[1] Tavakoli, D., Hashempour, M., & Heidari, A. (2018). Use of Waste Materials in Concrete: A review. Pertanika Journal of Science & Technology, 26(2), 499-522.
[2] Tavakoli, D., Heidari, A., & Pilehrood, S. H. (2014). Properties of Concrete made with Waste Clay Brick as Sand Incorporating Nano SiO2. Indian Journal of Science and Technology, 7(12), 1899-1905.
[3] Taylor, H.F., Cement Chemistry. 2 ed. 1997, London: Thomas Telford Publishing.
[4] Tarighat, A., Zehtab, B., & Tavakoli, D. (2016). An introductory review of simulation methods for the structure of cementitious material hydrates at different length scales. Pertanika Journal of Science & Technology (JST), 24(1), 27-39.
[5] Papatzani, S., Paine, K., & Calabria-Holley, J. (2015). A comprehensive review of the models on the nanostructure of calcium silicate hydrates. Construction and Building Materials, 74, 219-234.
[6] Kar, A., Ray, I., Unnikrishnan, A., & Davalos, J. F. (2012). Estimation of C-S-H and calcium hydroxide for cement pastes containing slag and silica fume. Construction and Building Materials, 30, 505-515.
[7] Richardson, I. G. (2008). The calcium silicate hydrates. Cement and Concrete Research, 38(2), 137-158.
[8] Manzano, H., Dolado.J.S, Guerrero.A., & Ayuela.A. (2007) Mechanical properties of crystalline Calcium-silicate-hydrates: comparison with cementitious C-S-H gels, Phys. stat. sol. 204, 1775–1780.
[9] Selvam, R.P., Murray, S.J., Jankiram Subramani, V., & Hall, K.D. (2009) Potential application of nanotechnology on cement based materials, Report: Mack Blackwell Transportation Center, University of Arkansas, MBTC DOT 2095/3004.
[10] Bankura, A., & Chandra, A. (2005). Hydration and translocation of an excess proton in water clusters: Anab initio molecular dynamics study. Pramana, 65(4), 763-768.
[11] Zehtab, B., & Tarighat, A. (2016). Diffusion study for chloride ions and water molecules in CSH gel in nano-scale using molecular dynamics: Case study of tobermorite. ADVANCES IN CONCRETE CONSTRUCTION, 4(4), 305-317.
[12] Zehtab, B., & Tarighat, A. (2017). Molecular dynamics simulation to assess the effect of temperature on diffusion coefficients of different ions and water molecules in CSH. Mechanics of Time-Dependent Materials, 1-15.
[13] Tavakoli, D., Tarighat, A., & Beheshtian, J. (2017). Nanoscale investigation of the influence of water on the elastic properties of C–S–H gel by molecular simulation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 1464420717740926.
[14] Tarighat, A., & Tavakoli, D. (2016). Estimation of mechanical properties of hardened cement paste with molecular dynamics simulation method at nano scale. Modares Mechanical Engineering, 16(6), 71-78.
[15] Hughes, J. J., & Trtik, P. (2004). Micro-mechanical properties of cement paste measured by depth-sensing nanoindentation: a preliminary correlation of physical properties with phase type. Materials characterization, 53(2), 223-231.
[16] Constantinides, G., & Ulm, F. J. (2007). The nanogranular nature of C–S–H. Journal of the Mechanics and Physics of Solids, 55(1), 64-90.
[17] Zhu, W., Hughes, J. J., Bicanic, N., & Pearce, C. J. (2007). Nanoindentation mapping of mechanical properties of cement paste and natural rocks. Materials characterization, 58(11), 1189-1198.
[18] Vandamme, M., Ulm, F. J., & Fonollosa, P. (2010). Nanogranular packing of C–S–H at substochiometric conditions. Cement and Concrete Research, 40(1), 14-26.
[19] Oh, J. E., Clark, S. M., Wenk, H. R., & Monteiro, P. J. (2012). Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction. Cement and Concrete Research, 42(2), 397-403.
[20] Faucon, P., Delaye, J.M., & Virlet, J. (1996) Molecular Dynamics Simulation of the Structure of Calcium Hydrates. Journal of Solid State Chemistry 127, 92–97.
[21] Janakiram Subramani, V., Murray, S., Panneer Selvam, R., & Hall, K. D. (2009). Atomic Structure of Calcium Silicate Hydrates Using Molecular Mechanics. In Transportation Research Board 88th Annual Meeting (No. 09-0200).
[22] Murray, S.J., Jankiram Subramani, V., Selvam, R.P., & Hall, K.D. (2010) Molecular dynamics to understand the mechanical behavior of cement paste. Transportation Research Record 2142, 75–82.
[23] Pellenq, R. M., Lequeux, N., & Van Damme, H. (2008). Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cement and Concrete Research, 38(2), 159-174.
