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Structural Health Monitoring (SHM) has a crucial role in 

maintaining the safety and longevity of critical structures, such as 

buildings, bridges, and aerospace components. Early detection of 

structural damage, allows for timely intervention, reducing costs 

and preventing catastrophic failures. This study introduces an 

innovative approach for damage detection in plate structures by 

enhancing the Teaching-Learning-Based Optimization (TLBO) 

algorithm through the integration of chaotic maps. The proposed 

method, termed Chaotic Teaching-Learning-Based Optimization 

(CTLBO), leverages the dynamic properties of chaotic maps to 

improve the algorithm's performance and robustness. The 

proposed method utilizes modal data to solve an inverse 

optimization problem, aiming to enhance the accuracy of damage 

detection. Two benchmark plate structures namely an L-plate with 

dual clamps and a Rectangular plate with a quarter-circle cutout, 

are analyzed under noisy and noise-free conditions. Four objective 

functions, formulated based on modal frequencies and mode 

shapes, are utilized to quantify the error in damage localization and 

severity estimation. The effectiveness of the CTLBO algorithm is 

evaluated against the standard TLBO algorithm. Results 

demonstrate that CTLBO outperforms TLBO, particularly in noisy 

environments, achieving near-zero error and offering superior 

robustness in identifying damage locations and intensities. The 

findings suggest that the integration of chaotic maps improves the 

convergence speed and reliability of the TLBO algorithm, making 

it a promising tool for real-world SHM applications. 
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1. Introduction 

Damage detection and SHM have become critical areas of focus across multiple industries, including civil 

engineering, mechanical engineering, and aerospace. This increased attention stems from the fact that 

repairing primary structures is generally less expensive than constructing them from the ground up. SHM 

is a process that typically involves four key steps: (1) determining the presence of damage, (2) identifying 

its location, (3) quantifying the severity of the damage, and (4) forecasting the remaining useful life of the 

affected structure Once the presence of damage is diagnosed, accurately localizing the damage becomes 

paramount in the health monitoring process [1,2]. 

Damage detection methods are broadly categorized into static-based and dynamic-based approaches, 

depending on the type of excitation and the data used in the detection process. The practical challenges in 

implementing and acquiring data for static-based methods have led researchers to explore more feasible 

inspection and prognosis techniques using structural dynamics or vibration characteristics. Modal data-

based approaches represent a subset of vibration-based methods, where the detection theory is grounded in 

the relationship between a structure’s physical properties and its modal characteristics. Any alterations in 

the physical properties of the system result in observable changes in the modal data, such as frequencies 

and mode shape vectors, which can be employed for detecting structural damage at the component level 

[3–6]. Modal data-based damage detection methods can be divided into two primary categories: 

deterministic methods and iterative approaches. The simplest deterministic method involves examining 

changes in resonant frequencies to identify and/or quantify significant damage. Additionally, combinations 

of mode shapes and vibration frequencies have been employed as one-step, deterministic techniques for 

damage detection [7–11]. The success of these methods highly depends on the sensitivity of the modes to 

the occurred damage. Consequently, deterministic methods frequently encounter limitations in accurately 

quantifying damage. They often yield only approximate estimates unless high-frequency content is 

incorporated as structural feedback during the excitation process. In contrast, iterative methods, which treat 

damage detection as an inverse problem of model updating, can overcome the limitations of deterministic 

approaches. One of the most effective techniques is Finite Element Method (FEM), where damage-related 

parameters are treated as unknown variables at the element level, and the numerical model is updated to 

match the behaviour of the monitored structure. Optimization algorithms are instrumental in solving this 

model updating problem, formulated as an error minimization process between the real structure and its 

analytical model [12–15]. 

Over the past few decades, various methods which utilize modal data have been introduced to identify and 

localize structural damage. Modal analysis, which examines the inherent vibrational properties of a 

structure, has proven to be a powerful tool in this regard [16]. By analysing shifts in modal parameters, 

engineers can gain valuable insights into the integrity of a structure and detect areas of concern before they 

lead to catastrophic failure [17–19]. As the field of SHM continues to evolve, the integration of advanced 

technologies, such as machine learning and sensor networks, is expected to enhance further the accuracy 

and efficiency of damage detection and health monitoring processes [20–22]. 

