[1] Buckle, I. G., Mayes, R. L. (1990). “Seismic isolation: history, application, and performance—a world view”. Earthquake Spectra, 6(2), pp. 161-201.
[2] Patil, S., Reddy, G. (2012). “State of art review-base isolation systems for structures”. International journal of emerging technology and advanced engineering, Vol. 2(7), pp. 438-453.
[3] Kelly, J. M. (1986). “Aseismic base isolation: review and bibliography”. Soil Dynamics and Earthquake Engineering, Vol. 5(4), 202-216.
[4] Harvey Jr, P. S., Kelly, K. C. (2016). “A review of rolling-type seismic isolation: historical development and future directions”. Engineering Structures, Vol. 125, pp. 521-531.
[5] Warn, G. P., Ryan, K. L. (2012). “A review of seismic isolation for buildings: historical development and research needs”. Buildings, Vol. 2(3), pp. 300-325.
[6] Fasil, N. K., Pillai, P. R. S. (2018). “The State Of The Art On Seismic Isolation Of Shear Wall Structure Using Elastomeric Isolators”. International Research Journal Of Engineering And Technology (IRJET), Vol. 5(4), pp. 1349-1351.
[7] Jain, M., Sanghai, S. (2017). “A Review: On Base Isolation System”. IJSART, Vol. 3(3), pp. 326-330.
[8] Clemente, P., Martelli, A. (2019). “Seismically isolated buildings in Italy: state-of-the-art review and applications”. Soil Dynamics and Earthquake Engineering, Vol. 119, pp. 471-487.
[9] Kunde, M. C., Jangid, R. S, (2003). “Seismic behavior of isolated bridges: A-state-of-the-art review”. Electronic Journal of Structural Engineering, Vol. 3(2), pp. 140-169.
[10] Naveena, K., Nair, N. (2017). “Review On Base Isolated Structures”. International Research Journal Of Engineering And Technology (IRJET), Vol. 4(6), pp. 2610-2613.
[11] Semwal, S., Dyani, S. (2017). “Review Paper On Base Isolation System: Modern Techniques”. International Journal Of Research In Technology And Management (IJRTM), Vol. 3(2), pp. 32-34.
[12] Rai, A. K., Mishra, B. (2017). “A critical review on base isolation techniques for its application as earthquake resistant buildings with particular need/adherence in eastern Uttar Pradesh”. International Journal Of Engineering Sciences & Research Technology, Vol. 6(2), pp. 234-245.
[13] Verma, A., Gupta, A., Nath, B. (2017). “Base Isolation System: A Review”. International journal of engineering and science invention, Vol 6, pp. 43-46.
[14] Panchal, V., Soni, D. (2014). “Seismic behavior of isolated fluid storage tanks: A-state-of-the-art review”. KSCE Journal of Civil Engineering, Vol. 18(4), pp. 1097-1104.
[15] Girish, M., Pranesh, M. (2013). “Sliding isolation systems: state-of-the-art review”. Second International Conference on Emerging Trends in Engineering (SICETE), pp. 30-35.
[16] Clemente, P. (2017). “Seismic isolation: past, present and the importance of SHM for the future”. Journal of Civil Structural Health Monitoring, Vol. 7(2), pp. 217-231.
[17] Gupta, N., Sharma, D., Poonam. (2014). “State Of Art Review-Base Isolation For Structures”. International Journal Of Scientific & Engineering Research, Vol. 5(5).
[18] Bhaskar, G. B., Khanchandani, M. L. (2018). “A Review On Seismic Response Of Building With Base Isolation”. International Journal Of Scientific Research And Review, Vol. 7(1), pp. 92-96.
[19] Jangid, R. S., & Datta, T. K. (1995). “Seismic behavior of base-isolated buildings-a state-of-the-art review”. Proceedings of the Institution of Civil Engineers - Structures and Buildings, Vol. 110(2), pp. 186-203
[20] Skinner, R. I., Robinson, W. H., McVerry, G. H. (1993). “An introduction to seismic isolation”. John Wiley & Sons. USA.
