Estimation of the Elastic Properties of Important Calcium Silicate Hydrates in Nano Scale - a Molecular Dynamics Approach

Document Type : Regular Paper


1 Department of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

2 Department of Civil Engineering, Shahrekord University, Shahrekord, Iran


Approximately, 50 to 70 percent of hydration products in hydrated cement paste are polymorphisms of C-S-H gel. It is highly influential in the final properties of hardened cement paste. Distinguishing C-S-H nano-structure significantly leads to determine its macro scale ensemble properties. In this paper, a nono-scale modeling is employed. In order to carry it out, the major C-S-H compounds, with a vast range ratios of Ca/Si from 0.5 to 3 were selected and applied in different simulations. These materials included tobermorite 9Å, tobermorite 11Å, tobermorite 14Å, clinotobermorite, jennite, afwillite, okenite, jaffeite, foshagite, and wollastonite. Furthermore, the molecular dynamics method was employed to evaluate some consequential mechanical properties such as bulk modulus, shear modulus, Young's modulus and poisson ratio. Five different force fields (COMPASS, COMPASS II, ClayFF, INTERFACE and Universal) were applied and compared with each other to be able to measure the mechanical properties of these compounds. Lastly, the properties of two types of C-S-H with high and low density were computed using Mori-Tanaka method. The main aim of this paper is to distinguish the most similar natural C-S-H material to C-S-H from cement hydration and finding appropriate force filed.


Main Subjects

[1] Tavakoli, D., Hashempour, M., & Heidari, A. (2018). Use of Waste Materials in Concrete: A review. Pertanika Journal of Science & Technology, 26(2), 499-522.
[2] Tavakoli, D., Heidari, A., & Pilehrood, S. H. (2014). Properties of Concrete made with Waste Clay Brick as Sand Incorporating Nano SiO2. Indian Journal of Science and Technology, 7(12), 1899-1905.
[3] Taylor, H.F., Cement Chemistry. 2 ed. 1997, London: Thomas Telford Publishing.
[4] Tarighat, A., Zehtab, B., & Tavakoli, D. (2016). An introductory review of simulation methods for the structure of cementitious material hydrates at different length scales. Pertanika Journal of Science & Technology (JST), 24(1), 27-39.
[5] Papatzani, S., Paine, K., & Calabria-Holley, J. (2015). A comprehensive review of the models on the nanostructure of calcium silicate hydrates. Construction and Building Materials, 74, 219-234.
[6] Kar, A., Ray, I., Unnikrishnan, A., & Davalos, J. F. (2012). Estimation of C-S-H and calcium hydroxide for cement pastes containing slag and silica fume. Construction and Building Materials, 30, 505-515.
[7] Richardson, I. G. (2008). The calcium silicate hydrates. Cement and Concrete Research, 38(2), 137-158.
[8] Manzano, H., Dolado.J.S, Guerrero.A., & Ayuela.A. (2007) Mechanical properties of crystalline Calcium-silicate-hydrates: comparison with cementitious C-S-H gels, Phys. stat. sol. 204, 1775–1780.
[9] Selvam, R.P., Murray, S.J., Jankiram Subramani, V., & Hall, K.D. (2009) Potential application of nanotechnology on cement based materials, Report: Mack Blackwell Transportation Center, University of Arkansas, MBTC DOT 2095/3004.
[10] Bankura, A., & Chandra, A. (2005). Hydration and translocation of an excess proton in water clusters: Anab initio molecular dynamics study. Pramana, 65(4), 763-768.   
[11] Zehtab, B., & Tarighat, A. (2016). Diffusion study for chloride ions and water molecules in CSH gel in nano-scale using molecular dynamics: Case study of tobermorite. ADVANCES IN CONCRETE CONSTRUCTION, 4(4), 305-317.
[12] Zehtab, B., & Tarighat, A. (2017). Molecular dynamics simulation to assess the effect of temperature on diffusion coefficients of different ions and water molecules in CSH. Mechanics of Time-Dependent Materials, 1-15.