In recent decades, many researchers have used inverse optimization problems with metaheuristics 

algorithms to detect the presence of damage, specify the damage intensity, and localize the damage [23,24]. 

For instance, Vaez et al. [25] introduce a hybrid genetic–particle swarm optimization algorithm for detecting 

damage, its location, and severity in plate structures. Three numerical examples, including different types 

of plates, are simulated using thin plate theory, with objective functions formulated based on modal data. 

Their results show that the hybrid algorithm performs better than genetic and Particle Swarm Optimization 

(PSO) algorithms individually, as indicated by lower error rates. Mohamadinasab et al. [26] examine the 

impact of structural asymmetry on damage detection by modelling symmetric and asymmetric truss and 
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frame structures with various damage scenarios. It compares the effectiveness of three objective functions 

(based on flexibility matrix, natural frequency, and modal frequency) optimized using the multiverse 

optimizer. The findings reveal that asymmetry improves damage detection accuracy in some instances, 

particularly for truss and frame models with differing span lengths. Fan et al. [27] present an algorithm 

based on 2D continuous wavelet transform for detecting damage in plate-type structures. It uses isosurfaces 

of wavelet coefficients to identify the location and shape of damage from the mode shapes of plates. The 

method shows superior noise immunity and robustness compared to other techniques and is validated in 

both numerical and experimental tests. 

Xiang et al. [28] propose a two-step approach for detecting multiple damage in thin plates. First, 2-D 

wavelet transform is applied to modal shapes to locate damage, followed by PSO to assess damage severity. 

Their study, based on wavelet FEM simulations, evaluates the method's effectiveness even with imprecise 

natural frequency measurements, suggesting that higher and more natural frequencies improve damage 

severity evaluation. Seyedpoor et al. [29] propose a method for accurately locating structural damage by 

integrating optimal sensor placement and a Modal Strain Energy-Based Index (MSEBI). They use the 

binary differential evolution algorithm to optimize sensor placement and apply MSEBI to identify damage 

based on the optimal setup. 

While optimization-based model updating methods offer strong performance, they also come with several 

limitations. Key issues include the tendency to become trapped in local extrema, high sensitivity to noisy 

data, and slow convergence, which can significantly hinder their effectiveness. Addressing these challenges 

is critical for advancing damage detection techniques, especially in applications requiring high accuracy 

and reliability under real-world conditions. To bridge these gaps, this study introduces chaotic maps into 

TLBO to solve the inverse optimization problem of damage detection in plate structures. The use of chaotic 

maps is a novel approach aimed at overcoming the inherent limitations of traditional TLBO, such as poor 

exploration capabilities and reduced performance in noisy scenarios. Chaotic maps generate complex, non-

repetitive sequences that improve exploration, helping avoid local optima and maintaining search diversity. 

This balance between exploration and exploitation enhances the algorithm’s search efficiency and 

robustness. 

The significance of this research lies in its potential to enhance the effectiveness of optimization algorithms 

for SHM by integrating chaotic maps into TLBO, we aim to provide a more robust solution for accurately 

detecting damage in plate structures, even in the presence of noise. The study evaluates this approach using 

two thin plate benchmarks (an L-plate with dual clamps and a Rectangular plate with a quarter-circle cutout) 

to assess its impact on accuracy, convergence speed, and noise resilience. These contributions not only 

address key shortcomings in optimization-based damage detection methods but also offer a practical 

framework for improving structural integrity assessments in engineering applications. 

The rest of the paper is organized as follows: section 2 explains the damage detection approaches and 

dynamic background of the problem. Section 3 presents a brief explanation of the CTLBO, and section 4 

introduces two numerical examples to validate the effectiveness of the proposed algorithm and compare the 

results in noisy and noise-free states. 

2. Theoretical backgrounds 

The damage detection process involves addressing the inverse optimization problem by leveraging the 

structure's dynamic parameters. This section focuses on formulating the problem and outlining the 

methodology, with an emphasis on determining practical objective functions to quantify and localize 

damage. 
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2.1. Methodology for damage identification 

FEM is a widely used technique for solving direct structural problems, where the input, such as an applied 

load, is used to determine the resulting structural responses, such as strains. Moreover, when a structure 

sustains damage, its structural properties change, deviating from those of its original, undamaged state. 