[21] Naeim, F., & Kelly, J. M. (1999). “Design of seismic isolated structures: from theory to practice”. John Wiley & Sons. USA.
[22] Constantinou, M. C., Whittaker, A., Kalpakidis, Y., Fenz, D., Warn, G. P. (2007). “Performance of seismic isolation hardware under service and seismic loading”. Thechnical Report, MCEER-07-0012, August.
[23] Koh, C. G., Kelly, J. M. (1988). “A simple mechanical model for elastomeric bearings used in base isolation”. International journal of mechanical sciences, Vol. 30(12), pp. 933-943.
[24] Abe, M., Yoshida, J., & Fujino, Y. (2004a). “Multiaxial behaviors of laminated rubber bearings and their modeling. I: Experimental study”. Journal of Structural Engineering, Vol. 130(8), pp. 1119-1132.
[25] Abe, M., Yoshida, J., Fujino, Y. (2004b). “Multiaxial behaviors of laminated rubber bearings and their modeling. II: Modeling”. Journal of Structural Engineering, Vol. 130(8), pp. 1133-1144.
[26] Koo, G. H., Lee, J. H., Lee, H. Y., Yoo, B. (1999). “Stability of laminated rubber bearing and its application to seismic isolation”. KSME International Journal, Vol. 13(8), pp. 595-604.
[27] Kumar, M., Whittaker, A. S., Constantinou, M. C. (2015). “Experimental investigation of cavitation in elastomeric seismic isolation bearings”. Engineering Structures, Vol. 101, pp. 290-305.
[28] Ishii, K., Kikuchi, M., Nishimura, T., Black, C. J. (2017). “Coupling behavior of shear deformation and end rotation of elastomeric seismic isolation bearings”. Earthquake engineering & structural dynamics, Vol. 46(4), pp. 677-694.
[29] Maureira, N., de la Llera, J., Oyarzo, C., Miranda, S. (2017). “A nonlinear model for multilayered rubber isolators based on a co-rotational formulation”. Engineering Structures, Vol. 131, pp. 1-13.
[30] Crowder, A. P., Becker, T. C. (2017). “Experimental investigation of elastomeric isolation bearings with flexible supporting columns”. Journal of Structural Engineering, Vol. 143(7), pp. 04017057-1-12.
[31] Hwang, J., & Ku, S. (1997). “Analytical modeling of high damping rubber bearings”. Journal of Structural Engineering, Vol. 123(8), pp. 1029-1036.
[32] Hwang, J., Wu, J., Pan, T. C., Yang, G. (2002). “A mathematical hysteretic model for elastomeric isolation bearings”. Earthquake engineering & structural dynamics, Vol. 31(4), pp. 771-789.
[33] Dall’Asta, A., Ragni, L. (2006). “Experimental tests and analytical model of high damping rubber dissipating devices”. Engineering Structures, Vol. 28(13), pp. 1874-1884.
[34] Bhuiyan, A., Okui, Y., Mitamura, H., Imai, T. (2009). “A rheology model of high damping rubber bearings for seismic analysis: Identification of nonlinear viscosity”. International Journal of Solids and Structures, Vol. 46(7-8), pp. 1778-1792.
[35] Yuan, Y., Wei, W., Tan, P., Igarashi, A., Zhu, H., Iemura, H., Aoki, T. (2016). “A rate‐dependent constitutive model of high damping rubber bearings: modeling and experimental verification”. Earthquake engineering & structural dynamics, Vol. 45(11), pp. 1875-1892.
[36] Tubaldi, E., Mitoulis, S., Ahmadi, H., Muhr, A. (2016). “A parametric study on the axial behavior of elastomeric isolators in multi-span bridges subjected to horizontal seismic excitations”. Bulletin of Earthquake Engineering, Vol. 14(4), pp. 1285-1310.
