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1. Introduction 

Roads and structures in mountainous regions are typically prone to rockfalls. [1–6]. Intense rainfall, natural 

or human-induced undercutting of the slope, and earthquake shaking are the main reasons for such 

potentially damaging hazards. Some studies were carried out to assess the stability of rock slopes using 

slope mass rating [7,8]. Rock blocks may bounce, roll, or slide after each impact with the ground surface. 

Mitigation techniques such as creating berms on the slope, excavating ditches, and constructing barriers on 

the toe are most efficient when the trajectory of falling rocks can be predicted as accurately as possible. 

The critical parameter for determining the motion path of falling rocks is the coefficient of restitution 

(COR). This coefficient is embedded as an input parameter in rockfall analysis software such as RocFall 

[9] and CRSP [10]. The kinematic COR (Rv) is defined as the ratio of the rebound velocity (vr) to incident 

velocity (vi) (Fig. 1): 

𝑅𝑣 =
𝑣𝑟

𝑣𝑖
 (1) 

Energy loss always occurs during impact. This loss could happen in the form of the generation of heat, 

stress waves, and sound energy [11]. As a result, the Rv coefficient can have values between zero and one. 

Zero Rv corresponds to a perfectly plastic impact, whereas unit Rv corresponds to a perfectly elastic impact. 

It is also common to define COR as the ratio of tangential and normal components of the velocities. The 

tangential COR (Rt) is determined by: 

𝑅𝑡 =
𝑣𝑡,𝑟

𝑣𝑡,𝑖
 (2) 

where vt,i and vt,r are tangential components of the incident and rebound velocities, respectively (Fig. 1). 

 
Fig. 1. Parameters used in COR definition. 

Similarly, the normal COR (Rn) is defined as the ratio of the normal component of rebound velocity (vn,r), 

to the normal component of the incident velocity (vn,i) as follows: 

𝑅𝑛 =
𝑣𝑛,𝑟

𝑣𝑛,𝑖
 (3) 

Several experimental studies were conducted to calculate the coefficients, as mentioned earlier, and to 

determine the influencing factors. Most of these tests were performed in the laboratory [12–19], and some 

of them were conducted in the field [20–22]. In the laboratory tests, a mechanical throwing apparatus was 

built to throw small diameter pieces of rock or other materials under completely controlled conditions. 



A. Shafiee & N. Aein. Journal of Rehabilitation in Civil Engineering 14-1 (2026) 2168 

3 

Although these controlled conditions allow scholars to study the effect of various parameters more 

accurately, it could be much different from the actual rockfall event in nature. For example, the thrown 

objects in laboratory tests often had unique shapes, such as spherical [15,16] or cubic [20]. In contrast, the 

natural shape of falling rocks in real rockfall scenarios can be very irregular. Some laboratory tests were 

also performed on materials other than rock, such as concrete [12], cement [16] or gypsum [14]. The field 

tests have their difficulties and limitations, too. The conditions are less controlled than laboratory tests, and 

a vast amount of uncertainty may be included in the tests. However, the process of rockfall in field tests is 

more similar to the actual conditions. 

Many efforts have been made to determine the influencing factors on the Rt, Rn, and Rv coefficients. Ji et 

al. [17] classified these factors as impact angle (αi in Fig. 1), incident velocity (vi in Fig. 1), block size or 

mass, Schmidt hammer rebound value of impact surface (Rsurf) and block, and rotational speed (ω). 

However, the results of previous tests published in the literature showed multiple contradictions, such as: 

a) While the majority observed that αi had a decreasing effect on Rn [16,17,20], Tang et al. [19] observed 

several cases where Rn increased with an increase in αi value.  The effect of impact angle on Rt was even 

more inconsistent. Asteriou [16] reported that the Rt coefficient increased by an increase in this angle, 

whereas Ji et al. [17] observed that αi had decreasing effect on Rt. Moreover, Asteriou et al. [20] showed 

that the αi versus Rt data were highly scattered and did not follow any specific trend. 

b) Scholars such as Asteriou [16] and Ji et al. [23] found out that both Rt and Rn coefficients were not 

sensitive to variation of ω, whereas Buzzi et al. [12] observed the increasing effect of ω on these 

coefficients. Besides, Ji et al. [17] mentioned that although ω had an increasing effect on the Rt and Rv 

coefficients, it did not have a significant influence on Rn. 

c) The effect of block mass on COR was controversial, too. Some studies [15,16] reported that the Rn 

coefficient decreased with an increase in block mass, and some others [22] pointed out that there was 

no clear trend between the variations of Rn and block mass. 

The contradictions above, show very well the enormous uncertainty and vagueness that exist in the standard 

technique of measurement of COR, and the complex nature of impact by itself. The possible reasons for 

these uncertainties are discussed at section 4 of this paper. 