Therefore, damage detection relies on an inverse method, which aims to solve optimization problems by 

analyzing structural properties. This approach uses an objective function that is integrated into an 

optimization algorithm. By minimizing this function, the algorithm can identify and estimate the parameters 

related to the damage. Ultimately, the suggested damage detection strategy involves addressing an 

optimization problem that incorporates the structure's dynamic properties and the objective function, as 

outlined in a sequence of steps illustrated in Fig. 1. 

 
Fig. 1. Damage detection approach. 

To develop a finite element model, it is necessary to compute the global stiffness matrix, K, and mass 

matrix, M, for the structure through Eqs. 1 and 2 [30]: 

𝐾 = ∑ 𝐾𝑖
𝑁𝐸
𝑖=1  (1) 

𝑀 = ∑ 𝑀𝑖
𝑁𝐸
𝑖=1  (2) 

where 𝑁𝐸 represents the total count of elements. This research models plate structures by applying thin 

plate theory. The representation of the plates is achieved through Constant Strain Triangle (CST) elements 

under plane stress assumptions. Consequently, a typical element's stiffness and mass matrices, as depicted 

in Fig. 2, are formulated based on Eqs. 3 and 4 [31,32]. 

Start

 enerate the finite element model for intact state structure

Define Damage scenarios by considered  vector

Evaluate the experimental dynamic parameters of the damage 

structures for noise-free condition

Add small deviation (noise) in dynamic parameters

Formulate the objective functions

Apply the considered algorithm (CTLBO, TLBO)

Extract information about presence, intensity and location of the 

damage(s) based on the scenario

End
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𝑘𝑒 = 𝑡𝑒𝐴𝑒𝐵
𝑇𝐷𝐵 (3) 

𝑚𝑒 =
𝜌𝑒𝐴𝑒

12

[
 
 
 
 
 
2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
1 0 1 0 2 0
1 0 1 0 2 0
0 1 0 1 0 2]

 
 
 
 
 

 (4) 

where 𝑡𝑒, 𝜌𝑒, and 𝐴𝑒 are the element's thickness, mass density, and area, accordingly. B is known as the 

strain-displacement matrix which relates the nodal displacements to the strains within an element. Also, D 

is the constitutive matrix (or stress-strain matrix) used to relate stresses to strains. B is a 3×6 matrix, and D 

is a 3×3 matrix, specifically for planar stress conditions, which are formulated according to Eqs. 5 and 6 

[32,33]: 

𝐵 =
1

𝑑𝑒𝑡 𝐽
[

𝑦23 0 𝑦31 0 𝑦12 0
0 𝑥32 0 𝑥13 0 𝑥21

𝑥32 𝑦23 𝑥13 𝑦31 𝑥21 𝑦12

] (5) 

𝐷 =
𝐸

1−𝜈2 [

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

] (6) 

 
Fig. 2. typical triangle element. 

where 𝑥ᵢⱼ and 𝑦ᵢⱼ are the differences between the x and y coordinates of nodes i and j, respectively. Poisson's 

ratio is represented by ν, and E is the modulus of elasticity. J is the Jacobian matrix of the transformation, 

which can be expressed as Eq. 7 [34]: 

𝐽 = [
𝑥13 𝑦13

𝑥23 𝑦23
] (7) 

In this study, damage is considered as a stiffness reduction which directly affects the elasticity module. 

Therefore, to implement the damage scenario, the damage vector, 𝛽, with dimension of 1×n is constructed, 

where n is the element number. This numerical value in the ith position of this vector indicates the extent 

of damage to the ith structural component. This value ranges from 0 to 1, with 0 indicating a completely 

intact element and 1 indicating a wholly damaged element. Therefore, the relationship between the intact 

(subscript h) and damaged state (subscript d) of the structure can be formulated as Eq. 8 [12]: 

𝐸𝑖𝑑 = (1 − 𝛽𝑖 × 1) × 𝐸𝑖ℎ  (8) 

Finally, the dynamic parameters can be expressed by modifying the ith eigenvalue equation for the damaged 

structure, as shown in Eq. 9 [30,35]: 

1 ( 1   1)