[37] Tubaldi, E., Mitoulis, S., Ahmadi, H. (2018). “Comparison of different models for high damping rubber bearings in seismically isolated bridges”. Soil Dynamics and Earthquake Engineering, Vol. 104, pp. 329-345.
[38] Robinson, W., Tucker, A. (1976). “A lead-rubber shear damper”. Bulletin of the New Zealand National Society for Earthquake Engineering, Vol 4, pp. 151-153.
[39] Robinson, W. H. (1982). “Lead‐rubber hysteretic bearings suitable for protecting structures during earthquakes”. Earthquake engineering & structural dynamics, Vol. 10(4), pp. 593-604.
[40] Ryan, K. L., Kelly, J. M., Chopra, A. K. (2005). “Nonlinear model for lead–rubber bearings including axial-load effects”. Journal of Engineering Mechanics, Vol. 131(12), pp. 1270-1278.
[41] Warn, G. P., Whittaker, A. S., Constantinou, M. C. (2007). “Vertical stiffness of elastomeric and lead–rubber seismic isolation bearings”. Journal of Structural Engineering, Vol. 133(9), pp. 1227-1236.
[42] Kumar, M., Whittaker, A. S., Constantinou, M. C. (2014). “An advanced numerical model of elastomeric seismic isolation bearings”. Earthquake engineering & structural dynamics, Vol. 43(13), pp. 1955-1974.
[43] Han, X., Warn, G. P. (2014). “Mechanistic model for simulating critical behavior in elastomeric bearings”. Journal of Structural Engineering, Vol. 141(5), pp. 04014140-1-12.
[44] Zhou, T., Wu, Y., Li, A. (2019). “Implementation and Validation of a Numerical Model for Lead-Rubber Seismic Isolation Bearings”. Journal of Mechanics, Vol. 35(2), pp. 153-165.
[45] Hu, K., Zhou, Y., Jiang, L., Chen, P., Qu, G. (2017). “A mechanical tension-resistant device for lead rubber bearings”. Engineering Structures, Vol. 152, pp. 238-250.
[46] Islam, A. S., Hussain, R. R., Jameel, M., Jumaat, M. Z. (2012). “Non-linear time domain analysis of base isolated multi-storey building under site specific bi-directional seismic loading”. Automation in Construction, Vol. 22, pp. 554-566.
[47] Attanasi, G., Auricchio, F., Fenves, G. L. (2009). “Feasibility assessment of an innovative isolation bearing system with shape memory alloys”. Journal of Earthquake Engineering, Vol. 13(S1), pp. 18-39.
[48] Attanasi, G., Auricchio, F. (2011). “Innovative superelastic isolation device”. Journal of Earthquake Engineering, Vol. 15(S1), pp. 72-89.
[49] Ozbulut, O. E., & Hurlebaus, S. (2010). “Seismic assessment of bridge structures isolated by a shape memory alloy/rubber-based isolation system”. Smart Materials and Structures, Vol. 20(1), pp. 12-015003.
[50] Dezfuli, F. H., Alam, M. S. (2013). “Shape memory alloy wire-based smart natural rubber bearing”. Smart Materials and Structures, Vol. 22(4), pp.17-045013.
[51] Dezfuli, F. H., Alam, M. S. (2014). “Performance-based assessment and design of FRP-based high damping rubber bearing incorporated with shape memory alloy wires”. Engineering Structures, Vol. 61, pp. 166-183.
[52] Dezfuli, F. H., Alam, M. S. (2015). “Hysteresis model of shape memory alloy wire-based laminated rubber bearing under compression and unidirectional shear loadings”. Smart Materials and Structures, Vol. 24(6), pp. 19-065022.
[53] Dezfuli, F. H., & Alam, M. S. (2018). “Smart lead rubber bearings equipped with ferrous shape memory alloy wires for seismically isolating highway bridges”. Journal of Earthquake Engineering, Vol. 22(6), pp. 1042-1067.
