[1] F. Mahmoudi, K. M. Dolatshahi, M. Mahsuli, M. T. Nikoukalam, and A. Shahmohammadi, “Experimental study of steel moment resisting frames with shear link,” J. Constr. Steel Res., vol. 154, pp. 197–208, 2019.
[2] M. T. Nikoukalam and K. M. Dolatshahi, “Development of structural shear fuse in moment resisting frames,” J. Constr. Steel Res., vol. 114, pp. 349–361, 2015.
[3] A. Ghobarah, “Performance-based design in earthquake engineering: state of development,” Eng. Struct., vol. 23, no. 8, pp. 878–884, 2001.
[4] S. P. Schneider, C. W. Roeder, and J. E. Carpenter, “Seismic behavior of moment resisting steel frames: Experimental study,” J. Struct. Eng., vol. 119, no. 6, pp. 1885–1902, 1993.
[5] M. Bruneau, C. M. Uang, and R. Sabelli, Ductile design of steel structures. Boston: McGraw-Hill, 2011.
[6] AISC (American Institute of Steel Construction), “‘Prequalified connections for special and intermediate steel moment frames for seismic applications.’ ANSI/AISC 358-10,” Chicago, 2010.
[7] B. S. Taranath, Structural analysis and design of tall buildings: Steel and composite construction. Boca Raton: CRC Press, 2011.
[8] D. G. Lignos, D. M. Moreno, and S. L. Billington, “Seismic retrofit of steel moment-resisting frames with high-performance fiber-reinforced concrete infill panels: large-scale hybrid simulation experiments,” J. Struct. Eng., vol. 140, no. 3, p. 4013072, 2013.
[9] Q. Xie, “State of the art of buckling-restrained braces in Asia,” J. Constr. steel Res., vol. 61, no. 6, pp. 727–748, 2005.
[10] H. Tamai and T. Takamatsu, “Cyclic loading tests on a non-compression brace considering performance-based seismic design,” J. Constr. Steel Res., vol. 61, no. 9, pp. 1301–1317, 2005.
[11] E. Renzi, S. Perno, S. Pantanella, and V. Ciampi, “Design, test and analysis of a light-weight dissipative bracing system for seismic protection of structures,” Earthq. Eng. Struct. Dyn., vol. 36, no. 4, pp. 519–539, 2007.
[12] F. Bartera and R. Giacchetti, “Steel dissipating braces for upgrading existing building frames,” J. Constr. Steel Res., vol. 60, no. 3–5, pp. 751–769, 2004.
[13] L. Di Sarno and A. S. Elnashai, “Bracing systems for seismic retrofitting of steel frames,” J. Constr. Steel Res., vol. 65, no. 2, pp. 452–465, 2009.
[14] F. E. M. Agency, Techniques for the seismic rehabilitation of existing buildings. FEMA, 2006.
[15] J. L. Gross, M. D. Engelhardt, C.-M. Uang, K. Kasai, and N. Iwankiw, “Modification of existing welded steel moment frame connections for seismic resistance,” in American Institute of Steel Construction, 2001, vol. 19.
[16] C.-M. Uang, Q.-S. “Kent” Yu, S. Noel, and J. Gross, “Cyclic testing of steel moment connections rehabilitated with RBS or welded haunch,” J. Struct. Eng., vol. 126, no. 1, pp. 57–68, 2000.
[17] S. A. Civjan, M. D. Engelhardt, and J. L. Gross, “Slab effects in SMRF retrofit connection tests,” J. Struct. Eng., vol. 127, no. 3, pp. 230–237, 2001.
[18] S. Leelataviwat, S. C. Goel, and B. Stojadinovic, Drift and yield mechanism based seismic design and upgrading of steel moment frames, vol. 98, no. 29. University of Michigan, 1998.
[19] J. M. Ricles, R. Sause, M. M. Garlock, and C. Zhao, “Posttensioned seismic-resistant connections for steel frames,” J. Struct. Eng., vol. 127, no. 2, pp. 113–121, 2001.
