast the vulnerability of unconsolidated sediments to liquefaction. There were 

twenty-three datasets used to train the backpropagation neural network, including the liquefaction 

severity index, liquefaction sensitivity index, cyclic resistance ratio, and cyclic stress ratio. The 

field data and anticipated results were similar, suggesting that the ANN is feasible for mapping 

liquefaction susceptibility. Venkatesh et al. [23] analyzed liquefaction phenomena using a multilayer 

perceptron network and a feed-forward backpropagation technique. 159 geotechnical data points 

were gathered, and neural network models with the best-hidden layers and transfer functions were 

trained. Better prediction skills were revealed when the investigation compared the projected 

liquefaction potential values of neural networks and neuro-fuzzy models. To assess a soil's potential 

for seismic liquefaction based on shear wave velocity, Lui et al. [13] presented the random forest 

(RF) approach. Five training parameters and the Andrus database were used in the model's 

development. The Chinese code and Andrus techniques were contrasted with the model, which was 

verified using the Kayen database. The findings demonstrated a satisfactory overall success rate of 

more than eighty percent and an excellent rate of success for liquefied locations. The extreme 

learning machine (ELM), as developed by Zhang et al. [24], uses CPT data to evaluate the 

liquefaction potential of soil deposits. In the past, liquefaction has been effectively predicted using 

the ANN model, the most widely used machine learning technique in this sector [25][22]. A number 

of the key disadvantages of ANN models are weak generalization capabilities, a sluggish 

convergence rate, and model overfitting, all of which can influence result prediction. Because 

existing ML-based liquefaction assessment models stress accuracy above explainability, they are 

intrinsically opaque. Because the currently available liquefaction datasets are small in size and 

contain proportionately more liquefaction events than non-liquefaction events, these models behave 

differently from databases from other areas of the world. Later, further researchers created several 
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innovative machine learning methods, including decision tables, M5, support vector regression 

(SVR), lazily K-star (LKS), random forest (RF), gradient boosting machine (GBM), and the like 

[26][27][28]. When handling enormous quantities of data and enhancing prediction accuracy, the 

current ML-based models are better alternatives. Each machine learning approach has its own set of 

constraints owing to the parameters and model uncertainty [29]. The majority of Bangladesh's 

underlying lithology is made up of loose, sandy, and clayey sediments from floodplains [30]. After 

the Great Indian Earthquake in 1897, the Bengal Earthquake in 1885, and the Srimangal Earthquake 

in 1918, there were records of extensive liquefaction in Bangladesh's alluvial deposits [31–34]. 

According to paleo-seismic investigations, a sequence of earthquakes along the Dauki fault is 

thought to have caused the liquefaction evidence that was seen in the country's northeast and north 

[35,36] Furthermore, it is situated near the tectonically active Arakan megathrust and Himalayan 

orogenic belt, which contain at least five significant active fault zones and have been linked to 

evidence of massive earthquakes. A locked megathrust, according to Steckler et al. [37], is present 

along the Indo-Burman Himalaya boundaries, supporting the idea that these areas will be resistant 

to large earthquakes in the future. Thus, the nation must do more research on the examination of the 

liquefaction resistance of the soils in the major cities. 

The primary objective of this research is to apply the M5 machine learning algorithm for 

liquefaction prediction using standard penetration test data. To prepare the data set, liquefaction 

vulnerability is evaluated utilizing empirical formulas using Borelog data. The formulas determine 

LPI based on the dependent variables such as depth of soil, correct SPT-N value, fineness content, 

overburden pressure, effective overburden pressure, and PGA. Finally, 200 borelog-dependent 

variables are utilized in the M5 model's development to evaluate the LPI. This study develops two 

sorts of models, the regression model being the one used to determine the target variable's value. In 

contrast, the target variable's categorization is confirmed using a classification model. For the 

classification and regression models of M5, many divisional techniques are used, including FCM, 

kfold clustering, and Gridsearch Cv. In order to determine which divisional strategy is most 

effective for M5 in predicting liquefaction, comparisons between each divisional technique are 

completed using various performance scores. 