Despite the critical importance of accurately predicting the COR for modeling rockfall dynamics, the 

literature predominantly relies on empirical relationships or laboratory-scale tests. Limited studies have 

employed field tests to determine COR, and there is a notable lack of research applying machine learning 

techniques, such as the Adaptive Neuro-Fuzzy Inference System (ANFIS), for this purpose. This study 

addresses these gaps by utilizing ANFIS to develop a predictive model for COR of limestone based on field 

test data. The ANFIS was chosen for this study due to its ability to combine the interpretability of fuzzy 

logic with the learning capability of neural networks. This hybrid approach makes ANFIS particularly 

suitable for modeling complex, nonlinear relationships, such as those governing the coefficient of restitution 

in rockfall dynamics. Unlike traditional regression techniques, ANFIS provides explicit rules that can be 

interpreted and refined based on domain knowledge, offering both accuracy and transparency. To the best 

of the authors' knowledge, this is the first application of ANFIS or any machine learning technique for 

predicting COR in rockfall contexts. Additionally, the reliance on field tests ensures that the derived model 

is directly applicable to real-world scenarios. 

In the following of this paper, the ANFIS is discussed at first. Next, the experiments program of this study 

and the obtained results are presented in detail. Then, the application of ANFIS for the prediction of COR 

is fully explained. At last, the concluding remarks are mentioned in the final section of this paper. 
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2. Fuzzy sets and ANFIS 

The fuzzy logic, first presented by Zadeh [24], is a powerful tool for representing uncertainties that are not 

random, but are associated with a lack of information, vagueness, or imprecision [25]. The fuzzy inference 

system can estimate the outputs from several inputs, even in complex systems. This system includes the 

following steps: 

1. Some membership functions are assigned to each parameter (either input or output). The membership 

functions may have different shapes, such as triangular, trapezoidal, or Gaussian. These functions must 

have values between zero and one in their entire domain. The number, shape, and value of membership 

functions should be selected based on data values and, of course, a wise judgment. This process is called 

fuzzification. 

2. Then, some rules must be defined between the membership functions of input variables (x1, x2, ..., xk, 

..., ...xn) and output (y) data. The general form of these rules is as follows: 

Rule k: If x1 is A1k, and, or x2 is A2k, …, and, or xn is Ank, then y is Bk (4) 

where A1k, A2k, Ank, and Bk denotes the fuzzy sets corresponding to x1, x2, xn, and y. 

3. Now, the membership function corresponding to each rule (μ(x, y)) must be obtained using an 

implication operator. One of the most common implication techniques is called the Mamdani 

implication [26], and is represented as follows: 

μ(x, y) = min[μA(x), μB(y)] (5) 

where μA(x) and μB(y) are membership functions relating to the antecedent and consequent of the rule. 

4. In the next step, the membership functions of each rule (derived from step 3) are aggregated to form a 

unique membership function. The aggregation procedure can be performed using either the maximum 

or summation approach. 

5. In this step, defuzzification is performed, where the resulting fuzzy set is converted into a crisp number. 

Several methods can be used for defuzzification, including the centroid method, the bisector method, 

the mean of maximums, and others. 

If the output (y) in Eq. (4) is defined as a function, not a fuzzy set, the resulting system is called the Sugeno 

system [27]. The ANFIS, first proposed by Jang [28], is a Sugeno-type fuzzy inference system in which the 

y is defined as a linear function of fuzzy inputs. For example, for a simple system with two inputs x1 and 

x2, and two rules: 

Rule 1: If x1 is A11 and x2 is A21, then y1 = p1 x1 + q1 x2 + r1 (6) 

Rule 2: If x1 is A12 and x2 is A22, then y2 = p2 x1 + q2 x2 + r2 (7) 

The ANFIS is described in five layers, as shown in Fig. 2. In the first layer, x1 and x2 are defined as fuzzy 

sets. So, the membership 
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Fig. 2. ANFIS architecture. 

functions μA11(x1), μA12(x1), μA21(x2), μA22(x2) are the result of this layer. 

In the second layer, the weight factors (w1 and w2) are obtained using the following equations: 

wi = μA1i(x1) × μA2i(x2)      i = 1, 2 (8) 

The weight factors are normalized in the third layer as follows: 

𝑤𝑖̅̅ ̅ =  
𝑤𝑖

∑ 𝑤𝑗
2
𝑗=1

 (9) 

In the fourth layer, each normalized weight factor is multiplied by the corresponding output function, 

resulting in 𝑤𝑖̅̅ ̅. 𝑦𝑖. Finally, the predicted output of ANFIS is determined in the fifth layer by: 

𝑦 =  ∑ 𝑤𝑖̅̅ ̅2
𝑖=1 . 𝑦𝑖 (10) 

In ANFIS, a learning process adjusts the parameters related to the shape of membership functions of the 

training data automatically. This adjustment aims to minimize the error between the observed and predicted 

outputs. In recent years, the ANFIS has been implemented in several engineering and geotechnical problems 

[29–33]. The architecture of ANFIS, as illustrated in Fig. 2, is particularly suitable for COR determination 

due to its ability to integrate diverse inputs, such as impact angle and surface properties, while accounting 

for the inherent uncertainties in rockfall dynamics. This adaptability ensures robust predictions even in 

complex field scenarios. 

