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This study presents a robust design optimization (RDO) approach 

for 2D steel moment-resisting frames, addressing uncertainties in 

material properties and external loads. The study considers special 

moment frames with high ductility capacity (R=8) designed 

according to American Institute of Steel Construction Load and 

Resistance Factor Design (AISC-LRFD) specifications. The 

objective is to minimize both structural weight and the robustness 

index, defined as the standard deviation of roof displacement. The 

Enhanced Vibrating Particles System (EVPS) algorithm is 

employed to solve the optimization problem, while Monte Carlo 

simulation (MCS) is used to model uncertainties. Three benchmark 

frames (10, 15, and 24 stories) demonstrate the effectiveness of the 

proposed methodology. Results show a 50-60% reduction in roof 

displacement variability compared to deterministic optimization, 

with only a 20-30% increase in structural weight. For the 10-story 

frame with β=0.4, the approach achieved a 67% reduction in 

standard deviation (from 0.484 to 0.159) with a 74% weight 

increase (from 63,848 lb to 111,701 lb). The robustness index 

coefficient (β) is identified as a key parameter for controlling the 

weight-robustness trade-off, allowing designers to tailor solutions 

based on project requirements. The study provides a practical 

framework for improving steel frame reliability under real-world 

conditions. 
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1. Introduction 

Structural optimization aims to achieve optimal designs satisfying constraints at minimum cost [1–4]. While 

gradient-based methods exist, metaheuristic algorithms such as genetic [5], bat [6], IPSO [7], ant colony 

[8], and WOA [9] are widely employed due to the absence of direct mathematical equations. Civil 

engineering applications utilize shape [10,11] and sizing [12] optimization to create cost-effective, material-

efficient designs. 

Recent advances have integrated optimization with sensitivity analysis techniques. Saldaña-Robles et al. 

[13] combined TA, FEA, RSM, and ANN for agricultural backhoe design, achieving 24.8% mass reduction. 

Sadeghpour and Ozay [14] compared ANN, RSM, and ANFIS for RC structure collapse potential 

assessment. Nouri et al. [15] integrated optimization and ANOVA for glass fiber polymer reinforcement. 

However, deterministic optimization neglects uncertainty despite safety factor slacking probabilistic basis 

[16]. Even 0.1% uncertainty can yield infeasible solutions [17], necessitating uncertainty consideration in 

design [18–21]. Recent reliability-based and robust design studies have advanced structural optimization 

[22]. Yadav and Ganguli [23] investigated uncertainty effects on trusses and composite plates. Dammak et 

al.[24] developed methods for acoustic-structural systems. Kamel et al. [25] optimized offshore wind 

turbines considering soil-structure interaction. Yarasca et al. [26] presented machine learning-optimized 

deformation theory for functionally graded plates. Two approaches handle uncertainty:  RBDO models 

uncertainties probabilistically focusing on failure probability [27,28], while RDO emphasizes insensitivity 

to variation measured by response standard deviation [29]. 

Hosseini et al. [30] compared EVPS and GWO algorithms for steel frame RBDO, demonstrating weight 

reduction while maintaining reliability. The robustness concept, introduced by Taguchi [31,32], has been 

applied across engineering disciplines [33–39]. Early applications by Chi and Blöbaum [40] and Lee et al. 

[41] suffered from efficiency limitations. More effective approaches include Sandgren and Cameron's 

genetic algorithm with MCS [42] and Doltsinis and Kang's bi-criteria formulation [43]. Lagaros et al. [44] 

proposed multi-objective evolutionary methods, while Beyer and Sendhoff [45] reviewed robust 

optimization approaches. Recent advances include Zaman et al.'s [33] formulas for aleatory and epistemic 

uncertainties, Kan's [46] ellipsoid convex model, and Liu et al.'s [47] RDO of steel frames minimizing drift 

and weight. Zhao et al. [48] integrated RBDO with photovoltaic systems, Lyu et al. [49] developed non-

iterative frameworks, Chen et al. [50] proposed quantile surrogates, and Steinacker et al. [51] investigated 

bicycle infrastructure robustness. Performance-based approaches by Saffari et al. [52], Bakhshinezhad et 

al. [53], and Roohbakhsh et al. [54] address uncertainty in seismic performance. Do and Ohsaki [55,56] 

formulated multi-objective RDO using Gaussian mixture models and Bayesian optimization. Zhang and 

