Seismic behavior of semi-dry precast concrete connections using tapered thread couplers

Document Type: Regular Paper


1 University of Science and Culture

2 University of Science & Culture

3 Department of Civil Engineering, Sharif University, Tehran, Iran


The worldwide use of precast concrete frames leads to an increase in the need for the investigation of efficient precast connections, particularly in the seismic regions. The current paper provides a numerical and experimental study on a dry precast connection. Experiments were conducted to validate the finite element method in the laboratory of the University of Science and Culture. To verify the validity of the result, the outcomes of the non-linear analysis of cross-shaped models were compared with the experimental results in terms of failure mode, ductility, lateral load-bearing capacity, and energy dissipation. The finite element non-linear analyses of the models represented an acceptable compatibility with experimental results. A parametric study has been carried out to survey the effect of the couplers and grout compressive strength on semi-dry connection behavior. Eventually, the response modification factors were determined for the case studies to demonstrate the seismic behavior in design forces. Statistical analysis of the numerical results demonstrates a 6 % increase for response modification factors of the specimens with the closest distance of couples to the column face in relation to those with the couplers farthest away from the column face. Eventually, it can be concluded that the specimens with a shorter coupler distance from the external face of the column and with a higher grout compressive strength lead to the appropriate results.


Main Subjects