2 ( 2   2)

3 (     )

x

y
e
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(𝐾𝑑 − ω𝑖𝑑
2 𝑀)Φ𝑖𝑑 = {0}𝑛×1 (9) 

where 𝜔𝑖𝑑 represent the ith natural frequency and 𝜙𝑖d is its corresponding mode shape for damaged 

condition. To consider uncertainties and push the study to real word conditions, small white noise is 

produced and added to both the frequencies and mode shapes of the structures. This process is implemented 

using Eqs. 10 and 11 [3]: 

ω𝑛𝑜𝑖𝑠𝑦 = ω𝑖𝑑(1 + α × noise𝑓𝑟𝑒𝑞) (10) 

Φ𝑖𝑗 𝑛𝑜𝑖𝑠𝑦 = Φ𝑖 𝑗 𝑑(1 + α × 𝑛𝑜𝑖𝑠𝑒𝑚𝑜𝑑𝑒) (11) 

here, α is a uniformly distributed random number between -1 and +1. In this study, 1% noise is selected to 

investigate its effect on the results. 

2.2. Objective Functions 

In this section, four well-known objective functions are selected and compared to each other to minimize 

the error in solving the inverse optimization problem of damage detection. The first objective function taken 

from Mohamadinasab et al. [26] is formulated as Eq. 12: 

𝐹1 = ∑ (
𝜔𝑖

𝑑−𝜔𝑖
𝑢

𝜔𝑖
𝑢 −

𝜔𝑖
𝑚−𝜔𝑖

𝑢

𝜔𝑖
𝑢 )𝑛𝑚

𝑖=1

2

 (12) 

Where superscripts u and m in Eq. 12 refer to the undamaged and analytical model of the structure. 𝑛𝑚 
denotes the number of considered mode shapes for damage detection.  

The second function can be defined according to Eq. 13, calculated using the flexibility matrix obtained by 

Eq. 14. 

𝐹2 =
1

𝑛𝑑
∑ ‖𝐹𝑀𝑖

𝑑 − 𝐹𝑀𝑖
𝑚‖𝑛𝑑

𝑖=1  (13) 

𝐹𝑀 = 𝜙𝑛𝑚𝛬𝑛𝑚
−1 𝜙𝑛𝑚

𝑇  (14) 

Where Λ𝑛𝑚 is the diagonal matrix of eigenvalues of the first 𝑛𝑚 modes, and superscript 𝑇 denotes the 
transpose of the matrix. 

The third objective function can be written by using frequencies as Eq. 15: 

𝐹3 = √∑ (𝑓𝑖
𝑑−𝑓𝑖

𝑚)
2𝑛𝑚

𝑖=1

𝑛𝑚
 (15) 

In Eq. 15, fi indicates the frequencies which can be defined as corresponding natural frequencies according 

to Eq. 16. 

𝑓𝑖 =
𝜔𝑖

2𝜋
 (16) 

Following the approach of Vaez and Fallah [25], the fourth objective function can be defined as Eq. 17, 

which utilizes natural frequencies and mode shapes in each degree of freedom in a set of selected modes. 

𝐹4 = √
1

𝑛𝑚
(∑ (𝜔𝑖

𝑒𝑥 − 𝜔𝑖
𝑔𝑝

)
2𝑛𝑚

𝑖=1 + ∑ ∑ (𝜙𝑖𝑗
𝑒𝑥 − 𝜙𝑖𝑗

𝑔𝑝
)

2
𝑛𝑑
𝑗=1

𝑛
𝑖=1 ) (17) 

The objective function 𝐹4 serves as a quantitative measure to assess the discrepancy between experimental 

observations and the results obtained through the CTLBO algorithm. Specifically, values with the 

superscript ex refer to experimentally determined results, which are considered as the reference or ground 

truth data. In contrast, the superscript gp corresponds to the outcomes predicted or computed using the 
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optimization process guided by the CTLBO algorithm. The variable n represents the total number of natural 

vibration modes considered in the analysis, whereas nd indicates the degrees of freedom included in the 

objective function. These two parameters control the computational cost with respect to the accuracy of the 

optimization process. Similarly,  𝜙𝑖𝑗 , representing the jth mode shape of the ith degree of freedom, provides 

a spatial representation of how the structure deforms during vibration. Comparing 𝜙𝑖𝑗
𝑒𝑥 and 𝜙𝑖𝑗

𝑔𝑝
 allows for 

a detailed assessment of the algorithm's ability to replicate the structural behavior. 

