[1] Black, CJ., Makris, N., Aiken, ID. (2002). “Component Testing, stability analysis, and characterization of buckling restrained braced braces”. Report No. PEER 2002/08, Univ. of California, Berkeley, CA.
[2] Inoue, K., Sawaizumi, S., Higashibata, Y. (2001). “Stiffening requirements for unbonded braces encased in concrete panels”. ASCE Journal of Structural Engineering, Vol.127(6),712-9.
[3] Qiang, X. (2005). “State of the art of buckling-restrained braces in Asia”. Journal of Constructional Steel Researches, Vol. 61,727-48.
[4] Watanabe, N., Kat, M., Usami, T., Kasai, A. (2003). “Experimental study on cyclic elasto-plastic behavior of buckling-restraining braces”. JSCE Journal of Earthquake Engineering, Vol. 27 [Paper No. 133].
[5] Tremblay, R., Bolduc, P., Neville, R., Devall, R. (2006). “Seismic testing and performance of buckling restrained bracing systems”. Canadian Journal of Civil Engineering, Vol. 33(1),183-98.
[6] Usami, T. (2006). “Guidelines for seismic and damage control design of steel bridges”. Edited by Japan Society of Steel Construction; Gihodo-Shuppan, Tokyo [in Japanese].
[7] Usami, T., Ge, H., Luo, X. (2009). “Experimental and analytical study on high-performance buckling restrained brace dampers for bridge engineering”. Proceeding of 3rd International Conference on Advances in Experimental Structural Engineering, San Francisco.
[8] Hoveidae, N., Rafezy, B. (2012). “Overall buckling behavior of all-steel buckling restrained braces”. Journal of constructional steel researches, Vol. (79),151-158.
[9] Hoveidae, N., Rafezy, B. (2015). “Local Buckling Behavior of Core Plate in All-Steel Buckling Restrained Braces”. International journal of steel structures, Vol.15(2), 249-260.
[10] Hoveidae, N., Tremblay, R., Rafezy, B., Davaran A. (2015). “Numerical investigation of seismic behavior of short-core all-steel buckling restrained braces”. Journal of constructional steel researches, Vol. (114) 89–99.
[11] Chou, C., Chen, S. (2010). “Sub-assemblage tests and finite element analyses of sandwiched buckling-restrained braces”. Engineering structures,
Vol. 32, Issue 8, Pages 2108–2121.
[12] Eryasar, M., Topkaya, C. (2010). “An experimental study on steel-encased buckling restrained brace hysteretic damper”. Journal of Earthquake Engineering Structural Dynamics, Vol. 39, 561-81.
[13] Bazzaz, M., Andalib, Z., Kheyroddin, A. and Kafi, M.A. (2015). “Numerical Comparison of the Seismic Performance of Steel Rings in Off-centre Bracing System and Diagonal Bracing System”, Journal of Steel and Composite Structures, Vol. 19, No. 4, 917-937.
[14] Bazzaz, M., Kheyroddin, A., Kafi, M.A., Andalib, Z. and Esmaeili, H. (2014). “Seismic Performance of Off-centre Braced Frame with Circular Element in Optimum Place”, International Journal of Steel Structures, Vol. 14, No 2, 293-304.
[15] Andalib, Z., Kafi, M.A., Kheyroddin, A. and Bazzaz, M. (2014). “Experimental Investigation of the Ductility and Performance of Steel Rings Constructed from Plates”, Journal of Constructional steel research, Vol. 103, 77-88.
[16] Bazzaz, M., Andalib, Z., Kafi, M.A. and Kheyroddin, A. (2015). “Evaluating the Performance of OBS-C-O in Steel Frames under Monotonic Load”, Journal of Earthquakes and Structures, Vol. 8, No.3, 697-710.
[17] Ozcelik, R., Dikiciasik, Y., Erdil, E. (2017). “The development of the buckling restrained braces with new end restrains”. Journal of Constructional Steel Research, Vol. 138, 208-220.
[18] Razavi, A., Mirghaderi, R., Hosseini, A. (2014). “Experimental and numerical developing of reduced length buckling-restrained braces”. Engineering Structures, Vol. (77), 143–160.
[19] Wang, C., Usami, T., Funayama, J. (2012). “Improving Low-Cycle Fatigue Performance of High-Performance Buckling-Restrained Braces by Toe-Finished Method”. Journal of Earthquake Engineering, Vol. 16,8, 1248-1268.
[20] Yan-Lin, G., Jing, T., Bo-Hao, Z., Bo-Li, Z., Yong-Lin, P. (2017). “Theoretical and experimental investigation of core-separated buckling-restrained braces”. Journal of Constructional Steel Research, Vol. 135, 137-149.