[54] Kelly, J. M. (1999). “Analysis of fiber-reinforced elastomeric isolators”. Journal of Seismology and Earthquake Engineering, Vol. 2(1), pp. 19-34.
[55] Tsai, H. C., Kelly, J. M. (2002). “Stiffness analysis of fiber-reinforced rectangular seismic isolators”. Journal of Engineering Mechanics, Vol. 128(4), pp.462-470.
[56] Toopchi‐Nezhad, H., Tait, M. J., Drysdale, R. G. (2008). “Testing and modeling of square carbon fiber‐reinforced elastomeric seismic isolators”. Structural Control and Health Monitoring, Vol. 15(6), pp. 876-900.
[57] Kang, G. J., Kang, B. S. (2009). “Dynamic analysis of fiber-reinforced elastomeric isolation structures”. Journal of mechanical science and technology, Vol. 23(4), pp. 1132-1141.
[58] Angeli, P., Russo, G., Paschini, A. (2013). “Carbon fiber-reinforced rectangular isolators with compressible elastomer: Analytical solution for compression and bending”. International Journal of Solids and Structures, Vol. 50(22-23), pp. 3519-3527.
[59] Mostaghel, N., Hejazi, M., Tanbakuchi, J. (1983). “Response of sliding structures to harmonic support motion”. Earthquake engineering & structural dynamics, Vol. 11(3), pp. 355-366.
[60] Jangid, R. S. (1996). “Seismic response of sliding structures to bidirectional earthquake excitation”. Earthquake engineering & structural dynamics, Vol. 25(11), pp. 1301-1306.
[61] Nanda, R. P., Agarwal, P., Shrikhande, M. (2012). “Suitable friction sliding materials for base isolation of masonry buildings”. Shock and Vibration, Vol. 19(6), pp. 1327-1339.
[62] Constantinou, M. C., Caccese, J., & Harris, H. G. (1987). “Frictional characteristics of Teflon–steel interfaces under dynamic conditions”. Earthquake engineering & structural dynamics, Vol. 15(6), pp. 751-759.
[63] Mostaghel, N., Khodaverdian, M. (1987). “Dynamics of resilient‐friction base isolator (R‐FBI)”. Earthquake engineering & structural dynamics, Vol. 15(3), pp. 379-390.
[64] Zayas, V. A., Low, S. S., Mahin, S. A. (1990). “A simple pendulum technique for achieving seismic isolation”. Earthquake Spectra, Vol. 6(2), pp. 317-333.
[65] Petti, L., Polichetti, F., Lodato, A., Palazzo, B. (2013). “Modeling and analysis of base-isolated structures with friction pendulum system considering near-fault events”. Open Journal of Civil Engineering, Vol. 3(02), pp. 86-93.
[66] Fenz, D. M., Constantinou, M. C. (2006). “Behavior of the double concave friction pendulum bearing”. Earthquake engineering & structural dynamics, Vol. 35(11), pp. 1403-1424.
[67] Fenz, D. M., Constantinou, M. C. (2008a). “Modeling triple friction pendulum bearings for response-history analysis”. Earthquake Spectra, Vol. 24(4), pp. 1011-1028.
[68] Fenz, D. M., Constantinou, M. C. (2008b). “Spherical sliding isolation bearings with adaptive behavior: Experimental verification”. Earthquake engineering & structural dynamics, Vol. 37(2), pp. 185-205.
[69] Fenz, D. M., Constantinou, M. C. (2008c). “Spherical sliding isolation bearings with adaptive behavior: Theory”. Earthquake engineering & structural dynamics, Vol. 37(2), pp. 163-182.
[70] Pranesh, M., Sinha, R. (2000). “VFPI: an isolation device for aseismic design”. Earthquake engineering & structural dynamics, Vol. 29(5), pp. 603-627.
[71] Pranesh, M., Sinha, R. (2002). “Earthquake resistant design of structures using the variable frequency pendulum isolator”. Journal of Structural Engineering, Vol. 128(7), pp. 870-880.