2.3. Chaotic systems and maps 

For much of history, scientists viewed the world as a collection of systems that operated predictably under 

the laws of nature. However, advancements in science revealed that many natural phenomena could not be 

explained by these deterministic views. This led to the development of chaos theory in mathematics, which 

focuses on systems whose behaviour is highly sensitive to initial conditions, making their future outcomes 

unpredictable. These non-linear dynamic systems, often referred to as chaotic systems, include examples 

like the butterfly effect, air currents, and economic cycles. The core principle of chaos theory is that disorder 

often contains an underlying order, even if it is not immediately apparent. On a larger scale, systems that 

appear random at a local level may exhibit stable and predictable behavior. This concept shares similarities 

with statistics, which also seeks patterns within apparent randomness. For example, while each coin toss 

produces a random result, the aggregate outcome over many tosses becomes predictable. Similarly, 

scientific predictions, such as those for earthquakes, may seem random in the short term but reveal periodic 

patterns over extended timeframes, such as 500 or 2400 years [36–38]. 

In many meta-heuristic algorithms, results tend to improve gradually and often get stuck at local optima, 

leading to premature convergence. In other words, the two critical phases of exploration and exploitation 

are crucial for converging on optimal solutions. An imbalance between these phases can reduce the 

algorithm's effectiveness. Chaotic sequences provide a way to escape this issue by introducing disorder into 

the search space, allowing the algorithm to explore more diverse and widespread regions. As a result, the 

local optima are less likely to capture the search process. Chaotic sequences are generated from specific 

chaotic functions, and although they do not exhibit random behaviour, they introduce complex, irregular 

patterns in the search space. These sequences are mainly characterized by sensitivity to initial conditions, 

as well as non-periodic and ergodic behaviours, with no inverse functions. Several well-known chaotic 

maps, such as Logistic, Tent,  aussian, Liebovitch, Chebyshev, Sinusoidal, and Piecewise, can be 

embedded into meta-heuristic algorithms. Among these, in this study, the Chebyshev function was 

determined to be the most effective through trial and error [39]. 

3. CTLBO algorithm 

TLBO is an optimization algorithm inspired by the teaching and learning process in a classroom. It was 

developed by R.V. Rao, V.J. Savsani, and D.P. Vakharia [40] in 2011.  The algorithm simulates the influence 

of a teacher on the learners (students) in a class. The process is divided into the "Teacher Phase" and the 

"Learner Phase". In the Teacher Phase, the algorithm identifies the best solution (teacher) and tries to 

improve the mean performance of the entire class by adjusting the learners' solutions based on the difference 

between the teacher's knowledge and the average knowledge of the class. In the Learner Phase, learners 

update their solutions by interacting with each other, emulating how students learn from their peers. In the 

Teacher Phase, the algorithm updates each learner's solution 𝑋𝑛𝑒𝑤 based on the teacher's solution 𝑋𝑏𝑒𝑠𝑡 

using the following formula [40]: 
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𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝑟 ⋅ (𝑋𝑏𝑒𝑠𝑡 − 𝑇𝑓 ⋅ 𝑀) (18) 

where 𝑋𝑜𝑙𝑑 is the current solution,  𝑟  is a random number in the range [0,1], 𝑇𝑓 is the teaching factor (either 

1 or 2, chosen randomly), and  𝑀  is the mean of the current solutions in the class. This formula ensures 

that the influence of the teacher pulls the learners' solutions towards a better solution, thereby improving 

the overall quality of solutions. Fig. 3 illustrates the TLBO algorithm, which forms the basis of CTLBO. In 

CTLBO, all instances of random number generation in learner phase are replaced with chaotic sequences 

(e.g., using a Chebyshev map) to improve exploration and prevent premature convergence. 

 
Fig. 3. Flowchart for TLBO [40]. 

The strength of the TLBO algorithm lies in its simplicity and efficiency. It does not require algorithm-

specific parameters like crossover probability in  enetic Algorithms or inertia weight in PSO algorithm. 