[13] Tavakoli, D., Tarighat, A., & Beheshtian, J. (2017). Nanoscale investigation of the influence of water on the elastic properties of C–S–H gel by molecular simulation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 1464420717740926.
[14] Tarighat, A., & Tavakoli, D. (2016). Estimation of mechanical properties of hardened cement paste with molecular dynamics simulation method at nano scale. Modares Mechanical Engineering, 16(6), 71-78.
[15] Hughes, J. J., & Trtik, P. (2004). Micro-mechanical properties of cement paste measured by depth-sensing nanoindentation: a preliminary correlation of physical properties with phase type. Materials characterization, 53(2), 223-231.
[16] Constantinides, G., & Ulm, F. J. (2007). The nanogranular nature of C–S–H. Journal of the Mechanics and Physics of Solids, 55(1), 64-90.
[17] Zhu, W., Hughes, J. J., Bicanic, N., & Pearce, C. J. (2007). Nanoindentation mapping of mechanical properties of cement paste and natural rocks. Materials characterization, 58(11), 1189-1198.
[18] Vandamme, M., Ulm, F. J., & Fonollosa, P. (2010). Nanogranular packing of C–S–H at substochiometric conditions. Cement and Concrete Research, 40(1), 14-26.
[19] Oh, J. E., Clark, S. M., Wenk, H. R., & Monteiro, P. J. (2012). Experimental determination of bulk modulus of 14Å tobermorite using high pressure synchrotron X-ray diffraction. Cement and Concrete Research, 42(2), 397-403.
[20] Faucon, P., Delaye, J.M., & Virlet, J. (1996) Molecular Dynamics Simulation of the Structure of Calcium Hydrates. Journal of Solid State Chemistry 127, 92–97.
[21] Janakiram Subramani, V., Murray, S., Panneer Selvam, R., & Hall, K. D. (2009). Atomic Structure of Calcium Silicate Hydrates Using Molecular Mechanics. In Transportation Research Board 88th Annual Meeting (No. 09-0200).
[22] Murray, S.J., Jankiram Subramani, V., Selvam, R.P., & Hall, K.D. (2010) Molecular dynamics to understand the mechanical behavior of cement paste. Transportation Research Record 2142, 75–82.
[23] Pellenq, R. M., Lequeux, N., & Van Damme, H. (2008). Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cement and Concrete Research, 38(2), 159-174.
[24] Shahsavari, R., Pellenq, R.J.M., & Ulm, F.J. (2011) Empirical force fields s for complex hydrated calcio-silicate layered materials, Physical Chemistry Chemical Physics 13, 1002-1011.
[25] Qomi, M.J.A., Krakowiak, K.J., Bauchy, M., Stewart, K.L., Shahsavari, R., Jagannathan, D., Brommer, D.B., Baronnet, A., Buehler, M.J., Yip, S., Ulm, F.-J., Van Vliet, K.J., & Pellenq, R.J-.M. (2014) combinatorial molecular optimization of cement hydrates, Nature Comunications, 5:4960, DOI: 10.1038/ncomms5960
[26] Tavakoli, D., & Tarighat, A. (2016). Molecular dynamics study on the mechanical properties of Portland cement clinker phases. Computational Materials Science, 119, 65-73.
[27] Al-Ostaz, A., W. Wu, AH-D. Cheng, and C. R. Song. "A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement." Composites Part B: Engineering 41, no. 7 (2010): 543-549.
[28] Hajilar, S., & Shafei, B. (2015) Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations. Computational Materials Science 101, 216-226.
[29] Bullard J.W., Virtual Cement and Concrete Testing Laboratory (VCCTL) user guide.: Materials and Construction Research Division National Institute of Standards and Technology Gaithersburg, Maryland USA (2011).
[30] van Breugel K., Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) Theory.: Cement and Concrete Research, 25(2) (1995) 319-331.
[31] Koenders E.A.B. and van Breugel K., Numerical modeling of autogenous shrinkage of hardening cement paste.: Cement and Concrete Research, 27(10) (1997) 1489-1499.