3. Multivariate adaptive regression splines 

Multivariate Adaptive Regression Splines (MARS) is a flexible, nonparametric regression technique 

introduced by Friedman [34]. It models complex nonlinear relationships by fitting piecewise-linear 

segments (splines) joined at automatically determined knots, and by selecting only those segments that 

improve predictive performance. MARS builds its model from one or more hinge basis functions, each of 

which “activates” on one side of a knot point x0. A single hinge is defined as: 

𝑏(𝑥; 𝑥0) = max(0, 𝑥 −  𝑥0)  or  max(0, 𝑥0  −  𝑥) (11) 

Fig. 3 illustrates how a single MARS hinge at x0 transforms a noisy dataset into a piecewise-linear fit. 
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Fig. 3. Illustration of hinge basis functions. 

By taking products of these hinge functions across different inputs, MARS can capture interactions of 

arbitrary order. Starting from a constant intercept c0, MARS adds pairs of hinge functions in a forward 

phase, choosing at each step the candidate that most reduces training error. Once the model is over-grown, 

a backward pruning phase deletes the least useful basis functions one at a time. The final model has the 

form: 

𝑓(𝑥) =  𝑐0 +  ∑ 𝑐𝑖. 𝐵𝐹𝑖(𝑥)𝑁
𝑖=1  (12) 

where each BFi(x) is either a single hinge b(xj; x0) or a product of up to H hinges (interaction degree), and 

ci are the learned coefficients. We control the maximum interaction degree as a hyperparameter. 

To avoid overfitting, MARS uses Generalized Cross-Validation (GCV) during pruning. For a dataset of m 

observations and a model with n basis functions (excluding the intercept), and smoothing factor d (default: 

3), the GCV score is defined as: 

𝐺𝐶𝑉 =  
1

𝑚
∑ [𝑦𝑖 −𝑓(𝑥)]𝑚

𝑖=1
2

(1 − 
𝑛+ 

𝑑(𝑛−1)
2

𝑚
)

2  (13) 

Minimizing GCV balances goodness-of-fit (mean squared error) against model complexity (number of 

knots and basis functions). In our implementation, we choose the number of basis functions N at the “elbow” 

of the GCV vs. N curve, where additional terms yield negligible GCV improvement. 

An additional benefit of MARS is an intrinsic variable importance measure. For each predictor j, we remove 

all basis functions involving xj and recompute GCV, yielding: 

∆𝐺𝐶𝑉𝑗 =  𝐺𝐶𝑉𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑗  −  𝐺𝐶𝑉𝑓𝑢𝑙𝑙 (14) 

The relative importance (RI) is then normalized so the largest ΔGCV receives 100% [35]: 

𝑅𝐼𝑗 =  
∆𝐺𝐶𝑉𝑗

𝑚𝑎𝑥𝑘=1,…,𝑝∆𝐺𝐶𝑉𝑘
 (15) 

This ranking provides clear insight into which variables drive model performance. 
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MARS combines interpretability and flexibility in a way few other nonlinear techniques can match. By 

expressing its model as an explicit sum of piecewise‐linear basis functions, it yields a clear, algebraic 

equation that can be inspected and even embedded directly into engineering calculations. The knot locations 

and hinge directions are chosen automatically—there’s no need to hand‐tune partitions or membership 

functions—while a backward‐pruning step guided by generalized cross‐validation (GCV) removes any 

basis functions that don’t improve predictive accuracy. This same GCV criterion also provides a built‐in 

ranking of variable importance, allowing one to see which inputs matter most. Finally, by specifying the 

maximum degree of interaction, MARS can capture both additive and higher‐order effects. In recent years, 

MARS has been employed in various geotechnical problems [36–42]. 

4. Experimental program 

The experiments were conducted at the toe of a rocky slope in Shiraz, Iran. In recent years, multiple 

landslides and rockfalls occurred in this region, such as the one in December 2018, in which a colossal rock 

block fell on the roof of a residential building and made a big hole in it [5]. The experimental area was 

located at a latitude of 29° 39ʹ 32ʹʹ, and a longitude of 52° 29ʹ 33ʹʹ. This point was selected because it 

included asphalt road, concrete blocks, and limestone rock surfaces in a small area. Furthermore, both the 

pedestrian and vehicle traffic were meager in this area. The hardness of the surfaces mentioned above, was 

estimated by N-type Schmidt hammer test. The hammer consists of a spring-loaded piston that, when 

released, causes an impact on the testing surface with an energy of 2.207 N.m. The harder the impact surface 

is, the more the piston rebounds. According to the ASTM [43], ten Schmidt hammer tests must be done 

near the desired location, and the average of the tests must be determined. Then, those rebound values with 

more than seven units’ difference from the average value must be discarded, and the average of the 

remaining values must be calculated. This final average value must be reported as the Schmidt hammer 

rebound value. The procedure outlined in ASTM [43] was followed in the present research. The obtained 

rebound values are shown in Table 1. 