Hu [57] optimized self-centering brace arrangements, while Soleymani et al. [58,59] investigated separation 

gaps and hybrid strong-back systems. 

Despite these advances, comprehensive RDO investigations of high-rise steel moment frames remain 

limited. This study addresses this gap by: (1) proposing an integrated EVPS-MCS approach minimizing 

weight and response variability; (2) systematically evaluating the weight-robustness trade-off through β 

coefficient variation; (3) demonstrating effectiveness across three benchmark frames; and (4) establishing 

the EVPS algorithm's capability for complex robust optimization problems. 

2. Monte carlo simulation method 

MCS is a computational algorithm using random sampling for problems where deterministic solutions are 

infeasible. The method proves valuable for stochastic structural analysis with multiple uncertainty 

variables. The study considers uncertainties in: modulus of elasticity (E), shear modulus(G), external forces 

(P), yield stress (Fy), cross-sectional areas (A), torsion constant (J), moment of inertia (I), plastic section 

modulus (Z), and elastic section modulus (S). All variables follow normal distributions with COV of 10% 
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for external loads and 5% for other parameters. The approach first applies deterministic constraints using 

mean values, then performs probabilistic assessment for feasible designs. MCS with 2×10^5 samples 

evaluate statistical quantities efficiently [27]. Figure 1 presents the systematic robustness assessment 

approach. 

 
Fig. 1. Robustness response flowchart based on the Monte Carlo simulation method. 

3. EVPS algorithm 

The EVPS algorithm, inspired by single degree-of-freedom system vibration with viscous damping, 

enhances the VPS algorithm's convergence speed and search capabilities [60]. Key improvements include 

replacing the memory parameter with HB parameter, storing historically superior positions. The algorithm 

updates particle positions using three equations selected randomly, with boundary violations handled 

through harmony search [61]. Figure 2 illustrates the complete workflow, while Figure 3 presents the 

pseudocode. All implementations utilized MATLAB R2022a [62]. 
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Fig. 2. Flowchart of the Enhanced Vibrating Particles System (EVPS) algorithm. 

1. Procedure EVPS(population_size, max_iterations, memory_size) 
2. // Initialization 
3. Initialize population X randomly within bounds 
4. Evaluate fitness of all particles 
5. Initialize Memory with best solutions from X 
6. for iter = 1 to max_iterations do 

a. for each particle i in population do 
i. Select OHB randomly from Memory 
ii. Select GP and BP from current population 

iii. for each dimension j do 
iv. D = (iter/max_iterations)^(-α)  // Damping coefficient 
v. // Randomly choose one equation: 
vi. Randomly select equation_type from {a, b, c} 

vii. if equation_type = a then 
1. X_new[i,j] = D·(±1)·(OHB[j] - X[i,j])·rand() + OHB[j] 

viii. else if equation_type = b then 
1. X_new[i,j] = D·(±1)·(GP[j] - X[i,j])·rand() + GP[j] 

ix. else  // equation_type = c 
1. X_new[i,j] = D·(±1)·(BP[j] - X[i,j])·rand() + BP[j] 

x. end if 
xi. // Handle boundary violations 

xii. if X_new[i,j] outside bounds then 
1. Apply harmony search-based boundary handling 

xiii. end if 
xiv. end for 

b. end for 
c. Evaluate fitness of all particles in X_new 
d. Update X with best solutions from X and X_new 
e. Update Memory if current best is better than Memory worst 

