[1] Haas, R., Hudson, W. R. and Falls, L. C. (2015). Pavement Asset Management, Scrivener Publishing with John Wiley & Sons.
[2] Ozbay, K. and Laub, R. (2001). Models for Pavement Deterioration Using LTPP, Report no. FHWA-NJ-1999-030, Federal Highway Administration, Washington, D.C.
[3] Haas, R., Hudson, W. R. and Zaniewski, J. P. (1994). Modern pavement management, Krieger, Malabor, Fla.
[4] Kim, Y.R. (2009). Modeling of asphalt concrete, ASCE press, McGraw-Hill.
[5] Bekheet, W., Helali, K., Halim, A. and Springer, J. (2005). A Comprehensive Approach for the Development of Performance Models for Network-Level PMS Using LTPP Data, Proceedings of 84th Annual Meeting of TRB, Washington, D.C.
[6] Zhou, X. and Damnjanovic, I. D. (2011). Optimal Hedging of Commodity Price Risks in Highway Contracts, Proceedings of 90th Annual Meeting of TRB, Washington, D.C.
[7] Shahin, M. Y. (2005). Pavement Management for Airports, Roads, and Parking Lots, Chapman & Hall, N.Y.
[8] AASHTO. (1993). AASHTO Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials, Washington, D.C.
[9] Porras-Alvarado, J. D., Zhang, Z. and Salazar, L. G. L. (2014). Probabilistic Approach to Modeling Pavement Performance Using IRI Data, Proceedings of 93rd Annual Meeting of TRB, Washington, D.C.
[10] AASHTO. (2001). AASHTO Pavement Management Guide, American Association of State Highway and Transportation Officials, Washington, D.C.
[11] Tsunokawa, K. and Schofer, J. (1994). Trend Curve Optimal Control Model for Highway Pavement Maintenance: Case Study and Evaluation, Transportation Research, Part A, 28(2), 151–166.
[12] Smith, J. and Tighe, S. (2004). Assessment of Overlay Roughness in Long-Term Pavement Performance – Canadian Case Study, Proceedings of 83th Annual Meeting of TRB, Washington, D.C.
[13] Arifuzzaman, M. (2017). Advanced ANN prediction of moisture damage in cnt modified asphalt binder. Soft Computing in Civil Engineering, 1(1), 1-11. DOI: 10.22115/scce.2017.46317
[14] Rezazadeh Eidgahee, D., Haddad, A., & Naderpour, H. (2018). Evaluation of shear strength parameters of granulated waste rubber using artificial neural networks and group method of data handling. Scientia Iranica. DOI: 10.24200/SCI.2018.5663.1408
[15] Naderpour, H., Eidgahee, D. R., Fakharian, P., Rafiean, A. H., & Kalantari, S. M. (2019). A new proposed approach for moment capacity estimation of ferrocement members using Group Method of Data Handling. Engineering Science and Technology, an International Journal. DOI: 0.1016/j.jestch.2019.05.013
[16] Rezazadeh Eidgahee, D., Rafiean, A. H., & Haddad, A. (2019). A Novel Formulation for the Compressive Strength of IBP-Based Geopolymer Stabilized Clayey Soils Using ANN and GMDH-NN Approaches. Iranian Journal of Science and Technology, Transactions of Civil Engineering, DOI: 10.1007/s40996-019-00263-1
[17] Naderpour, H., Nagai, K., Fakharian, P., & Haji, M. (2019). Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods. Composite Structures, 215, 69-84. DOI: 10.1016/j.compstruct.2019.02.048
[18] Kargah-Ostadi, N., Stoffels, S. and Tabatabaee, N. (2010). Network-Level Pavement Roughness Prediction Model for Rehabilitation Recommendations, Proceedings of 89th Annual Meeting of TRB, Washington, D.C.
[19] ASTM E1274–18. (2018). Standard Test Method for Measuring Pavement Roughness Using a Profilograph, ASTM International, West Conshohocken, PA.
[20] Mohamed Jaafar, Z. F., Uddin, W. and Najjar, Y. (2016). Asphalt Pavement Roughness Modeling Using the Artificial Neural Network and Linear Regression Approaches for LTPP Southern U.S. States, Proceedings of 95th Annual Meeting of TRB, Washington, D.C.
[21] Khattak, M. J., Nur, M. A., Bhuyan, M. R-U-K. and Gaspard, K. (2013). International Roughness Index Models for HMA Overlay Treatment of Flexible and Composite Pavements for Louisiana, Proceedings of 92nd Annual Meeting of TRB, Washington, D.C.
[22] Bekley, M. E. (2016). Pavement Deterioration Modeling Using Historical Roughness Data, M.Sc. Thesis, Arizona State University.
[23] Soncim, S. P. and Fernandes, J. L. (2013). Roughness Performance Model for Double Surface Treatment Highways, Proceedings of 92nd Annual Meeting of TRB, Washington, D.C.
[24] Smith, B. (2014). Factors Affecting the IRI of Asphalt Overlays, Proceedings of 93rd Annual Meeting of TRB, Washington, D.C.
[25] FHWA. (2009). Long-Term Pavement Performance Information Management System: Pavement Performance Database User Reference Guide, Publication No. FHWA-RD-03-088, Federal Highway Administration, Washington, D.C.
[26] Solatifar, N., Behnia, C. and Aflaki, S. (2011). A Review to Experiences of Different Countries in Implementing Long-Term Pavement Performance (LTPP) Program, Proceedings of 6th National Congress on Civil Engineering, Semnan, Iran.
[27] Nassiri, S., Shafiee, M. H. and Bayat, A. (2013). Development of Roughness Models Using Alberta Transportation’s Pavement Management System, Proceedings of 92nd Annual Meeting of TRB, Washington, D.C.
[28] FHWA. (2009). Long-Term Pavement Performance (LTPP) Standard Data Release 23.0., Federal Highway Administration, <
http://www.ltpp-products.com> (May. 19, 2011).
[29] Lee, D., Derrible, S. and Pereira, F. C. (2018). Comparison of Four Types of Artificial Neural Network and a Multinomial Logit Model for Travel Mode Choice Modeling, Transportation Research Record: Journal of the Transportation Research Board, 2672(49), 101-112.
[30] Xu, L-N. (2003). Artificial Neural Network Control, Publishing House of Electronics Industry, Beijing, pp. 27-41.