Table 1. Schmidt-hammer rebound values for impact surfaces. 
Surface type Summer Winter 

Asphalt 12.7 17.8 

Concrete 35.8 36.1 

Rock 49.2 33.3 

 

The tests were conducted in two series. The first series of tests were conducted on sunny summer days with 

an average temperature of 36° C, while the second series were carried out on rainy winter days with an 

average temperature of 9° C. Table 1 shows that for the asphaltic surface, the rebound value is higher in 

winter than in summer. This difference can be due to the significant effect of temperature on the asphalt 

behavior. It is also observed that the rebound value of rock is higher in summer compared to winter. This 

can be attributed to the winter tests being conducted under heavy rain, which resulted in the rock surfaces 

being covered by a water film. This water film dissipated the impact energy, leading to a decrease in the 

COR.  Table 1 also shows that rebound values of the concrete surface were almost constant in both summer 

and winter measurements. That was predictable because the strength characteristics of concrete are not 

affected by regular changes in temperature and water content. It should be mentioned here that the rock 

blocks used for tests were chosen from the insitu limestone blocks and were the same type as the rock 

surface. 

Having selected the experiment area, some preparations were required before the tests.   First, the rock 

blocks used in the tests were weighted and marked by blue color (Fig. 4). 
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Fig. 4. Marked rock blocks prior to the tests. 

Next, a fixed distance was specified as the scale in the testing area. The average slope angle of impact 

surfaces was measured by a laser distance meter, too. The average slopes of asphalt road, concrete block, 

and limestone rock surface were equal to 6°, 2.5°, and 15°, respectively. 

The tests were done by throwing and hitting a block of rock on the ground surface by hand while recorded 

by a camera with a recording rate of 60 frames per second. The camera was positioned so that both the 

throwing trajectory and the scale were within the frame. Additionally, the trajectory plane was aligned to 

be as perpendicular to the camera axis as possible. This method of conducting the tests was previously 

experienced and explained by other researchers [20,21]. 

In the next step, the recorded videos were analyzed using the motion analysis software Tracker 6.0 

(developed by Jun Da High-tech Information Technology Co., Ltd. in Hefei, China). The required 

characteristics of the rock block motion, such as incident velocity, post-impact velocity, and pre-impact 

angular velocity, were determined using this software. At last, the Rv, Rt, and Rn values were calculated 

using Eqs. (1-3), respectively. 

It is worth mentioning that the experimental program had certain limitations: some rock trajectories 

appeared to have out-of-plane components; rolling and sliding were the main components in some 

experiments, making it difficult to determine the coefficient of restitution (COR); the camera's recording 

rate was not high enough to accurately capture the trajectory of high-velocity impacts; and the rock blocks 

fragmented during some impacts. 

5. Experiment results and uncertainties 

A total of 931 field tests were conducted, comprising 496 tests on summer days and 435 tests on winter 

days. Of these tests, 571 (approximately 61%) were deemed suitable for COR calculations. Consequently, 

360 tests were excluded from the analysis as their primary motion involved rolling and sliding rather than 

bouncing. The shape of the rock blocks significantly influenced the type of post-impact motion. For 
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example, if the rock blocks contacted the ground with a flat planar surface, the sliding mode was 

predominant. Conversely, if the rock blocks had rounded edges, rolling was the primary motion. Moreover,  

in some tests, the blocks’ trajectories apparently deviated from the desired 2-D plane. The histograms of αi 

and vi are shown in Figs. 5 and 6, respectively. 

 
Fig. 5. Histogram of αi. 

 
Fig. 6. Histogram of vi. 

The tests were done in such a way as to cover a wide range of input values. The αi values were between the 

minimum value of 8.6° and maximum value of 74.4°, and the vi values had a minimum of 1.9 m/s and a 

maximum of 17.1 m/s. 

The scatterplot, accompanied by a histogram of measured Rt and Rn values, is presented in Fig. 7. Notably, 

two instances, both associated with concrete surfaces during summer, exhibited negative Rt values. 

Negative Rt values indicate that the block rebounded after impact. This could be attributed to factors such 

as the irregular surface of the block and a high impact angle. 
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Furthermore, Fig. 7 reveals instances where Rn exceeded unity. This phenomenon, also observed in previous 

research [12,21,22], could be attributed to irregularities in the block's shape, significant rotational energy, 

and low incident velocities.  However, the Rv value did not exceed unity even for the highest values of Rn. 

The statistical analysis of the experimental data (n = 571) provided valuable insights into the central 

tendency, variability, and distribution characteristics of each variable. Table 2 summarizes the key 

descriptive statistics for the eight variables. The interpretation of this Table is as follows:  

• Impact Angle (αi): 

With a mean of 45.88° and a median of 46.60°, the distribution of impact angles is nearly symmetric, as 

indicated by the slight negative skewness (-0.24). The moderate standard deviation (14.20°) suggests a 

reasonable spread around the mean, and the kurtosis value (2.22) is close to that of a normal distribution, 

implying relatively light tails. 

• Incident Velocity (vi): 

The mean (7.60 m/s) and median (7.42 m/s) are very similar, but a positive skew (0.51) points to a modest 

right tail, indicating that a  

 
Fig. 7. The scatterplot and histogram of measured Rt and Rn values. 

Table 2. Descriptive statistics for the dataset. 