7. end for 
8. return best solution from Memory 
9. End Procedure 

Fig. 3. Pseudocode for Enhanced Vibrating Particles System (EVPS). 
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4. RDO formulation 

4.1. Optimum design 

The general form of the optimization mathematical problem is initially presented as: 

{
 

 
Find 𝑋𝑜 = [𝑥𝑜1, 𝑥𝑜2, … , 𝑥𝑜𝑗] (𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑅)

Minimizing 𝑓(𝑋𝑜)

Subject to {
𝑔𝑖(𝑋𝑜) ≤ 0 (𝑖 = 1,2,… ,𝑚)
𝑙𝑘(𝑋𝑜) = 0 (𝑘 = 1,2,… , 𝑛)

 (1) 

This equation represents a general form of an optimization problem. The vector 𝑋𝑜  contains the design 

variables specifically for optimization. The objective function 𝑓(𝑋𝑜) aims to be minimized subject to 

inequality constraints 𝑔𝑖(𝑋𝑜) ≤ 0and equality constraints 𝑙𝑘(𝑋𝑜) = 0. The variables 𝑥𝑜1, 𝑥𝑜2, … , 𝑥𝑜𝑗 are 

bounded between 𝑥𝐿  and 𝑥𝑅 , representing the lower and upper limits respectively. 

4.2. Structural optimization 

In structural optimization, the objective is to minimize the weight of the structure while meeting the 

constraints of the regulations. The structural optimization formula is: 

{

Find 𝑋𝑠 = [𝑥𝑠1, 𝑥𝑠2, 𝑥𝑠3, … , 𝑥𝑠𝑛𝑠]

To minimize 𝑤(𝑋𝑠) = ∑ 𝜌𝑖
𝑚𝑠
𝑖=1 𝑥𝑠𝑖𝐿𝑖

Subject to 𝑔𝑖(𝑋𝑠) ≤ 0

 (2) 

This equation is specific to structural optimization, where the goal is to minimize the weight of a structure 

while adhering to certain constraints. The vector 𝑋𝑠 consists of design variables for structural parameters. 

The objective function 𝑤(𝑋𝑠) calculates the total weight of the structure, using the material density 𝜌𝑖, 
lengths 𝐿𝑖, and design variables 𝑥𝑠𝑖. The constraints 𝑔𝑖(𝑋𝑠) ≤ 0 ensure the structure meets regulatory 

requirements. 

The design variables encompass structural parameters, encompassing dimensions, shape, and topology. 

Objectives and constraints typically encompass structural weight, static and transient responses. These 

constraints encompass the following: 

According to LRFD-AISC [63], the constraints include force and displacement where: 

• The constraint related to maximum horizontal displacement of the structure is: 
𝛥𝑇

𝐻
− 𝑅 ≤ 0 (3) 

• The constraint associated with the relative inter-story drift is: 
|𝑑𝑖|

ℎ𝑖
− 𝑅𝑙 ≤ 0; 𝑖 = 1,2, . . . , 𝑛𝑠 (4) 

• The strength constraint of the frame members or strength is the simultaneous effect of the bending 

moment and axial compressive force as: 

𝑃𝑢

2𝜙𝑐𝑃𝑛
+ [

𝑀𝑢𝑥

𝜙𝑏𝑀𝑛𝑥
+

𝑀𝑢𝑦

𝜙𝑏𝑀𝑛𝑦
] − 1 ≤ 0; 𝑓𝑜𝑟

𝑃𝑢

𝜙𝑐𝑃𝑛
≤ 0.2

𝑃𝑢

𝜙𝑐𝑃𝑛
+
8

9
[
𝑀𝑢𝑥

𝜙𝑏𝑀𝑛𝑥
+

𝑀𝑢𝑦

𝜙𝑏𝑀𝑛𝑦
] − 1 ≤ 0; 𝑓𝑜𝑟

𝑃𝑢

𝜙𝑐𝑃𝑛
≥ 0.2 (5) 