2. Description of dataset 

2.1. Descriptive statistics for input data 

In this study, soil liquefaction is predicted for the Dinajpur area in Bangladesh's northern district. To 

conduct this, standard bore-log charts of various boreholes reliant on penetration tests are gathered 

from different portion of Dinajpur district to compile the datasets. To determine liquefaction 

potential, datasets are used with the Idriss and Boulanger approach [38]. Finally, full data is sorted 

into 200 nos. according to the important parameters to predict soil liquefaction such as depth of soil 

Z(m), correct SPT-N value N1(60CS), fineness content (F<0.0075), overburden pressure (𝜎𝑎𝑣), 

effective overburden pressure (𝜎′𝑎𝑣), Peak ground acceleration (PGA), and liquefaction potential 

index (LPI). Full datasets were utilized in the M5 model's development. Table 1 represents the 

statistical information of input parameters i.e. Total number of borehole data (200 Nos.), Average, 

Standard deviation, Minimum, Maximum etc. used for regression model. At a time, Fig. 1 

represents the Pearson correlation coefficient for the input parameters.  Pearson correlation 

coefficient shows that the parameters have relationship with each other and with the target variable. 

The relation may either positive or negative (+1=strong positive and -1=strong negative). 
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Fig. 1. Pearson correlation matrix for dataset. 

For Classification model, the target variable i.e. Liquefaction potential index (LPI) is classified into 

two classes (Liquefiable and no liquefiable). The sample which has LPI value of zero are taken as 

no liquefiable sample and which have the LPI value greater that zero are taken as liquefiable. That 

means, 

When, 

LPI=0, No liquefiable, (59 Nos. Sample) 

and 

LPI.>0, Liquefiable (141 Nos. of Sample) 

Based on this theory, among the 200 sample, 59 samples are found as no liquefiable and 141 

samples are classified as liquefiable. 

Table 1. Statistical information of input parameters. 

Input Parameters 
Statistical Parameters 

Count Average Standard Deviation min max 

Z(m) 200 3.69 2.51 0.76 10.67 

N1(60cs) 200 11.16 6.61 2.29 70.11 

F<0.0075 200 72.77 23.43 11 99 

GWT 200 2.60 0.749 1.5 4.75 

𝜎𝑎𝑣 200 68.51 46.38 18.24 199.15 

𝜎′𝑎𝑣  200 45.08 22.93 1.10 115.35 

PGA 200 0.18 0.062 0.03 0.36 

LPI 200 2.44 2.45 0 9.67 
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2.2. Data visualization and feature scaling 

The pairwise scatter plot of all input features is represented in Fig. 2. In this figure, the upper 

triangle represents a scatter plot including the Pearson correlation coefficient, i.e., each cell in the 

upper triangle has a scatter plot of the feature pair linked to its orientation. Furthermore, each scatter 

plot will include a caption with the Pearson correlation coefficient between the two features. Each 

diagonal cell contains a histogram for the corresponding feature, showing the distribution of the 

values for each input feature. The lower triangle represents the kernel density estimate (KDE) plot 

showing the density of each data point, i.e., every cell in the lower triangle has a kernel density 

estimate (KDE) plot of the feature pair that corresponds to its position. This plot depicts the 

estimated distribution of data points. 

 
Fig. 2. Pairwise scatter plot with correlation coefficient: histograms and kernel density estimate (KDE) plot 

of all input features. 

