[1] Bahia, H., Hanson, D. I., Zeng, M., Zhai, H., Khatri, M. A. & Anderson, M. A. (2001). "Characterization of modified asphalt binders in superpave mix design, NCHRP REPORT 459," National Cooperative Highway Research Program, Washington D.C.
[2] Fang, C., Yu, R., Liu, S. & Li, Y. (2013). "Nanomaterials Applied in Asphalt Modification: A Review," Journal of Materials Science & Technology, vol. 29, pp. 589-594.
[3] Zainorizuan, M. J., Arshad, A. K., Samsudin, M. S., Masri, K. A., Karim, M. R., Abdul Halim, A. G., Yee Yong, L., Alvin John Meng Siang, L., Mohamad Hanifi, O., Siti Nazahiyah, R. & Mohd Shalahuddin, A. (2017). "Multiple Stress Creep and Recovery of Nanosilica Modified Asphalt Binder," MATEC Web of Conferences, vol. 103, p. 09005.
[4] Nejad, F. M., Nazari, H., Naderi, K., Karimiyan Khosroshahi, F. & Hatefi Oskuei, M. (2017). "Thermal and rheological properties of nanoparticle modified asphalt binder at low and intermediate temperature range," Petroleum Science and Technology, vol.35, pp. 641-646.
[5] Nazari, H., Naderi, K. & Moghadas Nejad, F. (2018). "Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles," Construction and Building Materials, vol. 170, pp. 591-602.
[6] Das, A. K. & Singh, D. (2018). "Effects of Basalt and Hydrated Lime Fillers on Rheological and Fracture Cracking Behavior of Polymer Modified Asphalt Mastic," Journal of Materials in Civil Engineering, vol. 30, p. 04018011.
[7] Das, A. K. & Singh, D. (2017). "Investigation of rutting, fracture and thermal cracking behavior of asphalt mastic containing basalt and hydrated lime fillers," Construction and Building Materials, vol. 141, pp. 442-452.
[8] Bazmara, B., Tahersima, M. & Behravan, A. (2018). "Influence of thermoplastic polyurethane and synthesized polyurethane additive in performance of asphalt pavements," Construction and Building Materials, vol. 166, pp. 1-11.
[9] Carrera, V., Partal, P., García-Morales, M., Gallegos, C. & Pérez-Lepe, A. (2010). "Effect of processing on the rheological properties of poly-urethane/urea bituminous products," Fuel Processing Technology, vol. 91, pp. 1139-1145.
[10] Baginska, K. & Gawel, I. (2004). "Effect of origin and technology on the chemical composition and colloidal stability of bitumens," Fuel Processing Technology, vol. 85, pp. 1453-1462.
[11] Izquierdo, M. A., Navarro, F. J., Martínez-Boza, F. J. & Gallegos, C. (2011). "Novel stable MDI isocyanate-based bituminous foams," Fuel, vol. 90, pp. 681-688.
[12] Domingos, M. D. I. & Faxina, A. L. (2016). "Susceptibility of Asphalt Binders to Rutting: Literature Review," Journal of Materials in Civil Engineering, vol. 28, p . 04015134.
[13] Jafari, M. & Babazadeh, A. (2016). "Evaluation of polyphosphoric acid-modified binders using multiple stress creep and recovery and linear amplitude sweep tests," Road Materials and Pavement Design, vol. 17, pp. 859-876.
[14] Bahia, H. (2010). "NCHRP09-45,Test Methods and Specification Criteria for Mineral Filler Used in HMA," TRB, University of Wisconsin--Madison.
[15] Yao, H., You, Z., Li, L., Lee, C. H., Wingard, D., Yap, Y. K., Shi, X. & Goh, S. W. (2013). "Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica," Journal of Materials in Civil Engineering, vol. 25, pp. 1619-1630.
[16] Leiva-Villacorta, F. & Vargas-Nordcbeck, A. (2017). "Optimum content of nano-silica to ensure proper performance of an asphalt binder," Road Materials and Pavement Design, pp. 1-12.
[17] zquierdo, M. A., Navarro, F. J., Martínez-Boza, F. J. & Gallegos, C. (2012). "Bituminous polyurethane foams for building applications: Influence of bitumen hardness," Construction and Building Materials, vol. 30, pp. 706-713.
[18] ASTM-D7405-10A (2010). " Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer (Vol. 04.03)," ed: American Society for Testing and Materials.
[19] Tabatabaee, N. & Tabatabaee, H. (2010). "Multiple Stress Creep and Recovery and Time Sweep Fatigue Tests," Transportation Research Record: Journal of the Transportation Research Board, vol. 2180, pp. 67-74.
[20] ASTM-D2872 (2012). "Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test)," ed. West Conshohocken: ASTM International.
[21] DuBois, E., Mehta, D. Y. & Nolan, A. (2014). "Correlation between multiple stress creep recovery (MSCR) results and polymermodification of binder," Construction and Building Materials, vol. 65, pp 184-190.
[22] ASTM-D6648 (2001). "Standard test method for determining the flexural creep stiffness of asphalt binder using the bending beam rheometer (BBR)," ed: American Society for Testing and Materials.
[23] P Teymourpour, P., Sillamäe, S. & Bahia, H. U. (2015). "Impacts of lubricating oils on rheology and chemical compatibility of asphalt binders," Road Materials and Pavement Design, vol. 16, pp. 50-74.
[24] Johnson, C. M. (2010). "Estimating asphalt binder fatigue resistance using an accelerated test method," PhD Thesis, University of Wisconsin, Madison.
[25] D'Angelo, J. A. (2011). "The Relationship of the MSCR Test to Rutting," Road Materials and Pavement Design, vol. 10, pp. 61-80.