In equation (3), ∆𝑇 and 𝐻 denote the maximum horizontal displacement of the roof and the frame height, 

respectively, R denotes the maximum index of lateral displacement (1/300 in the present study). In equation 

(4), 𝑑𝑖 and ℎ𝑖 denote the relative inter-story drift and the height of the desired story, respectively and 𝑅𝑖 
denotes the lateral displacement and is defined as R. In equation (5), 𝑃𝑛 denotes the axial strength of the 

tensile or compressive members, ∅𝑐 denotes the axial strength-reduction factor (0.9 for tensile members 

and 0.85 for compressive members), 𝑀𝑢 and 𝑀𝑛 are the required and nominal flexural capacities, 

respectively, and ∅𝑏 is equal to the bending strength-reduction factor (0.9). 
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In equation (5), the axial strength of the members has been calculated as: 

• For nominal strength of tensile members as: 

𝑃𝑛 = 𝐴𝑔𝐹𝑦 (6) 

• For nominal strength of compressive members as: 

𝑃𝑛 = 𝐴𝑔𝐹𝑐𝑟 (7) 

𝐹𝑐𝑟 = [0.658
𝜆𝑐
2
]𝐹𝑦; 𝑓𝑜𝑟𝜆𝑐 ≤ 1.5 

𝐹𝑐𝑟 = [
0.877

𝜆𝑐
2 ] 𝐹𝑦; 𝑓𝑜𝑟𝜆𝑐 > 1.5 (8) 

𝜆𝑐 =
𝑘𝑙

𝑟𝜋
√
𝐹𝑦

𝐸
 (9) 

In equations (6) and (7), 𝐴𝑔 is equal to the cross-section of the members. In equation (9), 𝑘 denotes the 

effective length factor, which equals 1 for the lateral braced length and is calculated for the lateral unbraced 

length as: 

𝑘 = √
1.6𝐺𝐴𝐺𝐵+4.0(𝐺𝐴+𝐺𝐵)+7.5

𝐺𝐴+𝐺𝐵+7.5
 (10) 

where GA and GB denote the boundary conditions of the two ends of the compressive member and depend 

on the E1/L ratio of the columns and the sum of the same coefficient for the beam leading to the two ends 

of the compressive member. 

The random structural parameters lead to performance dispersion as defined by the constraints, as a result 

of which robust design is required. The current study has expanded the deterministic optimal design 

problem for steel frames by considering the robustness of the responses. In other words, the objective is to 

minimize the structural weight and robustness index in addition to meeting specific design constraints. 

4.3. Robust design 

The RDO formulation used in the present study is derived through a series of equations, culminating in the 

final form presented in Equation (13). The process begins with the objective function of Equation (2), which 

is then expanded and modified to incorporate robustness considerations. The intermediate steps are 

represented by Equations (11) and (12), which introduce the robustness index and the trade-off between 

weight and robustness, respectively. Finally, the penalty terms are added in Equation (13) to ensure 

compliance with design constraints, resulting in the comprehensive RDO formulation employed in this 

research. 

{

Find 𝑋𝑟 = [𝑥𝑟1, … , 𝑥𝑟𝑛𝑔] 𝑥𝑟𝑖 ∈ 𝑆𝑖
To minimize Robustness index(𝑋𝑟)

Subjected to 𝑔𝑗(𝑋𝑟) ≤ 0,  [𝑗 = 1,2, … , 𝑛𝑐𝑟; 𝑥𝑖min ≤ 𝑥𝑟𝑖 ≤ 𝑥𝑖max]

 (11) 

This formula is used in robust optimum design, which focuses on both minimizing structural weight and 

achieving a low robustness index. The vector 𝑋𝑟 represents design variables related to robust design. The 

goal is to minimize the robustness index, which is a measure of the structure's performance variability. The 

constraints 𝑔𝑗(𝑋𝑟) ≤ 0 and 𝑥𝑖min ≤ 𝑥ri ≤ 𝑥𝑖max  ensure the design stays within acceptable limits while 

optimizing for both weight and robustness. 