[21] Pereira, J., Jesus, A., Xavier, J., Fernandes, A. (2014). “Ultra-low-cycle fatigue behavior of a structural steel”. Engineering Structures, Vol. (60), 214–222.
[22] Shimada, K., Komotori, J., Shimizu, M. (1987). “The applicability of the Manson-Coffin law and Miner’s law to extremely low cycle fatigue”. J Jpn Soc Mech Eng, Vol. 53(491),1178–85.
[23] Kuroda, M. (2002). “Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model”. International Journal of Fatigue, Vol. 24(6), 699–703.
[24] Nip, KH., Gardner, L., Davies, CM. (2010). “Extremely low cycle fatigue tests on structural carbon steel and stainless steel”. Journal of Constructional Steel Researches, Vol. 66(1), 96–110.
[25] Zhou, H., Wang, Y., Shi, y., Xiong, J., Yang, L. (2013). “Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model”. International Journal of Fatigue Vol. 48, 90–100.
[26] Downing, SD., Socie, DF. (1982). “Simple rainflow counting algorithms”. International Journal of Fatigue, Vol. 4(1), 31–40.
[27] Manson, SS. (1954). “Behavior of materials under conditions of thermal stress”. National Advisory Commission on Aeronautics, Report 1170. Cleveland: Lewis Flight Propulsion Laboratory.
[28] Coffin, Jr. (1954). “A study of the effects of cyclic thermal stresses on a ductile metal”. Trans ASME, Vol. 76(6), 931–50.
[29] Lemaitré, J., Chaboche, J-L. (1990). Mechanics of solid materials. Cambridge, UK: Cambridge University Press.
[30] Xue, L. (2007). “A unified expression for low cycle fatigue and extremely low-cycle fatigue and its implication for monotonic loading”. International Journal of Fatigue, Vol. 30,1691–8.
[31] Kanvinde, A., Deierlein, G. (2007). “Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra-low cycle fatigue”. Journal of Structural Engineering, Vol. 133(6),701–12.
[32] Rice, J. R., Tracey, D. M. (1969). “On the ductile enlargement of voids in triaxial stress fields”. J. Mech. Phys. Solids, Vol. 35, 201–217.
[33] Hancock, J. W., Mackenzie, A. C. (1976). “On the mechanics of ductile failure in high-strength steel subjected to multiaxial stress states”. J. Mech. Phys. Solids, Vol. 24,147–169.
[34] Ristinmaa, M. (1997). “Void growth in cyclic loaded porous plastic solid”. Mech. Mater., Vol. 26(4), 227–245.
[35] Skallerud, B., and Zhang, Z. L. (2001). “On numerical analysis of damage evolution in cyclic elastic–plastic crack growth problems”. Fatigue Fract. Eng. Mater. Struct., Vol. 24(1), 81–86.
[36] Deierlein, G., Kanvinde, A., Myers, A., Fell, B. (2011). “LOCAL CYCLIC VOID GROWTH CRITERIA FOR DUCTILE FRACTURE INITIATION IN STEEL STRUCTURES UNDER LARGE-SCALE PLASTICITY”. Proceeding of EUROSTEEL2011, Budapest, Hungary.
[37] Amiri, H., Aghakoochak, A., Shahbeuk, S., Engelhardt, M. (2013). “Finite element simulation of ultra-low cycle fatigue cracking in steel structures”. Journal of Constructional Steel Research, Vol. 89, 175–184.
[38] Afzalan, M., Ghasemieh, M. (2015). “Finite element modeling of failure in steel moment connection subjected to ultra-low cycle fatigue loading”. ACEM15, Korea.
[39] Tateishi, K., Hanji, T. (2004). “Low cycle fatigue strength of butt-welded steel joint by means of new testing system with image technique”. International Journal of Fatigue, Vol. 26,1349–56.
[40] Nakamura, H., Maeda, Y. & Sasaki, T. (2000). “Fatigue Properties of Practical-Scale Unbonded Braces”, Nippon Steel corporations.
[41] ABAQUS (2013). Standard user’s manual version 6.13. Providence, RI: Hibbitt, Karlsson & Sorensen Inc.
[42] Kanvinde, A., Deierlein, G. (2006). “The void growth model and the stress modified critical strain model to predict ductile fracture in structural steels”. Journal of Structural Engineering, Vol.132(12),1907–18.
[43] AISC (American Institute of Steel Construction), 2010. Seismic provisions for structural steel buildings, Chicago, IL.