Parameter Mean Median 
Standard 

Deviation 
Skewness Kurtosis 

αi ° 45.88 46.60 14.20 -0.24 2.22 

vi (m/s) 7.60 7.42 2.47 0.51 3.43 

M (kg) 1.99 1.79 0.91 0.60 3.74 

ω (°/s) 772.20 627.70 627.97 1.37 5.00 

Rt 0.64 0.64 0.21 0.09 4.18 

Rn 0.39 0.35 0.25 2.15 11.35 
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Rv 0.51 0.51 0.16 0.14 3.02 

few tests recorded higher velocities. The standard deviation (2.47 m/s) shows moderate variability. 

• Block Mass (M): 

A mean of 1.99 kg with a median of 1.79 kg and a positive skewness (0.60) suggests that while most blocks 

are near the central value, some are heavier. The dispersion is moderate (standard deviation = 0.91 kg). 

• Angular Velocity (ω): 

With a high mean of 772.20 °/s and a lower median (627.70 °/s), the positive skewness (1.37) indicates a 

pronounced right tail; the large standard deviation (627.97 °/s) points to high variability in the angular 

speeds recorded. 

 
 (a) (b) 

 
(c) 

Fig. 8. Effect of αi on (a) Rt, (b) Rn, and (c) Rv. 
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• Coefficients of Restitution: 

The tangential COR (Rt) has nearly identical mean and median (0.64) with slight skewness (0.09), 

suggesting a symmetric distribution with moderate variability (standard deviation = 0.21). The normal COR 

(Rn) exhibits high positive skewness (2.15) and a very high kurtosis (11.35), suggesting a heavy-tailed and 

asymmetric distribution. This may be due to physical phenomena like irregular rock shapes or measurement 

uncertainties. 

The kinematic COR (Rv) shows a symmetric distribution (mean and median both 0.51, skewness 0.14) with 

low variability (standard deviation = 0.16). Variation of Rt, Rn, and Rv with αi is shown in Fig. 8. It is seen 

that αi has a decreasing effect on Rn and Rv, whereas the variation of Rt with αi does not follow any distinct 

trend. 

 

 (a) (b) 

 

(c) 

Fig. 9. Effect of vi on (a) Rt, (b) Rn, and (c) Rv. 
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Fig. 9 shows the variation of Rt, Rn, and Rv with vi. It is seen that vi has a relatively weak decreasing effect 

on COR values. This effect is more pronounced for Rv. The influence of block’s mass (M) on the average 

value of COR, represented by Rt, avg, Rn, avg, and Rv, avg, is shown in Fig. 10. It is seen that the resulting plots 

are very scattered, and no distinct trend between the variation of mass and COR values can be recognized. 

It must be mentioned here that the initial mass of the blocks prior to testing was used for this purpose. 

Angular velocity is another parameter that may affect the COR. Variation of Rt, Rn, and Rv values with ω is 

shown in scatterplots of Fig. 11. It is seen that the data points do not follow any strong recognizable trend. 

 
 (a) (b) 

 
(c) 

Fig. 10. Effect of M on (a) Rt, avg, (b) Rn, avg, and (c) Rv, avg. 
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 (a) (b) 

 
(c) 

Fig. 11. Effect of ω on (a) Rt, (b) Rn, and (c) Rv. 

The correlation coefficient quantifies the strength and direction of the linear relationship between two 

continuous variables. Its value ranges from –1 to +1. A value of +1 indicates a perfect positive correlation, 

meaning that as one variable increases, the other increases proportionally. A value of –1 indicates a perfect 

negative correlation, meaning that as one variable increases, the other decreases proportionally. A value of 

0 indicates no linear correlation between the variables. The Pearson correlation coefficient between input 

and output variables were computed by normalizing the covariance of the variables by the product of their 

standard deviations, as shown in Fig. 12. It is observed that in summary, among the inputs, the impact angle 

has the most significant effect on the normal and kinematic CORs with its strong negative correlations. The 

other parameters exhibit weak relationships with the outputs, although angular velocity shows moderate 

positive correlations with the normal and kinematic CORs. This information is useful for guiding feature 

selection and understanding the model behavior in predicting rockfall dynamics. 
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Fig. 12. The heatmap of the Pearson correlation matrix (inputs vs. outputs). 

While we acknowledge that correlation analysis only captures linear dependencies and does not account 

for all potential interactions, the combination of scatterplots and the correlation matrix serves as an indirect 

but effective sensitivity analysis under the constraints of our field dataset. 

To verify the reliability of our field test results, we compared the COR obtained from the subset of 129 tests 

on dry limestone surfaces with those reported by Robotham et al. [44] (reflected in Rocfall [9]), who 

performed tests under controlled conditions on dry surfaces. Robotham et al. [44] reported a Rn value of 

0.315 (±0.064) and a Rt value of 0.712 (±0.116). Our tests yielded a Rn value of 0.4639 (±0.2914) and a Rt 

value of 0.6449 (±0.1616). Although some differences in the absolute values and variability exist, our 

results are within a comparable range to those of Robotham et al. [44]. The slight variations can be attributed 

to the inherent uncertainties in field testing, such as variations in rock shape and measurement precision. 