[32] Bishnoi Sh., Vector Modelling of Hydrating Cement Microstructure and Kinetics.: PhD thesis, EPFL university, Switzerland, (2009).
[33] Maekawa K., Chaube R.P., and Kishi T., Modelling of Concrete Performance.: London, E&FN SPON. (1999).
[34] Koenders E.A.B., Schlangen E., and van Breugel K., Multi-scale modeling: The Delft Code.: International RILEM symposium on concrete modeling- CONMOD’08, 26-28 May 2008, Delft, The Netherlands.
[35] Zhang M., Multiscale Lattice Boltzmann-Finite Element Modelling of Transport Properties in Cement-based Materials.: PhD thesis, Delft university, the Netherlands, (2013).
[36] Hou, D. (2014). Molecular simulation on the calcium silicate hydrate (CSH) gel.
[37] Plassard, C., Lesniewska, E., Pochard, I., & Nonat, A. (2004). Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscale. Ultramicroscopy, 100(3), 331-338.
[38] Richardson, I.G. and G.W. Groves, Models for the composition and structure of calcium silicate hydrate (C-S-H) gel in hardened tricalcium silicate pastes. Cement and Concrete Research, 1992. 22(6): p. 1001-1010.
[39] Richardson, I.G., The nature of the hydration products in hardened cement pastes. Cement & Concrete Composites, 2000. 22(2): p. 97-113.
[40] Manzano Moro, H. (2014). Atomistic simulation studies of the cement paste components. Servicio Editorial de la Universidad del País Vasco/Euskal Herriko Unibertsitatearen Argitalpen Zerbitzua.
[41] Merlino, S., Bonaccorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11Å normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13(3), 577-590.
[42] Richardson, I. G. (2004). Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of CSH: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cement and Concrete Research, 34(9), 1733-1777.
[43] Merlino, S., Bonaccorsi, E., & Armbruster, T. (1999). Tobermorites: Their real structure and order-disorder (OD) character. American Mineralogist, 84, 1613-1621.
[44] Hamid, S.A., The crystal structure of 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]• 1 H2O. Zeitschrift Fur Kristallographie, 1891. 154: p. 189-198.
[45] Bonaccorsi, E., S. Merlino, and A.R. Kampf, The crystal structure of tobermorite 14Å (Plombierite), a C-S-H phase. Journal of the American Ceramic Society, 2005. 88(3): p. 505-512.
[46] Bonaccorsi, E., Merlino, S., & Taylor, H. F. W. (2004). The crystal structure of jennite, Ca9 Si6O18(OH)6•8H2O. Cement and Concrete Research, 34(9), 1481-1488.
[47] Carpenter, A.B.; Chalmers, R.A.; Gard, J.A.; Speakman, K.; Taylor, H.F.W. (1966), "Jennite, a new mineral" , American Mineralogist 51: 56–74, retrieved 2009-02-04.
[48] Li, Z. (2011). Advanced concrete technology. John Wiley & Sons.
[49] Gard, J. A., & Taylor, H. F. W. (1960). The crystal structure of foshagite. Acta Crystallographica, 13(10), 785-793.
[50] Gard, J. A., & Taylor, H. F. W. (1956). Okenite and nekoite (a new mineral). Mineral. Mag, 31, 5-20.
[51] Merlino, S. (1983). Okenite, Ca10Si18O46.18H2O; the first example of a chain and sheet silicate. American Mineralogist, 68(5-6), 614-622.
[52] Ohashi, Y. and L.W. Finger, Role of octahedral cations in pyroxenoid crystal chemistry. 1. Bustamite, wollastonite and pectolite-schizolite-serandite series. American Mineralogist, 1978. 63(3-4): p. 274-288.
[53] Malik, K. M. A., & Jeffery, J. W. (1976). A re-investigation of the structure of afwillite. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 32(2), 475-480.
[54] Yamnova, N. A., Sarp, K., Egorov-Tismenko, Y. K., Pushcharovski, D., & Dasgupta, G. (1993). Crystal structure of jaffeite. Crystallography reports, 38(4), 464-467.
