[1] Kwan, AKH., Chau, SL., Au, FTK. (2006). “Improving flexural ductility of high-strength concrete beams”. Proc ICE – Struct. Build, 159(6), pp. 339–347.
[2] Paultre, P., Legeron, F., Mongeau, D. (2001). “Influence of concrete strength and transverse reinforcement yield strength on behavior of high-strength concrete columns”. ACI Struct. J., 98(4): pp. 490–501.
[3] Cusson, D., Paultre, P. (1994). “High-strength concrete columns confined by rectangular ties”. J StructEng,120(3): pp. 783–804.
[4] Xiao, Y. (2004). “Applications of FRP composites in concrete columns”. Adv. Struct. Eng., Vol.7(4): pp. 335–343.
[5] Xiao, Y., Ma, R. (1997). “Seismic retrofit of RC circular columns using prefabricated composite jacketing”. J Struct. Eng., 123(10): pp. 1357–1364.
[6] Ilki, A., Peker, O., Karamuk, E., Demir, C., Kumbasar, N. (2008). “FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns”. J Mater Civ. Eng., 20(2): pp. 169–88.
[7] Ozbakkaloglu, T. (2013). “Compressive behavior of concrete-filled FRP tube columns: assessment of critical column parameters”. Eng. Struct., 51: pp. 188–199.
[8] Xiao, Y., Wu, H. (2003). “Compressive behavior of concrete confined by various types of FRP composite jackets”. J Reinf Plast Compos, 22(13): pp. 1187–1201.
[9] Rousakis, TC., Karabinis, AI., Kiousis, PD. (2007). “FRP-confined concrete members: axial compression experiments and plasticity modelling”. Eng. Struct., 29(7): pp. 1343–1353.
[10] Ozbakkaloglu, T., Lim, JC., Vicent, T. (2013). “FRP-confined concrete in circular sections: review and assessment of stress–strain models”. Eng. Struct., 49: pp. 1068–1088.
[11] Idris, Y., Ozbakkaloglu, T. (2013). “Seismic behavior of high-strength concrete-filled FRP tube columns”. J. Compos. Constr., Vol. 17 (6) pp. 1943.
[12] Ozbakkaloglu, T. (2013). “Compressive behavior of concrete-filled FRP tube columns: assessment of critical column parameters”. Eng. Struct., Vol. 51 pp. 188–199.
[13] Li, Y., Fang, T., Chern, C. (2003). “A Constitutive Model for Concrete Cylinder Confined by Steel Reinforcement and Carbon Fiber Sheet”. pacific conference on earthquake engineering,.
[14] Li, Y., Lin, C., Sung, Y. (2003). “A constitutive model for concrete confined with carbon fiber reinforced plastics”. Mechanics of Materials, Vol. 35, pp 603–619.
[15] ISIS educational module 4. (2004). “An introduction to FRP strengthening of concrete structures”. prepared by ISIS Canada, February 2004.
[16] Majewski, S. (2003). “The mechanics of structural concrete in terms of elasto-plasticity”. SilesianPolytechnic Publishing House, Gliwice,.
[17] EN 1992-1-1. (2004). “ Eurocode 2 Design of concrete structures - Part 1-1: General rules and rules for buildings”.
[18] Wang, T., Hsu, T.T.C. (2001). “Nonlinear finite element analysis of concrete structures using newconstitutive models”. Computers and Structures, Vol. 79, Iss. 32, , pp. 2781–2791.
[19] Kmiecik, P., Kaminski, M. (2011). “Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration”. Archives of civil and mechanical engineering, No. 3.
[20] Abaqus theory manual and users' manual, version 6.10. (2010).
[21] Bouchelaghem, H., Bezazi, A., Scarpa, F. (2011). “Compressive behavior of concrete cylindrical FRP-confined columns subjected to a new sequential loading technique”. Composites: Part B, Vol. 42, pp 1987–1993.
[22] Uya, B., Taoa, Z., Hanc, L. (2011). “Behaviour of short and slender concrete-filled stainless steel tubular columns”. Journal of Constructional Steel Research, Vol. 67, pp 360–378.