Objective Function = 𝛼 (
𝑊𝑆(𝑋𝑟)

𝑊𝑜𝑝𝑡
) + 𝛽 (

𝑆𝐷𝑆(𝑋𝑟)

𝑆𝐷𝑜𝑝𝑡
) (12) 

In this context, 𝑊𝑆(𝑋𝑟) represents the structural weight associated with the design variables in 𝑋𝑟. 𝑊𝑜𝑝𝑡  

stands for the optimal weight, which is determined irrespective of the robustness index considerations. 

Similarly, 𝑆𝐷𝑆(𝑋𝑟) corresponds to the structural standard deviation linked to the design variables in 𝑋𝑟 , 
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while 𝑆𝐷𝑜𝑝𝑡  denotes an optimized standard deviation, established independently of structural weight 

considerations. where 𝛼 and 𝛽 respectively represent the coefficients for structural weight and robustness 

index This objective function effectively balances the trade-off between minimizing structural weight and 

standard deviation. 

Accounting for the penalty effect, equation 12 is reformulated as equation 13: 

PenalizedObjective Function = {𝛼 (
𝑊𝑆(𝑋𝑟)

𝑊𝑜𝑝𝑡
) + 𝛽 (

𝑆𝐷𝑆(𝑋𝑟)

𝑆𝐷𝑜𝑝𝑡
)} (1 + 𝑃𝑓 ⋅ penalty(𝑋𝑟)) (13) 

Within this equation, 𝑃𝑓denotes the penalty coefficient. The study focuses on the displacement robustness 

index of the roof node. The objective, as articulated in equation (12), centers on the simultaneous 

minimization of both weight and robustness index while adhering to the constraints of the problem. The 

additional term (1 + 𝑃𝑓 ⋅ penalty(𝑋𝑟)) in equation (13) accounts for the penalty effect, ensuring 

compliance with design requirements and constraints. 

The study focuses on the displacement robustness index of the roof node. The objective, as articulated in 

Equation (12), centers on the simultaneous minimization of both weight and robustness index while 

adhering to the constraints of the problem. The additional terms in Equation (13) account for the penalty 

effect, ensuring compliance with design requirements and constraints. 

5. Design examples 

Three benchmark frames were optimized using EVPS with population size 60, 300 iterations, and 

parameters: w1=0.2, w2=0.3, HMCR=0.95, PAR=0.1, memory size=4. Table 1 presents uniform 

specifications facilitating direct comparison. MCS employed 2×10^5 samples considering 5% and10% 

COV for material properties and loads respectively. 

Table 1. Uniform specifications of the benchmark steel frames. 

Parameter 10-Story Frame 15-Story Frame 24-Story Frame 

Geometric Properties    

Number of stories 10 15 24 

Number of bays 1 3 3 

Total height(m) 37.4904 53 87.6 

Story height(m) 4.572+9@3.6576 4+14@3.5 3.65 

Bay width(m) 9.144 3@5 6.09+3.65+8.53 

Number of nodes 11 64 100 

Number of members 30 105 168 

Design Variables    

Total design variable groups 9 11 20 

Column groups 5 10 16 

Beam groups 4 1 4 

Material Properties    

Modulus of elasticity (E) 

(GPa) 
200 200 205 

Yield stress (Fy) (MPa) 248.2 248.2 230.28 

Effective Length Factors    

kx (in-plane) 1  0  1  

ky (out-of-plane) 1.0 1.0 1.0 

Section Database    

Column sections W12 and W14 sections 267 W-shaped sections W14 sections 

Beam sections 267 W-shaped sections 267 W-shaped sections 267 W-shaped sections 

Design Constraints    

Primary constraint AISC-LRFD strength & drift AISC-LRFD strength & drift AISC-LRFD strength & drift 

Drift limit 1/300 of height 1/300 of height 1/300 of height 

Unbraced Length    

Columns Full height Full height Full height 

Beams 1/5 of bay length 1/5 of bay length Full length 

Reference [64] [64] [64] 
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5.1. 10-story single-bay frame 

The 10-story frame (Figure 4) contains 11 nodes and 30 members with nine design variable groups. 