The range of magnitudes of those input features varies widely, as seen in Table 1. As a result, using 

Euclidian distances in M5 machine learning algorithms may not be acceptable. As a preprocessing 



204 A. Sayed; Md. M. Rahman./ Journal of Rehabilitation in Civil Engineering 13-3 (2025) 199-214 

step before building the model, the feature scaling approach is used to equalize the scale of the input 

features [39]. To rescale inputs to a defined range, typically [0, 1], the min-max scaling method 

(sklearn.preprocessing.MinMaxScaler) is chosen in this application. Smaller standard deviations are 

a benefit of this restricted range, which also reduces the impact of outliers and enhances machine 

learning predictive power on small datasets. 

3. Methodology 

3.1. Overall methodology 

To achieve the goal, the first step was to compile a dataset of liquefaction vulnerability for the 

selected study region. After evaluating the liquefaction vulnerability, the final data set was created 

and evaluated on Google Colaboratory employing Python. Programming was used to validate null 

values, do statistical analysis (Table 1), and generate a heat map based on the Pearson correlation 

coefficient (Figure 1). Since the classification model classifies the target variable and predicts its 

value, the data are evaluated in such a way that the target variable has only two alternatives. This 

work created a binary classification model (Model I). In this case, zero denotes that the dirt in the 

borehole is not liquefiable, whereas one denotes that it is. However, since the regression model 

(Model II) predicts the value of the output data, there is no need to categorize the target 

variable. Then input and target variables are selected, and the scaled dataset is divided into training 

(80%) and testing (20%) by using the pre-selected divisional approaches. Using the best 

hyperparameters (obtained by the trial-and-error method) fitted for predicting soil liquefaction, a 

classification and regression model are developed. The hyperparameters are selected based on the 

accuracy score in the classification model and the higher value of the Pearson correlation coefficient 

(R) in the regression model (Trial and error method: for which parameters the accuracy and R value 

are closer to the ideal one). Table 2 represents the hyperparameters used to develop each model. 

Based on the performance indicators calculated using the trial-and-error method, the best-predicted 

model was selected. Fig. 3 depicts the flowchart of the research methodology. 

Table 2. Hyper parameters used to develop the models. 

Divisional 

Approach 
Classification Model Regression Model 

GridSearch CV 

max_depth=10, min_samples_leaf=4, 

min_samples_split=10 

scoring='accuracy', cv=5,n_jobs=-1, verbose=2 

max_depth=10, min_samples_leaf=4, 

min_samples_split=10 

kFold 

max_depth=5,                                                    

min_samples_leaf=2), 

max_samples=0.9, n_estimators=30, 

random_state=42 

max_depth=10, min_samples_leaf=4, 

max_samples=0.7, random_state=42 

FCM 

max_depth=5,                                                     

min_samples_leaf=2), 

max_samples=0.9, n_estimators=30, 

random_state=42 

max_depth=10, min_samples_leaf=4, 

max_samples=0.7, random_state=42 

 

3.2. M5 machine learning algorithm 

The most popular classifier of the decision tree family, the M5 algorithm, creates regression trees 

with leaves made up of multivariate linear models. The M5 model tree is a numerical prediction 

algorithm wherein the nodes of the tree are selected based on an attribute that optimizes the 

expected reduction in error as a function of the output parameter's standard deviation [40]. Quinlan 

[41] was the first to introduce M5 model trees, and Wang and Witten [42]  refined their concept to 
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create the M50 method. Regression trees and model trees both work well with big data sets. But 

compared to regression trees, model trees are typically much smaller and more accurate [40]. 

 
Fig. 3. Flowchart of the research methodology. 