[20] C. Christopoulos, A. Filiatrault, and C.-M. Uang, Self-centering post-tensioned energy dissipating (PTED) steel frames for seismic regions. University of California, San Diego, 2002.
[21] A. Astaneh-Asl, Seismic behavior and design of composite steel plate shear walls. Structural Steel Educational Council Moraga, CA, 2002.
[22] J. W. Berman and M. Bruneau, “Experimental investigation of light-gauge steel plate shear walls,” J. Struct. Eng., vol. 131, no. 2, pp. 259–267, 2005.
[23] M. Bruneau, “Seismic retrofit of steel structures,” in Proceeedings 1st Canadian Conference on Effective Design of Structures, McMaster University, Hamilton, Ontario, Canada, 2005.
[24] A. Jacobsen, T. Hitaka, and M. Nakashima, “Online test of building frame with slit-wall dampers capable of condition assessment,” J. Constr. Steel Res., vol. 66, no. 11, pp. 1320–1329, 2010.
[25] T. T. Soong and B. F. Spencer Jr, “Supplemental energy dissipation: state-of-the-art and state-of-the-practice,” Eng. Struct., vol. 24, no. 3, pp. 243–259, 2002.
[26] K. Kasai et al., “Value-added 5-story steel frame and its components: Part 1—Full-scale damper tests and analyses,” in Proceedings 14th World Conf. on Earthquake Engineering, 2008.
[27] Z. Andalib, M. A. Kafi, A. Kheyroddin, M. Bazzaz, and S. Momenzadeh, “Numerical evaluation of ductility and energy absorption of steel rings constructed from plates,” Eng. Struct., vol. 169, pp. 94–106, 2018.
[28] M. Bazzaz, M. A. Kafi, A. Kheyroddin, Z. Andalib, and H. Esmaeili, “Evaluating the seismic performance of off-centre bracing system with circular element in optimum place,” Int. J. Steel Struct., vol. 14, no. 2, pp. 293–304, 2014.
[29] M. Bazzaz, Z. Andalib, A. Kheyroddin, and M. A. Kafi, “Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system,” Steel Compos. Struct, vol. 19, no. 4, pp. 917–937, 2015.
[30] M. Bazzaz, A. Kheyroddin, M. A. Kafi, and Z. Andalib, “Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames,” Steel Compos. Struct., vol. 12, no. 5, pp. 445–464, 2012.
[31] M. Bazzaz, Z. Andalib, M. A. Kafi, and A. Kheyroddin, “Evaluating the performance of OBS-CO in steel frames under monotonic load,” Earthq. Struct., Int. J, vol. 8, no. 3, pp. 697–710, 2015.
[32] Z. Andalib, M. A. Kafi, A. Kheyroddin, and M. Bazzaz, “Experimental investigation of the ductility and performance of steel rings constructed from plates,” J. Constr. steel Res., vol. 103, pp. 77–88, 2014.
[33] M. Bruneau et al., “A Framework to quantitatively assess and enhance the seismic resilience of communities,” Earthq. Spectra, vol. 19, no. 4, pp. 733–752, 2003, doi: 10.1193/1.1623497.
[34] M. Bruneau and A. M. Reinhorn, “Overview of the resilience concept,” in 8th US National Conference on Earthquake Engineering, 2006.
[35] F. Mahmoudi, K. M. Dolatshahi, M. Mahsuli, A. Shahmohammadi, and M. T. Nikoukalam, “Experimental evaluation of steel moment resisting frames with a nonlinear shear fuse,” in Geotechnical and Structural Engineering Congress 2016, pp. 624–634.
[36] AISC (American Institute of Steel Construction), “‘Seismic provisions for structural steel buildings.’ AISC/ANSI 341-10,” Chicago, 2010.
[37] E. Kaufmann, B. Metrovich, and A. Pense, “Characterization of cyclic inelastic strain behavior on properties of A572 Gr. 50 and A913 Gr. 50 rolled sections,” 2001.
[38] O. Moammer and K. M. Dolatshahi, “Predictive equations for shear link modeling toward collapse,” Eng. Struct., vol. 151, pp. 599–612, 2017.