Specifications are detailed in Table 1. Table 2 presents optimal solutions for varying β values, demonstrating 

increased weight but decreased standard deviation with higher β. 

 
Fig. 4. Schematic of a single-bay 10-story frame [64]. 

Table 2. Optimal solutions for the one-bay, 10-story frame using EVPS with different β values. 

 EVPS (DDO+RDO) EVPS(DDO)[64] SDE(DDO) [64] 

 Alpha=1 Alpha=1 Alpha=1 

Group Betta=0.2 Betta=0.4 Betta=0.6 Betta=0 Betta=0 

1 W14x283 W14x426 W14x500 W14x233 W14x233 

2 W14x233 W14x283 W14x370 W14x176 W14x176 

3 W14x193 W14x193 W14x257 W14x159 W14x145 

4 W14x99 W14x159 W14x233 W14x99 W14x99 

5 W14x53 W14x68 W14x109 W14x61 W12x65 

6 W40x167 W44x230 W44x290 W33x118 W33x118 

7 W40x167 W40x215 W44x262 W30x90 W30x99 

8 W36x135 W40x149 W40x167 W27x84 W27x84 

9 W24x68 W18x46 W21x55 W18x46 W21x44 

best weight 
39656.859 kg 

(87428.40942 lb) 

50666.53 kg 

(111700.5794 lb) 

63609.169 kg 

(140234.2131 lb) 

28960.918 kg 

(63847.8970 lb) 

29194.474 kg 

(64362.7994 lb) 

standard 

deviation 
0.23230368 0.158962123 0.116392685 0.484314 0.479565 
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Figures 5-12 illustrate the β coefficient effects, convergence curves, stress ratios, inter-story drift, roof 

displacement, and Monte Carlo results. The stress distribution shows more uniform patterns in robust 

designs, with maximum ratios below 0.85 providing uncertainty buffer. Density plots confirm narrower 

displacement distributions with increasing β. 

 
Fig. 5. Effect of β coefficient on weight and standard deviation of a 10-story, single-bay frame structure. 

 
Fig. 6. Convergence curves for the 10-story, single-bay frame structure. 

 
Fig. 7. Stress ratio chart for different design cases of the 10-story, single-bay frame structure. 
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Fig. 8. Stress ratio scatter plot for different design cases of the 10-story, single-bay frame structure. 

 
Fig. 9. Stress ratio contour plot for different design cases of the 10-story, single-bay frame structure. 

 
Fig. 10. Inter-story drift plot for different design cases of the 10-story, single-bay frame structure. 
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Fig. 11. Roof horizontal displacement comparison plot for different design cases of the 10-story, single-bay frame 

structure. 

 
*Horizontal axis: Roof Displacement (mm); Vertical axis: Probability Density of Roof Displacement Distribution from Monte Carlo 

Fig. 12. Comparative density plots and histograms of Monte Carlo simulation results for different design cases of 

the 10-story, single-bay frame structure. 

5.2. 15-story frame 

The 15-story three-bay frame (Figure 13) contains 64 nodes and 105 members with 11 design groups 

(specifications in Table 1). Table 3 presents optimization results showing similar weight-robustness trade-

offs. 
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Table 3. Optimal solutions for the three-bay, 15-story frame using EVPS with different β values. 