[55] Alder, B. J.; T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459.
[56] Shu, Xin, et al. "Tailoring the solution conformation of polycarboxylate superplasticizer toward the improvement of dispersing performance in cement paste." Construction and Building Materials 116 (2016): 289-298.
[57] Wu, W., Al-Ostaz, A., Cheng, A. H. D., & Song, C. R. (2011). Computation of elastic properties of Portland cement using molecular dynamics. Journal of Nanomechanics and Micromechanics, 1(2), 84-90.
[58] Accelrys Inc. Materials studio 7.0 software. San Diego (CA); 2007
[59] COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 102(38), 7338-7364.
[60] Mayo, S. L., Olafson, B. D., & Goddard, W. A. (1990). DREIDING: a generic force field for molecular simulations. Journal of Physical Chemistry, 94(26), 8897-8909.
[61] Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard Iii, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035.
[62] Cygan, R.T., J.J. Liang, and A.G. Kalinichev, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 2004. 108(4): p. 1255-1266.
[63] Galmarini, S. C. (2013). Atomistic simulation of cementitious systems.
[64] Dauber‐Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., & Hagler, A. T. (1988). Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system. Proteins: Structure, Function, and Bioinformatics, 4(1), 31-47.
[65] Mishra, R. K.; Flatt, R. J.; Heinz, H. Force Field for Tricalcium Silicate and Insight into Nanoscale Properties: Cleavage, Initial Hydration, and Adsorption of Organic Molecules. J. Phys. Chem. C 2013, 117, 10417-10432.
[66] Mishra, R. K.; Fernandez-Carrasco, L.; Flatt, R. J.; Heinz, H. A Force Field for Tricalcium Aluminate to Characterize Surface Properties, Initial Hydration, and Organically Modified Interfaces in Atomic Resolution. Dalt. Trans. 2014, 43, 10602-10616.
[67] Merlino, S., Bonaccorsi, E., & Armbruster, T. (2000). The real structures of clinotobermorite and tobermorite 9 Å OD character, polytypes, and structural relationships. European Journal of Mineralogy, 12(2), 411-429.
[68] Merlino, S., Okenite, Ca10Si18O46 •18H2O - The first example of a chain and sheet silicate. American Mineralogist, 1983. 68(5-6): p. 614-622.
[69] Ohashi, Y., Polysynthetically-twinned structures of enstantite and wollastonite. Physics and Chemistry of Minerals, 1984. 10(5): p. 217-229.
[70] Haecker, C., et al., Modeling the linear elastic properties of Portland cement paste. Cement and Concrete Research, 2005. 35(10): p. 1948-1960.
[71] Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65(5), 349.
[72] Dharmawardhana, C. C., Misra, A., Aryal, S., Rulis, P., & Ching, W. Y. (2013). Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals. Cement and Concrete Research, 52, 123-130.
[73] Laugesen, J. L. (2004). Density functional calculation of elastic properties of portlandite and foshagite. SPECIAL PUBLICATION-ROYAL SOCIETY OF CHEMISTRY, 292, 185-192.
[74] Constantinides, G., & Ulm, F. J. (2004). The effect of two types of CSH on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cement and concrete research, 34(1), 67-80.
[75] C. Plassard, E. Lesniewska, I. Pochard, and A. Nonat, “Intrinsic Elastic Properties of Calcium Silicate Hydrates by Nanoindentation”; in Proceedings of the 12th International Congress on the Chemistry of Cement, 2007
[76] R. Alizadeh, J. J. Beaudoin, and L. Raki, “Viscoelastic Nature of Calcium Silicate Hydrate,” Cement Concr. Compos., 32 [5] 369–76 (2010).
[77] Dormieux, L., D. Kondo, and F.J. Ulm, Microporomechanics. 2006: John Wiley & Sons.
[78] Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5), 571-574.
[79] Mondal, P., Shah, S. P., & Marks, L. (2007). A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials. Cement and Concrete Research, 37(10), 1440-1444.