[24] Shahsavari, R., Pellenq, R.J.M., & Ulm, F.J. (2011) Empirical force fields s for complex hydrated calcio-silicate layered materials, Physical Chemistry Chemical Physics 13, 1002-1011.
[25] Qomi, M.J.A., Krakowiak, K.J., Bauchy, M., Stewart, K.L., Shahsavari, R., Jagannathan, D., Brommer, D.B., Baronnet, A., Buehler, M.J., Yip, S., Ulm, F.-J., Van Vliet, K.J., & Pellenq, R.J-.M. (2014) combinatorial molecular optimization of cement hydrates, Nature Comunications, 5:4960, DOI: 10.1038/ncomms5960
[26] Tavakoli, D., & Tarighat, A. (2016). Molecular dynamics study on the mechanical properties of Portland cement clinker phases. Computational Materials Science, 119, 65-73.
[27] Al-Ostaz, A., W. Wu, AH-D. Cheng, and C. R. Song. "A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement." Composites Part B: Engineering 41, no. 7 (2010): 543-549.
[28] Hajilar, S., & Shafei, B. (2015) Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations. Computational Materials Science 101, 216-226.
[29] Bullard J.W., Virtual Cement and Concrete Testing Laboratory (VCCTL) user guide.: Materials and Construction Research Division National Institute of Standards and Technology Gaithersburg, Maryland USA (2011).
[30] van Breugel K., Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) Theory.: Cement and Concrete Research, 25(2) (1995) 319-331.
[31] Koenders E.A.B. and van Breugel K., Numerical modeling of autogenous shrinkage of hardening cement paste.: Cement and Concrete Research, 27(10) (1997) 1489-1499.
[32] Bishnoi Sh., Vector Modelling of Hydrating Cement Microstructure and Kinetics.: PhD thesis, EPFL university, Switzerland, (2009).
[33] Maekawa K., Chaube R.P., and Kishi T., Modelling of Concrete Performance.: London, E&FN SPON. (1999).
[34] Koenders E.A.B., Schlangen E., and van Breugel K., Multi-scale modeling: The Delft Code.: International RILEM symposium on concrete modeling- CONMOD’08, 26-28 May 2008, Delft, The Netherlands.
[35] Zhang M., Multiscale Lattice Boltzmann-Finite Element Modelling of Transport Properties in Cement-based Materials.: PhD thesis, Delft university, the Netherlands, (2013).
[36] Hou, D. (2014). Molecular simulation on the calcium silicate hydrate (CSH) gel.
[37] Plassard, C., Lesniewska, E., Pochard, I., & Nonat, A. (2004). Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscale. Ultramicroscopy, 100(3), 331-338.
[38] Richardson, I.G. and G.W. Groves, Models for the composition and structure of calcium silicate hydrate (C-S-H) gel in hardened tricalcium silicate pastes. Cement and Concrete Research, 1992. 22(6): p. 1001-1010.
[39] Richardson, I.G., The nature of the hydration products in hardened cement pastes. Cement & Concrete Composites, 2000. 22(2): p. 97-113.
[40] Manzano Moro, H. (2014). Atomistic simulation studies of the cement paste components. Servicio Editorial de la Universidad del País Vasco/Euskal Herriko Unibertsitatearen Argitalpen Zerbitzua.
[41] Merlino, S., Bonaccorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11Å normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13(3), 577-590.
[42] Richardson, I. G. (2004). Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of CSH: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cement and Concrete Research, 34(9), 1733-1777.
[43] Merlino, S., Bonaccorsi, E., & Armbruster, T. (1999). Tobermorites: Their real structure and order-disorder (OD) character. American Mineralogist, 84, 1613-1621.
[44] Hamid, S.A., The crystal structure of 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]• 1 H2O. Zeitschrift Fur Kristallographie, 1891. 154: p. 189-198.
[45] Bonaccorsi, E., S. Merlino, and A.R. Kampf, The crystal structure of tobermorite 14Å (Plombierite), a C-S-H phase. Journal of the American Ceramic Society, 2005. 88(3): p. 505-512.
[46] Bonaccorsi, E., Merlino, S., & Taylor, H. F. W. (2004). The crystal structure of jennite, Ca9 Si6O18(OH)6•8H2O. Cement and Concrete Research, 34(9), 1481-1488.
[47] Carpenter, A.B.; Chalmers, R.A.; Gard, J.A.; Speakman, K.; Taylor, H.F.W. (1966), "Jennite, a new mineral" , American Mineralogist 51: 56–74, retrieved 2009-02-04.
[48] Li, Z. (2011). Advanced concrete technology. John Wiley & Sons.
[49] Gard, J. A., & Taylor, H. F. W. (1960). The crystal structure of foshagite. Acta Crystallographica, 13(10), 785-793.
