[1] Bertolini, Luca, et al. Corrosion of steel in concrete: prevention, diagnosis, repair. John Wiley & Sons, 2013.
[2] Bezerra E, Joaquim A, Savastano H. The effect of different mineral additions andsynthetic fiber contents on properties of cement based composites. CemConcrCompos 2006; 28(6):555–63.
[3] Eskandari-Naddaf, Hamid, M. Lezgy-Nazargah, and Hossein Bakhshi. "Optimal Methods for Retrofitting Corrosion-damaged Reinforced Concrete Columns." Procedia Computer Science 101 (2016): 262-271.
[4] Monticelli C, Frignani A, Trabanelli G. A study on corrosion inhibitors forconcrete application. CemConcr Res 2000; 30(4):635–42 [5] Güneyisi, E., et al., Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin. Composites Part B: Engineering, 2013. 45(1): p. 1288-1295.
[6] Shreir LL. 1.05 - Basic Concepts of Corrosion. In: Stott BCGLLRS, editor. Shreir's Corrosion. Oxford: Elsevier; 2010. p. 89-100.
[7] Gastaldini, A. L. G., et al. "Total shrinkage, chloride penetration, and compressive strength of concretes that contain clear-colored rice husk ash." Construction and Building Materials 54 (2014): 369-377..
[8] Kim, H. K., I. W. Nam, and H. K. Lee. "Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume." Composite Structures 107 (2014): 60-69.
[9] Sobhani Kavkani H.R., Mortezaei A., Naghizadeh R. 2016. The effect of metakaolin, silica fume and nanosilica on the mechanical properties and microstructure of cement mortar, Iranian Journal of Materials Science and Engineering, 13(2): 50-61.
[10] Dotto, J. M. R., De Abreu, A. G., Dal Molin, D. C. C., & Müller, I. L. (2004). Influence of silica fume addition on concretes physical properties and on corrosion behavior of reinforcement bars. Cement and concrete composites, 26(1), 31-39.
[11] Choi Y-S, Kim J-G, Lee K-M. Corrosion behavior of steel bar embedded in fly ash concrete. Corrosion Science. 2006; 48(7):1733-1745.
[12] Ahmad, Shamsad. "Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review." Cement and Concrete Composites 25.4 (2003): 459-471.
[13] Yamato, Takeshi, Yukio Emoto, and Masashi Soeda. "Strength and freezing-and-thawing resistance of concrete incorporating condensed silica fume." ACI Special Publication 91 (1986).
[14] Johnston, Colin D. "Durability of high early strength silica fume concretes subjected to accelerated and normal curing." ACI Special Publication 132 (1992).
[15] W. E. Ellis Jr., E. H. Rigg and W. B. Butler, Comparative results of utilization of fly ash, silica fume and GGBFS in reducing the chloride permeability of concrete, in Durability of Concrete, ACI SP-126,PP. 443-58(Detroit, Michigan, 1991).
[16] Neville, A. (1995). Chloride attack of reinforced concrete: an overview.Materials and Structures, 28(2), 63-70.
[17] Mehta, P. K., & Monteiro, P. J. (2006). Concrete: microstructure, properties, and materials (Vol. 3). New York: McGraw-Hill; p: 140-230
[18] Fontana, M. G. (2005). Corrosion engineering. Tata McGraw-Hill Education; p: 7-52
[19] Kakooei, S., Akil, H. M., Dolati, A., & Rouhi, J. (2012). The corrosion investigation of rebar embedded in the fibers reinforced concrete. Construction and Building Materials, 35, 564-570.
[20] Shi, J. J., & Sun, W. (2014). Effects of phosphate on the chloride-induced corrosion behavior of reinforcing steel in mortars. Cement and Concrete Composites, 45, 166-175.
[21] Stansbury, E. E., & Buchanan, R. A. (2000). Fundamentals of electrochemical corrosion. ASM international; p: 155-318
[22] Gowers KR, Millard SG. On-site linear polarization resistance mapping of reinforced concrete structures. Corrosion Science. 1993; 35(5–8):1593-600v.
[23] Mofidi, J. (2007). Principles of Corrosion and Protection of Metals. 1 nd: Tehran University Press; p: 353-395[full text in Persian].