[1]. Kadhim, A. M., Numan, H. A., & Özakça, M. (2019). Flexural Strengthening and Rehabilitation of Reinforced Concrete Beam Using BFRP Composites: Finite Element Approach. Advances in Civil Engineering, 2019.
[2]. Marthong, C. (2019). Rehabilitation of exterior RC beam-column connections using epoxy resin injection and galvanized steel wire mesh. Earthquakes and Structures, 16(3), 253-263.
[3]. Mustafa, S. A., & Hassan, H. A. (2018). Behavior of concrete beams reinforced with hybrid steel and FRP composites. HBRC journal, 14(3), 300-308.
[4]. Delgado, P., & Kappos, A. (2018). Strengthening of RC Bridges. In Strengthening and Retrofitting of Existing Structures (pp. 199-215). Springer, Singapore.
[5]. Yang, J., Haghani, R., & Al-Emrani, M. (2018, July). Flexural FRP Strengthening of Concrete Bridges Using an Innovative Concept. In Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges: Proceedings of the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018), 9-13 July 2018, Melbourne, Australia (p. 339). CRC Press.
[6]. Zhang, H. Y., Yan, J., Kodur, V., & Cao, L. (2019). Mechanical behavior of concrete beams shear strengthened with textile reinforced geopolymer mortar. Engineering Structures, 196, 109348.
[7]. Sharif, A., Al-Sulaimani, G.J., Basunbul, I.A., Baluch, M.H. and Ghaleb, B.N. (1994) “Strengthening of initially loaded reinforced concrete beams using FRP plates” ACI Structural Journal, Vol. 91, No.2, pp. 160-168.
[8]. Quantrill RJ.; Hollaway LC.; “The Flexural Rehabilitation of Reinforced Concrete Beams by the use of Pre-stressed advanced Composite Plates”, Compos Sci Technol1998 , 58(8):1259–75.
[9]. Wang X.; Zhou Ch.; “Calculation of Flexural Strength of RC Beams Strengthened with Bonded Pre-stressed FRP Laminates”, 38(8):1359–61.
[10]. Bastani, A., Das, S., & Kenno, S. Y. (2019). Flexural rehabilitation of steel beam with CFRP and BFRP fabrics–A comparative study. Archives of Civil and Mechanical Engineering, 19(3), 871-882.
[11]. Choobbor, S. S., Hawileh, R. A., Abu-Obeidah, A., & Abdalla, J. A. (2019). Performance of hybrid carbon and basalt FRP sheets in strengthening concrete beams in flexure. Composite Structures, 227, 111337.
[12]. Siddika, A., Al Mamun, M. A., Alyousef, R., & Amran, Y. M. (2019). Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review. Journal of Building Engineering, 100798.
[13]. Lee, H., Jung, W. T., & Chung, W. (2019). Post-tension near-surface mounted strengthening system for reinforced concrete beams with changes in concrete condition. Composites Part B: Engineering, 161, 514-529.
[14]. Gil, L., Bernat-Masó, E., & Escrig, C. (2019). Experimental and analytical flexural performances of reinforced concrete beams strengthened with post-tensioned near surface mounted basalt composite laminates. Composites Part B: Engineering, 157, 47-57.
[15]. ACE Consulting Engineers, Brisbane, Australia. “Strength and ductility of FRP web-bonded RC beams for the assessment of retrofitted beam–column joints”, Journal of Composite Structures 92, 2010.
[16]. ACI Committee 440. “Guide for the Design and Construction of Concrete Reinforced with FRP Bars”, ACI440.1R-03, American Concrete Institute, USA, 2001.
[17]. Canadian Standards Association, S806-02. Design and Construction of Building Components with Fiber-Reinforced Polymers. CSA, Rexdale Ontario, May 2002.
[18]. Japanese Society of Civil Engineers (JSCE). (1997). “Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials.” Concrete Engineering Series 23.Tokyo.
[19]. ISIS Canada Design Manuals, 2001, “Strengthening Reinforced Concrete Structures with Externally-Bonded Fiber Reinforced Polymers,” The Canadian Network of Centers of Excellence on Intelligent Sensing for Innovative Structures, Winnipeg, MB, Canada, 86 pp.
[20]. ANSYS User’s Manual Version 10.0. Houston: Swanson Analysis Systems Inc, 2006.
[21]. Yang D.S.; Park S.K; Neale K.W.; “Flexural behavior of reinforced concrete beams strengthened with pre-stressed carbon composites”, Composite Structure.
[22]. Iranian National Building Codes Compilation Office. Iranian National Building Code, Part 9: Reinforced Concrete Buildings Design, Ministry of Housing and Urban Development (MHUD), 2014.