Overall, this comparison confirms that our experimental data are consistent with established values in the 

literature, thereby supporting the validity of our test methods and subsequent model development. 

Our experience of the procedure used in this experimental study revealed that the customary method of 

measurement of COR values includes so many uncertainties and imprecisions, which is more apparent in 

the field than in the laboratory. These uncertainties would be the leading cause of several controversial 

results in the previous studies available in the literature. From our point of view, these uncertainties can be 

due to the following: 

I. In the field test, you must be fortunate that the trajectory lies precisely in a 2-D plane perpendicular 

to the camera axis. The irregular shape of the rock block causes it to deviate from its path after 

hitting the surface. 

II. It is entirely probable that some pieces of the block break off after impact. Consequently, the initial 

mass and size of the block, as measured prior to testing, would be altered after a series of impacts. 

A comprehensive study of fragmentation can be found in Gili et al. [45]. 

III. The recording rate of the camera is another influential factor. In the previous studies, a wide variety 

of rates, from as low as 30 frames per second [22] to as high as 1000 frames per second [17] were 

utilized. Nevertheless, it is not evident that what recording rate can be considered to be enough.   

IV. Tracking a specified point in the motion analysis software is another thorny subject. Although the 

blocks were labeled with colorful points and lines, sometimes, the rotation of the blocks made the 

specified points hidden. This issue could be significantly more pronounced in field tests due to the 
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generally higher angular velocities and longer trajectories encountered compared to laboratory 

settings. 

In this study, the authors used the capability of ANFIS to build a system for predicting the COR using the 

potential input variables. The properties of this inference system and the associated results are explained in 

the next section. 

6. Resulting models 

6.1. Application of ANFIS and the obtained results 

In the ANFIS built for the present study, five input variables included αi, vi, M, Rsurf, and ω were chosen, 

according to the findings of previous researchers, especially Ji et al.  [17]. The Schmidt hammer rebound 

value has also frequently been used as an important controlling parameter in determining COR [13–

20,23,45]. The subtractive clustering method [46] was utilized for generating the initial fuzzy inference 

system. An effective parameter in the subtractive clustering method is the range of influence (ROI). The 

ROI, which is a positive number less than or equal to one, represents the radius of clusters. 

In the training process, a hybrid approach based on the combination of least-squares and backpropagation 

gradient descent methods was implemented for the optimization. In the backpropagation process, the error 

between the predicted output and the actual target is backpropagated (from the output end toward the input 

end) through the network. The parameters of the membership functions are updated using the gradient 

descent method, while the parameters of the output functions are updated using least-squares estimation. 

This hybrid approach achieves convergence significantly faster compared to relying solely on the gradient 

descent method (see [28] and [47] for more details). This iterative training process continues until the error 

converges to a minimum value, ensuring that the model is able to accurately predict the output for new, 

unseen data. 

Table 3. Effect of ROI on the RMSE values and number of membership functions of each input parameter. 

 ROI Number of membership functions 
RMSE 

Train Test 

Rt 

0.5 7 0.185 0.201 

0.6 4 0.192 0.193 

0.7 4 0.189 0.197 

0.8 2 0.198 0.194 

Rn 

0.5 6 0.149 0.241 

0.6 4 0.156 0.217 

0.7 3 0.159 0.216 

0.8 3 0.161 0.265 

Rv 

0.5 5 0.109 0.133 

0.6 4 0.111 0.134 

0.7 3 0.112 0.129 

0.8 2 0.115 0.126 

 

Eighty percent of the data was used in the training step, and the remaining 20% was used for testing. The 

effect of ROI on the number of membership functions of each input parameter and corresponding root mean 

square error (RMSE) is well shown in Table 3. 

It is seen that, in general, as the ROI increases, the number of membership functions decreases. The ROI 

of 0.6 was selected for this study leading to four membership functions for each input parameter. The 

membership functions of input parameters for the ANFIS used for Rv prediction are shown in Fig. 13. The 

properties of each Gaussian membership function including its standard deviation and mean are presented 
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in Table 4. To evaluate the goodness of fit of the proposed ANFIS model, an F-test was conducted on the 

Rv testing data. The F-statistic is a measure used to evaluate the overall significance of a regression model 

by comparing the variance explained by the model to the variance left unexplained. It assesses whether the 

predictors in the model collectively contribute to explaining the variability in the observed data. 

 
(a) 

 
 (b) (c) 

 
 (d) (e) 

Fig. 13. Membership functions of (a) αi, (b) vi, (c) M, (d) Rsurf, and (e) ω. 

Table 4. Properties of membership functions. 