The M5 model tree algorithm first splits the instance space recursively in order to create a 

regression tree. In order to reduce intra-subset variability in the values as they flow from the root 

through the branch to the node, the splitting condition is applied. After testing each attribute at that 

node, the expected reduction in error is calculated, and the variability is expressed as the standard 

deviation of the values that reach that node from the root through the branch. The characteristic that 

maximizes the anticipated reduction in error is selected. If all of the instances that reach the node 

have output values that differ by a small amount or if there are only a few instances left, the 

splitting process is over. Following the growth of the tree, each inner node has a linear multiple 

regression model constructed for it using its associated data as well as all the attributes that are 

tested in the sub-tree rooted at that node. If removing an attribute lowers the expected error for 

future data, the linear regression models are then simplified. Following this simplification, pruning 

is taken into consideration for each subtree. When the estimated error for the linear model at a sub-

tree's root is less than or equal to the sub-tree's expected error, pruning takes place. Following the 

final stage of pruning, discontinuities between adjacent linear modes in the tree's leaves are 

compensated for through a regularization process. After the tree has been pruned, this procedure is 

initiated, particularly for models that are based on training sets with few instances (data points). 

Usually, the predictions are improved by this smoothing process [41]. 
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3.3. Divisional approaches 

GridSearchCV, KFold, and FCM were selected because of their complimentary advantages in 

clustering, validation, and model selection. When the dataset is tiny or there are just a few 

hyperparameters, GridSearchCV is quite useful for hyperparameter tuning since it can thoroughly 

test every possible combination of parameters. Although this exhaustive search has a good chance 

of discovering the ideal configuration, it runs the danger of overfitting if there is insufficient cross-

validation. KFold cross-validation, which divides the dataset into k-folds, mitigates this problem. In 

this way, the model may be trained and validated on several subsets, reducing overfitting and 

producing a trustworthy performance score. Even though KFold's balanced approach takes a lot of 

time, it helps estimate model generalization, especially when "k" is chosen well. Last but not least, 

FCM provides flexible clustering by giving data points in several clusters partial memberships, 

making it appropriate for datasets with overlapping data. This "soft" clustering can identify intricate 

patterns that K-Means and other rigid clustering methods can miss. FCM increases the flexibility of 

data segmentation, despite its computational complexity and sensitivity to initial circumstances. 

4. Results and discussions 

In order to classify liquefaction and anticipate probable values—two crucial tasks for geotechnical 

and seismic engineering—this study intends to evaluate the possible applicability of the M5 

decision tree soft computing model. So far, machine learning techniques have been used in the 

literature for liquefaction analysis. In this study, nine performance parameters—precision, recall, 

accuracy, F1_Score, log loss, Kappa coefficient, Mathew's correlation coefficient, receiver 

operating curves, or ROC curves, area under coverage, or AUC value, and specificity—are 

employed for classification. During training and testing, models (based on several divisional 

techniques) have shown remarkable performance in terms of the selected fitness criteria. The 

classification model's fitness parameters for training and testing data are shown in Table 3. The 

kFold divisional approach shows the best-fitting parameters among the techniques when comparing 

the actual values of performance metrics with the ideal values of each performance measure. 

Table 3. Performance indices for classification model. 

Performance indices 
GridSearch Cv kFold FCM 

Ideal Value 
Training Testing Training Testing Training Testing 

Precision 0.9818 0.9629 0.9823 0.9375 0.9826 1 1 

Recall 0.9729 0.8667 1 1 1 0.9 1 

Accuracy 0.9688 0.875 0.9875 0.95 0.9875 0.923 1 

F1_Score 0.9773 0.9122 0.991 0.9677 0.9912 0.9231 1 

Log loss 1.1263 4.5054 0.4505 1.8022 0.4505 3.6044 lower 

k 0.9269 0.6969 0.9702 0.8571 0.9695 0.7826 1 

MCC 0.9269 0.7087 0.9706 0.866 0.9699 0.8017 1 

AUC 0.9661 0.8833 0.9795 0.9 0.9787 0.929 1 

Specificity 0.9592 0.9 0.9592 0.8 0.9574 1 1 

 

Though precision (1.0), AUC value (0.929) and Specificity (1.0) for testing data are maximum at 

fuzzy clustering, which means a divisional approach, But other performance metrics such as Recall 

(1.0), accuracy (0.95), F1_score (0.9677), log loss (1.8022), kappa coefficient (0.8571), MCC 

(0.866) etc. are closer to the ideal value than the other divisional approach in the case of testing 

data, as are precision (0.9375), AUC (0.9) and Specificity (0.8) are closer to the accepted value for 
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testing data. For training data, the kFold divisional approach depicts satisfying performance indices 

values for training data as well (Precision=0.9823, Recall =1.0, Accuracy= 0.9875, F1_Score= 

0.991, Log loss= 0.4505, k=0.9702, MCC= 0.9706, AUC=0.9795, Specificity =0.9592). 