 EVPS (DDO+RDO) EVPS(DDO) [64] SDE(DDO) [64] 

 Alpha=1 Alpha=1 Alpha=1 

Group Betta=0.2 Betta=0.4 Betta=0.6 Betta=0 Betta=0 

1 W40x249 W44x335 W40x503 W14x99 W14x90 

2 W40x149 W40x215 W40x199 W27x161 W36x170 

3 W36x182 W44x290 W36x359 W27x84 W27x84 

4 W40x149 W40x183 W36x150 W24x104 W24x104 

5 W27x102 W36x150 W36x182 W14x61 W14x61 

6 W33x118 W40x167 W40x149 W30x90 W30x90 

7 W30x90 W30x108 W36x135 W14x48 W14x48 

8 W30x90 W40x167 W33x118 W12x65 W12x65 

9 W14x34 W24x55 W30x99 W6x25 W6x25 

10 W27x94 W30x124 W36x135 W12x40 W12x40 

11 W33x118 W36x135 W40x167 W21x44 W21x44 

best weight 
79486.948 kg 

(175238.7238 lb) 

102306.861 kg 

(225548.0217 lb) 

120582.928 kg 

(265839.8512 lb) 

39553.772 kg 

(87201.1409 lb) 

39528.279 kg 

(87144.9387 lb) 

standard 

deviation 
0.129005855 0.087387483 0.068182942 0.256002332 0.272184862 

 

 
Fig. 13. Schematic of a three-bay 15-story frame [64]. 
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Figures 14-21 demonstrate β effects, convergence, stress distributions, drift profiles, and Montecarlo 

results, confirming robust design effectiveness for multi-bay configurations. 

 
Fig. 14. Effect of β coefficient on weight and standard deviation of a three-bay 15-story frame. 

 
Fig. 15. Convergence curves for the three-bay 15-story frame. 

 
Fig. 16. Stress ratio chart for different design cases of the three-bay 15-story frame. 
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Fig. 17. Stress ratio scatter plot for different design cases of the three-bay 15-story frame. 

 
Fig. 18. Stress ratio contour plot for different design cases of the three-bay 15-story frame. 

 
Fig. 19. Inter-story drift plot for different design cases of the three-bay 15-story frame. 
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Fig. 20. Roof horizontal displacement comparison plot for different design cases of the three-bay 15-story frame. 

 
*Horizontal axis: Roof Displacement (mm); Vertical axis: Probability Density of Roof Displacement Distribution from Monte Carlo 

Fig. 21. Comparative density plots and histograms of Monte Carlo simulation results for different design cases of 

the three-bay 15-story frame. 

5.3. 24-story frame 

The 24-story frame (Figure 22) contains 100 nodes and 168 members with 20 design groups (specifications 

in Table 1). Table 4 shows optimization results. 



P. Hosseini et al. Journal of Rehabilitation in Civil Engineering 14-2 (2026) 2284 

16 

 
Fig. 22. Schematic of a three-bay 24-story frame [64]. 

Figures 23-30 present comprehensive results demonstrating the methodology's scalability to high-rise 

structures, with consistent weight-robustness relationships. 
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Table 4. Optimal solutions for the three-bay, 24-story frame using EVPS with different β values.. 

 EVPS (DDO+RDO) EVPS(DDO) [64] SDE(DDO) [64] 