Variable Membership function Standard deviation Mean 

αi 
Red 13.71 31.01 

Green 13.9 53.2 
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Blue 13.69 57.87 

Purple 14.21 41.34 

vi 

Red 3.45 7.45 

Green 2.354 12.67 

Blue 2.934 6.262 

Purple 3.289 7.11 

M 

Red 0.6242 1.691 

Green 0.7907 0.1687 

Blue 0.5413 1.873 

Purple 0.6505 1.611 

Rsurf 

Red 6.956 33.49 

Green 7.653 12.91 

Blue 8.787 34.89 

Purple 7.378 49.11 

ω Red 783.3 904.7 

 

Green 783.3 313.8 

Blue 783.3 438.4 

Purple 783.3 1622 

 

A larger F-statistic indicates a better fit of the model compared to a null model (with no predictors). The 

corresponding p-value indicates the likelihood of observing such an F-statistic under the null hypothesis 

that the model does not improve prediction. The analysis yielded an F-statistic of 82.10 (p < 0.001), 

indicating that the model explains a significant portion of the variability in the observed data compared to 

a null model. This result demonstrates the effectiveness of the ANFIS approach in predicting the coefficient 

of restitution in rockfall dynamics. 

Furthermore, to provide a more comprehensive evaluation of the model’s performance on Rv prediction, 

additional error metrics were computed on the testing dataset. The Mean Absolute Error (MAE), which 

quantifies the average magnitude of the prediction errors without considering their direction, was 

determined to be 0.1048. In addition, the maximum percentage error reached 204.47%, indicating that some 

outlier predictions exhibit a large discrepancy relative to the true values. To further assess prediction 

accuracy, we calculated a20%, defined as the percentage of predictions that fall within a 20% error margin 

of the observed values; in our case, 61.40% of the predictions met this criterion. Together, these 

performance metrics—along with the F-test results—demonstrate that the ANFIS model effectively 

captures the variability in the experimental data and is a robust tool for predicting the coefficient of 

restitution in rockfall dynamics. 

Generally, the authors found the ANFIS to be an efficient tool for predicting the CORs because of its ability 

to take into account the uncertainties associated with this complex issue. 

6.2. MARS resulting model 

We trained MARS models with interaction degrees H = 1,2 on the same 571‐sample dataset to determine 

Rv as a function five input variables, as used in the ANFIS model and selected the number of basis functions 

𝑁 at the point where the generalized cross‐validation (GCV) curve reaches a clear “elbow.” All models 

were grown to 50 candidate terms and then pruned via backward elimination using GCV as the selection 

criterion (see Eq. 13). Putting these observations together, the best model for degree =1, 2 and the 

corresponding statistical measures are summarized in Table 5. 

Table 5. statistical metrics for MARS (H =1, 2) and ANFIS models. 
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Model ANFIS MARS (H=1) MARS (H=2) 

# BFs -- 6 8 

GCV -- 0.0152 0.0144 

R2 0.4230 0.4581 0.4996 

MAE 0.105 0.098 0.095 

RMSE 0.134 0.121 0.118 

 

The explicit form of the final selected model with H = 2 and 8 basis functions is: 

𝑅𝑣 =  0.501964 − 0.00625294. BF1 + 0.00981479. BF2 + 0.0260959. BF3 + 0.000219565. BF4 −

0.00352035. BF5 − 0.0289935. BF6 − 2.18192 × 10−6. BF7  (16) 

where: 

BF1=max(0, αi−32.57); BF2=max(0, 32.57− αi); BF3=max(0, 12.22−vi); BF4=BF1×max(0, 33−Rsurf); 

BF5=BF3×max(0, M−0.226); BF6=max(0, 25.5−Rsurf)×max(0, 18.39− αi); BF7= BF1×max(0, 1207−ω); 

Figure 14 plots the generalized cross-validation (GCV) error versus the number of basis functions for the 

degree-2 model. The GCV decreases steeply from one to eight basis functions, reflecting rapid gains in 

capturing the dominant nonlinear structure. From eight up to roughly 25 terms, the curve enters a broad 

plateau, indicating that adding more basis functions contributes progressively less to improving model 

performance. Beyond approximately 25 terms, the GCV rises again, signaling overfitting as the model 

begins to fit noise rather than the underlying signal. Therefore, we select the eight-term model at this 

“elbow,” balancing predictive accuracy with model complexity. 

 
Fig. 14. Variation of GCV with number of basis functions for Rv model. 

Effect of number of basis functions on R2 and RMSE is shown in Figs. 15 and 16, respectively. It is seen 

that the model with H=2 has higher R2 and lower RMSE than H=1 model, indicating its superiority. 
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Fig. 15. Variation of R2 with number of basis functions for Rv model. 

 
Fig. 16. Variation of RMSE with number of basis functions for Rv model. 

A direct comparison on the common test set shows that MARS (degree 2, 8 basis functions) achieves MAE 

= 0.095 and RMSE = 0.118, while the ANFIS model yields MAE = 0.105 and RMSE = 0.134. Thus, 

although MARS attains marginally lower absolute errors, the improvement over ANFIS is modest. The 

ANFIS approach remains attractive for its rule-based learning of highly nonlinear relationships, whereas 

MARS offers a fully explicit formula and built-in variable importance for straightforward implementation 

and sensitivity analysis. 

Fig. 17 overlays the test-set predictions from our ANFIS and MARS models against the measured Rᵥ values. 

