[1] West, R.C., Rada, G.R., Willis, J.R., Marasteanu, M.O. (2013), NCHRP report 752, Improved Mix Design, Evaluation and Materials Management Practices for Hot Mix Asphalt with High Reclaimed Asphalt Pavement Content, TRB, National Research Council, Washington, DC, USA.
[2] Colbert, B., You, Z. (2012). The Determination of Mechanical Performance of Laboratory Produced Hot Mix Asphalt Mixtures Using Controlled RAP and Virgin Aggregate Size Fractions, Construction and Building Materials, 26:655-662. (DOI:
10.1016/j.conbuildmat.2011.06.068)
[3] Sondag, M.S., Chadbourn, B.A., Drescher, A. (2002). Investigation of Recycled Asphalt Pavement (RAP) Mixtures, Minnesota Department of Transportation, Report No: MN/RC - 2002-15.
[4] Zaumanis, M., Mallick, R.B. (2015). Review of Very High-Content Reclaimed Asphalt Use in Plant-Produced Pavements: State of the Art, International Journal of Pavement Engineering, 16: 39-55. (DOI:
10.1080/10298436.2014.893331)
[5] Tarefder, R.A., White, L., Zaman, M. (2005). Neural Network Model for Asphalt Concrete Permeability, Journal of Materials in Civil Engineering, 17:19-27. (DOI:
10.1061/(ASCE)0899-1561(2005)17:1(19))
[6] Ozgan, E. (2011). Artificial Neural Network Based Modeling of the Marshall Stability of Asphalt Concrete, Expert Systems with Applications, 38:6025-6030. (DOI:
10.1016/j.eswa.2010.11.018)
[7] Xiao, F., Amirkhanian, S.N. (2009). Artificial Neural Network Approach to Estimating Stiffness Behavior of Rubberized Asphalt Concrete Containing Reclaimed Asphalt Pavement, Journal of Transportation Engineering, 135:580-589. (DOI:
10.1061/(ASCE)TE.1943-5436.0000014)
[8] Zeghal, M. (2008). Modeling the Creep Compliance of Asphalt Concrete Using the Artificial Neural Network Technique, GeoCongress: Characterization, Monitoring and Modeling of GeoSystems, 910-916. (DOI:
10.1061/40972(311)114)
[9] Ozsahin, T.S., Oruc, S. (2008). Neural Network Model for Resilient Modulus of Emulsified Asphalt Mixtures, Construction and Building Materials,
22:1436-1445.
(DOI:10.1016/j.conbuildmat.2007.01.031)
[10] Xiao, F., Amirkhanian, S.N. (2008). Effects of Binders on Resilient Modulus of Rubberized Mixtures Containing RAP Using Artificial Neural Network Approach, Journal of Testing and Evaluation, 37:129-138. (DOI: 10.1520/JTE101834)
[11] Vadood, M., Johari, M.S., and Rahai, A. (2015). Developing a Hybrid Artificial Neural Network-Genetic Algorithm Model to Predict Resilient Modulus of Polypropylene/Polyester Fiber-Reinforced Asphalt Concrete, The Journal of the Textile Institute, 106:1239-1250. (DOI:
10.1080/00405000.2014.985882)
[12] Kezhen, Y., Yin, H., Liao, H., Huang, L. (2011) Prediction of Resilient Modulus of Asphalt Pavement Material Using Support Vector Machine, Road pavement and material characterization, modeling, and maintenance, 16-23. (DOI:
10.1061/47624(403)3)
[13] Huang, Y.H. (2004), Pavement Design and Analysis. Pearson/Prentice Hall.
[14] ASTM D4123, Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous Mixtures. (1995) West Conshohocken, PA: ASTM International, USA.
[15] Witzcak, M.W., Kaloush, K., Pellinen, T., El-Basyouny, M, Von Quintus, H. (2002). Simple Performance Test for Superpave Mix Design (Vol. 465), TRB, National Research Council, Washington, DC, USA.
[16] Hornik, K. (1991). Approximation Capabilities of Multilayer Feed-forward Networks, Neural Networks, 4:251–257. (DOI: 10.1016/0893-6080(91)90009-T)
[17] Hagan, M.T., Demuth, H.B., Beale M.H. (1996), Neural Network Design, PWS Pub. Co., Boston, USA.
[18] Haykin, S.S. (2001), Neural Networks: a Comprehensive Foundation, Tsinghua University Press.
[19] Werbos, P. (1974), Beyond regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
[20] Rumelhart, D.E., Hinton G.E., Williams, R.J. (1988). Learning Representations by back-Propagating Errors, Cognitive Modeling 5:1.
[21] Freeman, J.A., Skapura, D.M., (1992), Neural Networks: Algorithms, Applications and Programming Techniques, Addison-Wesley Publishing Company.
[22] Specht, D.F., (1991). A General Regression Neural Network, IEEE Transactions on Neural Networks, 2:568-576. (DOI:
10.1109/72.97934)
[23] Li, H.Z., Guo, S., Li, C.J., Sun, J.Q. (2013). A Hybrid Annual Power Load Forecasting Model Based on Generalized Regression Neural Network with Fruit Fly Optimization Algorithm, Knowledge-Based Systems, 37:378-387. (DOI:
10.1016/j.knosys.2012.08.015)
[24] Leung, M.T., Chen, A.S., Daouk, H. (2002). Forecasting Exchange Rates Using General Regression Neural Networks, Computers & Operations Research, (DOI: 27:1093–1110.
10.1016/S0305-0548(99)00144-6)