[50] Gard, J. A., & Taylor, H. F. W. (1956). Okenite and nekoite (a new mineral). Mineral. Mag, 31, 5-20.
[51] Merlino, S. (1983). Okenite, Ca10Si18O46.18H2O; the first example of a chain and sheet silicate. American Mineralogist, 68(5-6), 614-622.
[52] Ohashi, Y. and L.W. Finger, Role of octahedral cations in pyroxenoid crystal chemistry. 1. Bustamite, wollastonite and pectolite-schizolite-serandite series. American Mineralogist, 1978. 63(3-4): p. 274-288.
[53] Malik, K. M. A., & Jeffery, J. W. (1976). A re-investigation of the structure of afwillite. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 32(2), 475-480.
[54] Yamnova, N. A., Sarp, K., Egorov-Tismenko, Y. K., Pushcharovski, D., & Dasgupta, G. (1993). Crystal structure of jaffeite. Crystallography reports, 38(4), 464-467.
[55] Alder, B. J.; T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459.
[56] Shu, Xin, et al. "Tailoring the solution conformation of polycarboxylate superplasticizer toward the improvement of dispersing performance in cement paste." Construction and Building Materials 116 (2016): 289-298.
[57] Wu, W., Al-Ostaz, A., Cheng, A. H. D., & Song, C. R. (2011). Computation of elastic properties of Portland cement using molecular dynamics. Journal of Nanomechanics and Micromechanics, 1(2), 84-90.
[58] Accelrys Inc. Materials studio 7.0 software. San Diego (CA); 2007
[59] COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 102(38), 7338-7364.
[60] Mayo, S. L., Olafson, B. D., & Goddard, W. A. (1990). DREIDING: a generic force field for molecular simulations. Journal of Physical Chemistry, 94(26), 8897-8909.
[61] Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard Iii, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035.
[62] Cygan, R.T., J.J. Liang, and A.G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 2004. 108(4): p. 1255-1266.
[63] Galmarini, S. C. (2013). Atomistic simulation of cementitious systems.
[64] Dauber‐Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., & Hagler, A. T. (1988). Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system. Proteins: Structure, Function, and Bioinformatics, 4(1), 31-47.
[65] Mishra, R. K.; Flatt, R. J.; Heinz, H. Force Field for Tricalcium Silicate and Insight into Nanoscale Properties: Cleavage, Initial Hydration, and Adsorption of Organic Molecules. J. Phys. Chem. C 2013, 117, 10417-10432.
[66] Mishra, R. K.; Fernandez-Carrasco, L.; Flatt, R. J.; Heinz, H. A Force Field for Tricalcium Aluminate to Characterize Surface Properties, Initial Hydration, and Organically Modified Interfaces in Atomic Resolution. Dalt. Trans. 2014, 43, 10602-10616.
[67] Merlino, S., Bonaccorsi, E., & Armbruster, T. (2000). The real structures of clinotobermorite and tobermorite 9 Å OD character, polytypes, and structural relationships. European Journal of Mineralogy, 12(2), 411-429.
[68] Merlino, S., Okenite, Ca10Si18O46 •18H2O - The first example of a chain and sheet silicate. American Mineralogist, 1983. 68(5-6): p. 614-622.
[69] Ohashi, Y., Polysynthetically-twinned structures of enstantite and wollastonite. Physics and Chemistry of Minerals, 1984. 10(5): p. 217-229.
[70] Haecker, C., et al., Modeling the linear elastic properties of Portland cement paste. Cement and Concrete Research, 2005. 35(10): p. 1948-1960.
[71] Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349.
[72] Dharmawardhana, C. C., Misra, A., Aryal, S., Rulis, P., & Ching, W. Y. (2013). Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals. Cement and Concrete Research, 52, 123-130.
[73] Laugesen, J. L. (2004). Density functional calculation of elastic properties of portlandite and foshagite. SPECIAL PUBLICATION-ROYAL SOCIETY OF CHEMISTRY, 292, 185-192.
[74] Constantinides, G., & Ulm, F. J. (2004). The effect of two types of CSH on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and concrete research, 34(1), 67-80.
[75] C. Plassard, E. Lesniewska, I. Pochard, and A. Nonat, “Intrinsic Elastic Properties of Calcium Silicate Hydrates by Nanoindentation”; in Proceedings of the 12th International Congress on the Chemistry of Cement, 2007
[76] R. Alizadeh, J. J. Beaudoin, and L. Raki, “Viscoelastic Nature of Calcium Silicate Hydrate,” Cement Concr. Compos., 32 [5] 369–76 (2010).
[77] Dormieux, L., D. Kondo, and F.J. Ulm, Microporomechanics. 2006: John Wiley & Sons.
[78] Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5), 571-574.
[79] Mondal, P., Shah, S. P., & Marks, L. (2007). A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials. Cement and Concrete Research, 37(10), 1440-1444.