Both sets of points cluster tightly about the 1:1 line, reflecting that each approach captures the bulk of the 

variance in our field data. The root-mean-square error difference—0.134 for ANFIS vs. 0.118 for MARS—

is modest, and indeed the two clouds of markers largely coincide. This close agreement underscores that 

both machine-learning approaches are comparably effective at predicting Rᵥ under the substantial noise and 

variability of our limestone field tests. The MARS model’s slight edge is more apparent in its lower overall 

scatter (especially at high Rᵥ), but the performance gap would be barely distinguishable by eye on this plot. 
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Fig. 17. Predicted vs. measured Rᵥ values on the test set, comparing ANFIS and MARS against the 1:1 reference 

line (dashed). 

The relative importance (RI) analysis, as shown in Fig. 18, quantifies the contribution of each predictor 

variable to the model’s performance by measuring the increase in the generalized cross-validation error 

(ΔGCV) when that variable is excluded.  

 
Fig. 18. Relative importance of input variables for Rv model. 

In this case, αi is the most influential variable, with a normalized RI of 100%, indicating it has the greatest 

impact on model accuracy. Variable vi also contributes significantly but to a much lesser extent (about 15% 

relative to αi). The predictors Rsurf and M show moderate influence, with RI values below 8% and 3%, 

respectively, while ω has negligible impact on the model (near 0%). This ranking helps identify which 

inputs drive the model’s predictions and which may be less critical. 

To further analyze the internal structure of the MARS model and assess the relative contribution of each 

input feature, the authors performed an ANOVA-style decomposition. This technique partitions the model 

output into additive components, each corresponding to a specific basis function. For each BF, we report 

its standard deviation (STD), the associated reduction in generalized cross-validation (ΔGCV), and the 

input variables involved. Functions with higher standard deviation and ΔGCV values have greater impact 
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on the model output and its predictive performance. As shown in Table 6, the most influential basis 

functions are primarily associated with variable αi, both individually and in interaction with vi. This 

observation is consistent with the relative importance ranking plot, reaffirming that αi plays the dominant 

role in predicting the coefficient of restitution. 

Table 6. ANOVA-style decomposition of the final MARS model (degree = 2). 

Function STD ΔGCV Variables 

1 0.0737 0.0285 αi 

1 0.0380 0.0222 αi 

3 0.0645 0.0396 αi 

4 0.0027 0.0272 αi, vi 

5 0.0000 0.0271 αi, vi 

6 0.1175 0.0356 αi, vi 

7 0.0014 0.0270 αi, vi 

 

To provide additional insight into the behavior of the MARS model, a parametric study was conducted. In 

this analysis, each input variable was varied individually across its normalized range from 0 to 1 while all 

other variables were held constant at their respective mean values. The resulting output predictions were 

plotted to visualize how each predictor influences the model’s response (see Fig. 19). As shown in the 

figure, the predicted coefficient of restitution exhibits the most pronounced sensitivity to αi, with a strong 

and nearly linear decrease in response as this variable increases — a pattern consistent with the variable's 

dominant relative importance score. Variable vi also has a nonlinear but noticeable effect, reflecting 

secondary influence. Conversely, the curves for M, Rsurf, and especially ω are relatively flat, indicating weak 

contributions to the output within the examined range. These patterns reinforce and visually validate the 

results of the relative importance analysis. 

 
Fig. 19. Parametric study of the final MARS model (degree = 2, 8 BFs). 

7. Conclusions 

The primary objective of this study was to predict the coefficient of restitution (COR) for limestone in 

rockfall dynamics using an adaptive neuro-fuzzy inference system (ANFIS) and a Multivariate Adaptive 
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Regression Splines (MARS). A total of 931 field tests were conducted, and the ANFIS and MARS models 

were trained using five input variables: impact angle (αi), incident velocity (vi), block mass (M), Schmidt 

hammer rebound value (Rsurf), and angular velocity (𝜔). Key findings from this study include: 

1) The impact angle (αi) had a decreasing effect on the normal and kinematic CORs, while no clear trend 

was observed for the tangential COR. 

2) Incident velocity (vi) showed a weak but consistent decreasing effect on COR values, with the effect 

being most pronounced for the kinematic COR (Rv). 

3) A total of 571 tests were suitable for COR calculation, with the remainder discarded due to rolling, 

sliding, or out-of-plane motion. 

4) The ANFIS model demonstrated strong predictive capability, achieving RMSE values of 0.192, 0.156, 

and 0.111 for the tangential, normal, and kinematic CORs, respectively, on the training dataset. 

5) With degree-2 interactions and eight basis functions, MARS yields MAE ≈ 0.095 and RMSE ≈ 0.118—

slightly lower absolute errors than ANFIS. 

Together, ANFIS and MARS methodologies confirm that machine-learning approaches can provide 

accurate, field-validated COR predictions. By offering both a transparent spline-based equation and a fuzzy-

rule model, this combined framework enhances both the accuracy and practical utility of COR estimates in 

rockfall hazard assessment. 

However, the study is not without limitations. The field tests involved inherent uncertainties due to irregular 

rock shapes, varying surface conditions, and camera recording constraints. Future work should focus on 

addressing these uncertainties by incorporating advanced motion-tracking techniques and conducting 

further tests across a broader range of surface materials and environmental conditions. 
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