This parameter-free nature makes TLBO easier to implement and tune across different problem domains. 

Additionally, because of its balance between exploration and exploitation, TLBO has been shown to 

perform well across various optimization problems, including those with complex, multi-modal landscapes. 

The algorithm's ability to guide the search process effectively through both teacher and peer learning phases 

contributes to its robustness and effectiveness in finding global optima. Note that in this algorithm, a chaotic 

map (Chebyshev) is used everywhere the algorithm produces random numbers. 
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To provide more detail on how the algorithm operates during code execution, each algorithm run is 

structured to minimize the objective functions iteratively. Specifically, the process starts by generating a set 

of initial candidate solutions that represent potential damage scenarios within the plate structure. These 

solutions are evaluated against the defined objective functions to determine their performance. The 

algorithm updates these solutions during each iteration based on its learning phases. For TLBO, this 

involves the teacher phase, where the best current solution influences the others to improve towards a higher 

mean, and the learner phase, where solutions are further refined through pairwise interactions. In CTLBO, 

chaotic maps are integrated to introduce complex, non-repetitive sequences during the update process. 

The iterative process of calculating, updating, and comparing solutions continues until the specified 

Number of Function Evaluations (NFEs) is completed. This systematic approach allows the algorithms to 

converge towards an optimal or near-optimal solution for identifying damage in the structure. Table 1 

provides a pseudo-code implementation of the algorithm. 

Table 1. Pseudo-code. 
Algorithm 1 CTLBO 

Learning phase 

1 𝐅𝐨𝐫 𝑖 = 1: 𝑃𝑛 

2 
  Randomly select two learners 𝑋𝑖 and 𝑋𝑗,  where ( 𝑖 ≠ 𝑗 ) 

  Use chaotic sequences to influence how they learn from each other 

3    If 𝑓(𝑋𝑖) < 𝑓(𝑋𝑗) 

4        𝑋new 𝑖 = 𝑋old 𝑖 + 𝑟𝑖(𝑋𝑖 − 𝑋𝑗) 

5        Else 

6        𝑋new 𝑖 = 𝑋old 𝑖 + 𝑟𝑖(𝑋𝑗 − 𝑋𝑖) 

7    End if 

8 
End for 

Accept 𝑋new if it gives a better function value. 

 

4. Numerical example and validation 

In this section, an L-plate with dual clamps and Rectangular plate with a quarter-circle cutout, as illustrated 

in Fig. 4 and Fig. 5, respectively, are simulated using MATLAB 2022a to evaluate the effectiveness of the 

proposed CTLBO algorithm. The performance is compared with the standard TLBO algorithm in both 

noisy and noise-free conditions. 

4.1. An L-plate with dual clamps 

The first plate consists of 32 CST elements. In this plate, five frequencies and their corresponding mode 

shapes are considered in the analysis. This choice strikes a balance between computational efficiency and 

the algorithm's accuracy. Additionally, the material attributes of the plate are detailed in Table 2. The 

termination criterion is set based on a fixed NFEs to ensure consistency and fairness between the scenarios. 

The following damage scenarios are assumed for the plate: 

Scenario 1: Element 16 experiences a 20% damage. 

Scenario 2: Element 9 undergoes a 10% damage, while element 32 experiences a 12% reduction. 

Table 2. Material attributes of the thin plates. 
Property (unit) value 

E, elasticity modules (GPa) 210 

ρ, mass density (𝑘𝑔/𝑚3) 7850 

𝜈, Poisson's ratio 0.3 
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t, thickness (m) 0.005 

 

 
Fig. 4: An L-plate with dual clamps [25]. 

 
Fig. 5: Rectangular plate with a quarter-circle cutout [25]. 

4.2. Rectangular plate with a quarter-circle cutout 

The second plate consists of 36 CST elements. In this plate, similar to the first plate, the analysis 

incorporates five frequencies and their corresponding mode shapes, chosen to balance computational 

efficiency and algorithm accuracy. The material attributes of this plate are also provided in Table 2. The 

following damage scenarios are considered for the plate: 

Scenario 1: Element 7 is subjected to a 6% damage. 