Figs. 4-6 represent the receiver operating curves for testing data for three divisional approaches in 

the classification model. The performance of a binary classification model can be assessed 

graphically using the ROC curve. Under various threshold settings, it displays the trade-off between 

the True Positive Rate (TPR) and the False Positive Rate (FPR). In this graphical representation, 

AUC, or area under the curve, is a single scalar value that represents the whole two-dimensional 

area beneath the whole ROC curve, which represents the performance of a binary classification 

model. One is the optimal classifier's AUC. All positive and negative instances are correctly 

distinguished by the model. No capacity to discriminate (AUC = 0.5). The model functions 

similarly to arbitrary guesswork. When 0.5 < AUC < 1, the model has some discriminating ability. 

The model performs better at differentiating between positive and negative classes, the closer its 

AUC value is to 1. So, the ROC curve represents that the developed models have the differentiating 

power to predict soil liquefaction. 

 
Fig. 4. ROC curve of testing data set for Gridsearch Cv divisional approach. 

 
Fig. 5. ROC curve of testing data set for kFold divisional approach. 
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Fig. 6. ROC curves of testing data for FCM divisional approach. 

On the other hand, eight performance indices, i.e., mean absolute area (MAE), root mean squared 

error (RMSE), coefficient of determination (R2), Pearson correlation coefficient (R), adjusted 

coefficient of determination (adj R2), variance adjusted for (VAF%), index of agreement (IoA), 

index of similarity (IoS), etc., are used to find the best regression approach to predict soil 

liquefaction in the selected zone. The values of performance metrics depict the success of the model 

in predicting soil liquefaction in cases of training and testing. Table 4 represents the performance 

indices of the regression model for training and testing data for each divisional approach. 

Table 4. Performance indices for regression model. 

Performance 

indices 

GridSearch Cv kFold FCM 
Ideal Value 

Training Testing Training Testing Training Testing 

MAE 0.2718 0.6891 0.4685 0.5085 0.4362 0.6959 0 

RMSE 0.5221 1.5097 0.9085 0.8581 0.7936 1.4186 0 

R2 0.9572 0.4372 0.8624 0.8765 0.9011 0.5031 1 

R 0.9785 0.7175 0.9297 0.9471 0.95 0.7515 1 

adj R2 0.9569 0.4224 0.8615 0.8732 0.9005 0.49 1 

VAF (%) 95.72 43.73 86.25 88.25 90.17 50.34 100 

IoA 0.9353 0.7787 0.8806 0.8623 0.8947 0.7775 1 

IoS 0.9889 0.8435 0.9605 0.9622 0.9727 0.8647 1 

 

Among the divisional approaches, when the comparison of values of fitness parameters in the case 

of testing data is done, it is found that the best model is the kFold regression model, showing the 

values of indices closer to the ideal value than other divisional approaches (MAE = 0.5085, RMSE 

= 0.8581, R2 = 0.8765, R = 0.9471, adj R2 = 0.8732, VAF (%) = 88.25, IoA = 0.8623, and IoS = 

0.9622). For training data, the kFold divisional approach also depicts accepted performance indices 

values (MAE = 0.4685, RMSE = 0.9085, R2 = 0.8624, R = 0.9297, adj R2 = 0.8615, VAF (%) = 
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86.25, IoA = 0.8806 and IoS = 0.9605). Table 5 represents the statistical information in the case of 

actual and predicted data found by each regression model, which indicates the ability to predict the 

liquefaction potential index by the deceived regression model. 