[72] Lu, L. Y., Wang, J., Hsu, C. C. (2006). “Sliding isolation using variable frequency bearings for near-fault ground motions”. 4th International Conference on Earthquake Engineering, Taipei, Taiwan, pp. No.164.
[73] Panchal, V., Jangid, R. S. (2008). “Variable friction pendulum system for seismic isolation of liquid storage tanks”. Nuclear Engineering and Design, Vol. 238(6), pp. 1304-1315.
[74] Xiong, W., Zhang, S. J., Jiang, L. Z., Li, Y. Z. (2017). “Introduction of the convex friction system (CFS) for seismic isolation”. Structural Control and Health Monitoring, Vol. 24(1), e1861.
[75] Xiong, W., Zhang, S. J., Jiang, L. Z., Li, Y. Z. (2018). “The Multangular-Pyramid Concave Friction System (MPCFS) for seismic isolation: A preliminary numerical study”. Engineering Structures, Vol. 160, pp. 383-394.
[76] Hoseini Vaez, S. R., Naderpour, H., Kalantari, S. M., & Fakharian, P. (2012). “Proposing the Optimized Combination of Different Isolation Bearings Subjected to Near-Fault Ground Motions”. In 15th World Conference on Earthquake Engineering (15WCEE), September (pp. 24-28).
[77] Hoseini Vaez, S. R., Naderpour, H., Fakharian, P. (2012). “Influence of Period Elongation on Dynamic Response of Base-Isolated Buildings having FPS Isolators”. Proceeding of the Second National Conference on Disaster Management, Iran, June, pp. No. 19.
[78] Lin, T. W., Chern, C. C., Hone, C. C. (1995). “Experimental study of base isolation by free rolling rods”. Earthquake engineering & structural dynamics, Vol. 24(12), pp. 1645-1650.
[79] Jangid, R. S., Londhe, Y. (1998). “Effectiveness of elliptical rolling rods for base isolation”. Journal of Structural Engineering, Vol. 124(4), pp. 469-472.
[80] Zhou, Q., Lu, X., Wang, Q., Feng, D., Yao, Q. (1998). “Dynamic analysis on structures base‐isolated by a ball system with restoring property”. Earthquake engineering & structural dynamics, Vol. 27(8), pp. 773-791.
[81] Jangid, R. S. (2000). “Stochastic seismic response of structures isolated by rolling rods”. Engineering Structures, Vol. 22(8), pp. 937-946.
[82] Butterworth, J. (2006). “Seismic response of a non-concentric rolling isolator system”. Advances in Structural Engineering, Vol. 9(1), pp. 39-54.
[83] Barghian, M., Shahabi, A. B. (2007). “A new approach to pendulum base isolation”. Structural Control and Health Monitoring, Vol. 14(2), pp. 177-185.
[84] Chung, L., Yang, C., Chen, H., Lu, L.-Y. (2009). “Dynamic behavior of nonlinear rolling isolation system”. Structural Control and Health Monitoring, Vol. 16(1), pp. 32-54.
[85] Ou, Y. C., Song, J., Lee, G. C. (2010). “A parametric study of seismic behavior of roller seismic isolation bearings for highway bridges”. Earthquake engineering & structural dynamics, Vol. 39(5), pp. 541-559.
[86] Rawat, A., Ummer, N., Matsagar, V. (2018). “Performance of bi-directional elliptical rolling rods for base isolation of buildings under near-fault earthquakes”. Advances in Structural Engineering, Vol. 21(5), pp. 675-693.
[87] Shahabi, A. B., Ahari, G. Z., Barghian, M. (2019). “Suspended Columns for Seismic Isolation in Structures (SCSI): A preliminary analytical study”. Earthquakes and Structures, Vol. 16(6), pp. 743-755.
[88] Becker, T. C., Yamamoto, S., Hamaguchi, H., Higashino, M., Nakashima, M. (2015). “Application of isolation to high-rise buildings: a Japanese design case study through a US design code lens”. Earthquake Spectra, Vol. 31(3), pp. 1451-1470.