Scenario 2: Element 13 experiences a 15% damage, while element 24 undergoes a 10% damage. 
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4.3. Results and discussion 

The damage detection procedure was performed across 20 individual runs, with the best results for each 

algorithm and each scenario for both plates. 

For the first plate, the damage detection outcomes are illustrated in Figs. 6 and 7 for scenarios 1 and 2, 

respectively, with the corresponding loss value results summarized in Table 3.While both TLBO and 

CTLBO successfully identify the damaged elements, it is evident that TLBO faces significant challenges, 

particularly in noisy conditions, where its accuracy and reliability diminish noticeably compared to 

CTLBO. In Scenario 1, under noise-free conditions, CTLBO attains the minimum loss values across all 

objectives, significantly outperforming TLBO, which exhibits non-negligible losses particularly in F1 and 

F3. CTLBO also shows significantly lower losses in noisy conditions than TLBO, indicating better noise 

handling across all objectives. In Scenario 2, CTLBO consistently outperforms TLBO in both noisy and 

noise-free conditions. TLBO exhibits high losses, particularly in noisy conditions, while CTLBO reduces 

these losses substantially, especially in F1 and F3. 
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Fig. 6. Damage detection and localization results of the L-plate with dual clamps for scenario 1: (a) TLBO, (b) 

CTLBO, (c) TLBO with noise, (d) CTLBO with noise. 

 

 

 
Fig. 7. damage detection and localization results of the L-plate with dual clamps for scenario 2: (a) TLBO, (b) 

CTLBO, (c) TLBO with noise, (d) CTLBO with noise. 



A. Abedi et al. Journal of Rehabilitation in Civil Engineering 14-1 (2026) 2169 

13 

Table 3. Loss value results of the L-plate with dual clamps. 

Scenario 1 

 F1 F2 F3 F4 

TLBO 0.0003±0.0000 0.0000±0.0000 0.0020±0.0000 0.0000±0.0000 

CTLBO 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 

TLBO-N 0.2718±0.0034 0.4194±0.0026 0.2632±0.0537 0.8725±0.0271 

CTLBO-N 0.0455±0.0905 0.1025±0.0010 0.1424±0.0000 0.4453±0.0051 

Scenario 2 

 F1 F2 F3 F4 

TLBO 30.1574±0.1186 2.53242±0.0227 1.0679±0.0025 0.2694±0.0005 

CTLBO 2.1477±0.0006 0.0000±0.0000 0.0901±0.0003 0.0008±0.0000 

TLBO-N 31.9891±0.1840 3.6752±0.0162 1.6378±0.0293 5.1068±0.0482 

CTLBO-N 25.2805±0.1026 2.4805±0.0188 2.8242±0.0320 1.0460±0.0194 

Note: N corresponds to the noisy condition. 

Table 4. Loss value results of the Rectangular plate with a quarter-circle cutout. 

Scenario 1 

 F1 F2 F3 F4 

TLBO 0.0135+0.0000 0.0000+0.0000 7.0835+0.0105 0.0123+0.0000 

CTLBO 0.0003+0.0000 0.0000+0.0000 0.0000+0.0000 0.0000+0.0000 

TLBO-N 3.9280+0.0132 0.0007+0.0033 1.4780+0.0111 6.5692+0.0235 

CTLBO-N 0.0181+0.0000 0.0027+0.0000 0.0157+0.0001 0.6611+0.0013 

     

Scenario 2 

 F1 F2 F3 F4 

TLBO 0.0802 +0.0004 0. 6434+0.0037 0.0010+0.0000 0.1259+0.0001 

CTLBO 0.0009 +0.0000 0.0194+0.0002 0.0000+0.0000 0.0000+0.0000 

TLBO-N 8.5614+0.0140 13.136+0. 1410 1.3132+0.0045 0.4574+0.0016 

CTLBO-N 0.4998+0.0006 2.7010+0.0059 0.9726+0.0006 0.2425+0.0008 

Note: N corresponds to the noisy condition. 
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Fig. 8. Damage detection and localization results of the Rectangular plate with a quarter-circle cutout for scenario 

1: (a) TLBO, (b) CTLBO, (c) TLBO with noise, (d) CTLBO with noise. 
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Fig. 9. Damage detection and localization of the Rectangular plate with a quarter-circle cutout for scenario 2: (a) 

TLBO, (b) CTLBO, (c) TLBO with noise, (d) CTLBO with noise. 