Table 5. Statistical analysis actual and predicted LPI. 

Statistical Parameters Actual LPI 
Predicted LPI 

Gridsearch cv kfold FCM 

Count 200 200 200 200 

Average 2.442068 2.7579 2.3822 2.4007 

Standard Deviation 2.453866 2.1481 2.1444 2.2756 

Minimum 0 0 0 0 

Maximum 9.6723 8.1222 7.1627 7.4368 

Median 1.6576 2.3374 1.802 1.7652 

 

Fig. 7-9 represent the graphical representations of actual and predicted data obtained for the testing 

dataset for different divisional approaches. Visual inspection shows that the graph is more similar in 

the case of the k-fold divisional approach. Thus, it can be inferred from the performance metrics 

that the M5 decision tree algorithm is unquestionably beneficial for forecasting the likelihood of 

liquefaction. 

 
Fig. 7. Graphical illustration of actual and predicted data for Gridsearch Cv divisional approach. 
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Fig. 8. Graphical illustration of actual and predicted data for kFold divisional approach. 

 
Fig. 9. Graphical illustration of actual and predicted data for FCM divisional approach. 

5. Conclusions 

In this study, M5 regression and classification models based on three divisional approaches were 

advanced and validated to predict the LPI of soil. To assess LPI of soil the dependent variables were 

collected for 200 locations. Min-max scaler was used to scaling all features. The complete dataset 
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was first split into training and testing sets. The model is then built using the training dataset, and 

the developed models are validated using the testing sets. The performance of both models in 

predicting soil LPI is summarized below. 

❖ For the M5 regression model, the kfold clustering divisional approach shows better 

performance indices than other divisional approaches. 

❖ The performance indices of testing dataset for kfold clustering are R2 = 0.88, R = 0.95, adj 

R2 = 0.87, VAF (%) = 88.25, IoA = 0.86, and IoS = 0.96. 

❖ An additional indication of the strong positive linear relationship between the predicted and 

actual values is the high Pearson correlation coefficient (R). 

❖ For the M5 regression model, the Gridsearch CV shows lower performance indices for 

testing data with 

R2 = 0.44, R = 0.72, adj R2 = 0.42, VAF (%) = 43.73, IoA = 0.78, and IoS = 0.84. 

❖ For the M5 classification model, the kFold clustering achieved the highest predictive 

efficiency during the testing phase. The performance indices are precision = 0.9375, 

recall =  1.0, accuracy = 0.95, F1_score = 0.9677, log loss = 1.8022, 

kappa coefficient = 0.8571, MCC = 0.866, AUC = 0.9, and specificity = 0.8. 

❖ Regarding the classification model, all performance metrics indicate a robust model with 

excellent predictive power for both positive and negative cases. i.e., the high accuracy and 

F1 score demonstrate that the model is accurate and successfully strikes a balance between 

precision and recall; the high precision and perfect recall show that the model effectively 

identifies positive cases with very few false positives and no false negatives. 

❖ Additionally, the classification model's performance indices are worse on the Gridsearch 

CV. In contrast, FCM is shown to have the greatest AUC for the classification model. 

❖ The training phase revealed no significant fluctuations or undesirable values for both the 

regression and classification models, indicating the generalization capabilities and resilience 

of the model. 

The M5 decision tree method with the kFold divisional technique is a helpful tool for measuring the 

LPI of soil, according to the investigation's findings. To develop dependable and efficient prediction 

models, regression and classification soft computing techniques based on M5 decision tree 

algorithms were developed. The created models are distinguished by their strong generalization 

potential, cheap computing costs, and minimal over-fitting problems. The created models may be 

used as a useful tool to help geotechnical experts predict the soil liquefaction potential based on 

their overall performance. 
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