 Alpha=1 Alpha=1 Alpha=1 

Group Betta=0.2 Betta=0.4 Betta=0.6 Betta=0 Betta=0 

1 W33x118 W40x149 W40x183 W30x90 W30x90 

2 W14x38 W14x43 W12x50 W6x15 W6x15 

3 W27x84 W27x114 W33x118 W24x55 W24x55 

4 W16x89 W24x62 W24x84 W6x8.5 W6x8.5 

5 W12x79 W14x99 W14x120 W14x159 W14x159 

6 W12x72 W14x82 W12x96 W14x145 W14x132 

7 W12x65 W12x79 W12x96 W14x90 W14x109 

8 W12x65 W12x72 W12x87 W14x74 W14x74 

9 W14x53 W14x61 W14x74 W14x74 W14x61 

10 W14x43 W12x50 W14x61 W14x38 W14x38 

11 W12x45 W12x40 W12x45 W14x30 W14x34 

12 W12x40 W12x35 W12x35 W14x22 W14x22 

13 W14x61 W14x61 W14x74 W14x99 W14x90 

14 W12x65 W12x65 W14x74 W14x90 W14x99 

15 W14x48 W12x72 W14x74 W14x99 W14x90 

16 W12x53 W12x72 W12x65 W14x90 W14x90 

17 W14x43 W12x50 W14x68 W14x68 W14x74 

18 W14x43 W12x65 W12x58 W14x61 W14x61 

19 W14x38 W14x43 W12x53 W14x43 W14x34 

20 W12x30 W12x35 W14x53 W14x22 W14x22 

best weight 
151002.308 kg 

(332903.1045 lb) 

197691.642 kg 

(435835.4673 lb) 

247166.409 kg 

(544908.6581 lb) 

91663.310 kg 

(202083.0070 lb) 

91175.885 kg 

(201008.4202 lb) 

standard 

deviation 
0.573059761 0.39000903 0.28992228 1.177252288 1.198756896 

 

 
Fig. 23. Effect of β coefficient on weight and standard deviation of a three-bay 24-story frame. 

 
Fig. 24. Convergence curves for the three-bay 24-story frame. 
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Fig. 25. Stress ratio chart for different design cases of the three-bay 24-story frame. 

 
Fig. 26. Stress ratio scatter plot for different design cases of the three-bay 24-story frame. 

 
Fig. 27. Stress ratio contour plot for different design cases of the three-bay 24-story frame. 



P. Hosseini et al. Journal of Rehabilitation in Civil Engineering 14-2 (2026) 2284 

19 

 
Fig. 28. Inter-story drift plot for different design cases of the three-bay 24-story frame. 

 
Fig. 29. Roof horizontal displacement comparison plot for different design cases of the three-bay 24-story frame. 
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*Horizontal axis: Roof Displacement (mm); Vertical axis: Probability Density of Roof Displacement Distribution from Monte Carlo 

Fig. 30. Comparative density plots and histograms of Monte Carlo simulation results for different design cases of 

the three-bay 24-story frame. 

5.4. Discussion of results 

The proposed RDO approach demonstrates consistent effectiveness across all benchmark frames. Key 

findings include: 

1. β coefficient effects: Nonlinear weight increase and standard deviation reduction with diminishing 

returns at higher β values. Weight increases of 36-100% (β: 0→0.2), 25-29% (β:0.2→0.4), and 17-

25% (β: 0.4→0.6) correspond to standard deviation reductions of 49-52%, 27-32%, and 22-27% 

respectively. 

2. Stress distribution: Robust designs exhibit uniform stress distributions (0.6-0.8 range) compared 

to deterministic designs approaching capacity limits, providing uncertainty buffers. 

3. Displacement characteristics: Flatter inter-story drift profiles prevent soft-story mechanisms. 

Narrower displacement distributions eliminate extreme values, with improvements scaling with 

frame height. 

4. Practical implications: Optimal β values of 0.2-0.4 balance weight and robustness. Taller frames 

show greater uncertainty sensitivity. Bay configuration affects robustness efficiency, with single-

bay frames requiring proportionally less weight increase for comparable robustness improvement. 

6. Conclusions 

This study presents comprehensive RDO strategies for steel moment-resisting frames using EVPS 

algorithm and MCS. Key achievements include: 

• 50-60% reduction in displacement variability with 20-30% weight increase at moderate β values. 

• Consistent weight-robustness relationships: 67% standard deviation reduction with 74-116%weight 

increase at β =0.4 across all frames. 
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• Practical framework allowing engineers to balance weight and robustness through β coefficient 

selection. 

• Demonstrated scalability from 10 to 24-story structures. 

Future research should extend to 3D systems, incorporate additional uncertainty sources including 

geometric imperfections and soil-structure interaction, and integrate dynamic/seismic analysis. The 

proposed RDO framework advances structural optimization and reliability-based design for steel moment-

resisting frames under real-world uncertainties. 
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