For the second plate, objective functions' error values are listed in Table 4, and damage detection results for 

both scenario 1 and scenario 2 are presented in Figs. 8 and. 9, respectively. The findings demonstrate that 

while both algorithms identified the damage elements with acceptable accuracy, CTLBO consistently 

outperforms TLBO in both noisy and noise-free conditions across all objective functions F1, F2, F3, and F4 

in both scenarios. In Scenario 1, CTLBO achieves near-zero losses across all objectives, while TLBO shows 

moderate losses, particularly in F3. Under noisy conditions, CTLBO reduces losses significantly compared 

to TLBO, especially in F1 and F4. A similar trend is observed in Scenario 2, where CTLBO exhibits superior 

performance by minimizing losses across all objectives in noisy and noise-free states. 

Fig. 10 illustrates the convergence curves for the second objective function under noisy conditions in 

Scenario 2 for two benchmark plates. These figures highlight the comparative performance of TLBO and 

CTLBO in tackling noise-affected structural damage detection problems. 

In Fig. 10 (a), which corresponds to the L-plate with dual clamps, CTLBO demonstrates a significantly 

faster and more stable convergence compared to TLBO. CTLBO rapidly achieves lower objective function 

values within the early stages of optimization (around 50 NFEs), stabilizing at a value several magnitudes 

smaller than that of TLBO. In contrast, TLBO exhibits a slower convergence trajectory and plateaus at a 

higher objective function value, highlighting its reduced capability to navigate noisy conditions effectively. 

Fig. 10 (b), representing the Rectangular plate with a quarter-circle cutout, presents a similar pattern. 

CTLBO outperforms TLBO in terms of both speed and accuracy, achieving a remarkably lower objective 

function value. Notably, CTLBO achieves convergence within fewer NFEs and maintains a steady decline 

without significant oscillations, even under noisy conditions. Meanwhile, TLBO struggles with erratic 

progress, leading to a higher final objective function value. 

These results confirm the superior performance of CTLBO especially in noisy environments, demonstrating 

its enhanced convergence speed and precision. The effectiveness of CTLBO is attributed to the 

incorporation of chaotic maps, which bolster its exploration and exploitation capabilities, enabling it to 

identify optimal solutions more reliably. 

In noisy environments, CTLBO demonstrates improved performance primarily because the integration of 

chaotic maps enhances exploration by generating a diverse set of candidate solutions. This increased 

diversity helps prevent premature convergence to local minima that noise can exacerbate in traditional 

TLBO. However, our analysis also suggests that the advantages of CTLBO might diminish under extremely 

high noise levels or if the chaotic map parameters (e.g., initial conditions) are not optimally tuned, as these 

factors could lead to instability in the chaotic sequences. 
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 (a) (b) 

Fig. 10. As representative sample convergence curve of the second objective function for (a) the L-plate with dual 

clamps under noisy conditions in Scenario 2, and (b) the Rectangular plate with a quarter-circle cutout under noisy 

conditions in Scenario 2. 

5. Conclusion 

This study has explored the effectiveness of the CTLBO algorithm for damage detection in plate structures. 

By introducing chaotic maps into the TLBO framework, we aimed to overcome the common challenges 

faced by optimization algorithms, such as slow convergence and susceptibility to noise. The numerical 

experiments on an L-plate with dual clamps and a Rectangular plate with a quarter-circle cutout demonstrate 

that CTLBO significantly improves the accuracy and robustness of damage detection, particularly in noisy 

conditions. Four objective functions were considered for evaluating performance. Compared to the 

traditional TLBO, CTLBO shows superior performance in both noise-free and noisy environments, 

consistently achieving more accurate damage localization and intensity estimation. The chaotic maps 

enhance the algorithm's ability to escape local optima, improving overall search efficiency. These findings 

indicate that CTLBO is a reliable and effective tool for complex SHM applications. It is important to note 

that the structural models employed rely on simplified assumptions, including moderate noise levels, 

idealized edge conditions, and plane stress formulations. Future work should explore these complexities to 

further validate and enhance the method’s applicability to real-world structures. 
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