[89] Nakamura, Y., Saruta, M., Wada, A., Takeuchi, T., Hikone, S., Takahashi, T. (2011). “Development of the core‐suspended isolation system”. Earthquake engineering & structural dynamics, Vol. 40(4), pp. 429-447.
[90] Hosseini, M., Farsangi, E. N. (2012). “Telescopic columns as a new base isolation system for vibration control of high-rise buildings”. Earthquakes and Structures, Vol. 3(6), pp. 853-867.
[91] Ismail, M., Rodellar, J., & Ikhouane, F. (2009). “Performance of structure–equipment systems with a novel roll-n-cage isolation bearing”. Computers & Structures, Vol. 87(23-24), pp. 1631-1646.
[92] Ismail, M., Rodellar, J., & Ikhouane, F. (2012). “Seismic protection of low‐to moderate‐mass buildings using RNC isolator”. Structural Control and Health Monitoring, Vol. 19(1), pp. 22-42.
[93] Ismail, M. (2016). “Novel hexapod‐based unidirectional testing and FEM analysis of the RNC isolator”. Structural Control and Health Monitoring, Vol. 23(6), pp. 894-922.
[94] Karayel, V., Yuksel, E., Gokce, T., Sahin, F. (2017). “Spring tube braces for seismic isolation of buildings”. Earthquake Engineering and Engineering Vibration, Vol. 16(1), pp. 219-231.
[95] Saitoh, M. (2012). “On the performance of gyro‐mass devices for displacement mitigation in base isolation systems”. Structural Control and Health Monitoring, Vol. 19(2), pp. 246-259.
[96] Hu, Y., Chen, M. Z., Shu, Z., Huang, L. (2015). “Analysis and optimization for inerter-based isolators via fixed-point theory and algebraic solution”. Journal of Sound and Vibration, Vol. 346, pp. 17-36.
[97] De Domenico, D., Ricciardi, G. (2018a). “An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)”. Earthquake engineering & structural dynamics, Vol. 47(5), pp. 1169-1192.
[98] De Domenico, D., & Ricciardi, G. (2018b). “Improving the dynamic performance of base‐isolated structures via tuned mass damper and inerter devices: A comparative study”. Structural Control and Health Monitoring, Vol. 25(10), e2234.
[99] De Domenico, D., Ricciardi, G. (2018c). “Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems”. Earthquake engineering & structural dynamics, Vol. 47(12), pp. 2539-2560.
[100] De Domenico, D., Impollonia, N., Ricciardi, G. (2018). “Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper”. Soil Dynamics and Earthquake Engineering, Vol. 105, pp. 37-53.
[101] Anajafi, H., Medina, R. A. (2018). “Comparison of the seismic performance of a partial mass isolation technique with conventional TMD and base-isolation systems under broad-band and narrow-band excitations”. Engineering Structures, Vol. 158, pp. 110-123.
[102] Gandelli, E., Limongelli, M. P., Quaglini, V., Dubini, P., Vazzana, G., Farina, G. (2014). “Re-centring capability of friction pendulum system: parametric investigation”. 2nd European Conference on Earthquake Engineering and Seismology, Istanbul.
[103] Kumar, M., Whittaker, A. S., Constantinou, M. C. (2013). “Mechanical properties of elastomeric seismic isolation bearings for analysis under extreme loadings”. 22nd International Conference on Structural Mechanics in Reactor Technology (SMiRT-22), San Francisco, USA.
[104] Gent, A. (1990). “Cavitation in rubber: a cautionary tale”. Rubber Chemistry and Technology, Vol. 63(3), pp. 49-53.
[105] De Domenico, D., Ricciardi, G., Benzoni, G. (2018). “Analytical and finite element investigation on the thermo-mechanical coupled response of friction isolators under bidirectional excitation”. Soil Dynamics and Earthquake Engineering, Vol. 106, pp. 131-147.