[1] Zhang C, Aoki T, Zhang Q, Wu M. Experimental investigation on the low-yield-strength steel shear panel damper under different loading. J Constr Steel Res 2013;84:105–13. https://doi.org/10.1016/J.JCSR.2013.01.014.
[2] Chen Z, Dai Z, Huang Y, Bian G. Numerical simulation of large deformation in shear panel dampers using smoothed particle hydrodynamics. Eng Struct 2013;48:245–54. https://doi.org/10.1016/J.ENGSTRUCT.2012.09.008.
[3] Kheyroddin A, Gholhaki M, Pachideh G. Seismic evaluation of reinforced concrete moment frames retrofitted with steel braces using IDA and Pushover methods in the near-fault field. J Rehabil Civ Eng 2018;0:1–15. https://doi.org/10.22075/jrce.2018.12347.1211.
[4] Mohammadi M, Kafi MA, Kheyroddin A, Ronagh HR. Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading. Structures 2019;22:186–99. https://doi.org/10.1016/j.istruc.2019.07.014.
[5] Rai DC, Annam PK, Pradhan T. Seismic testing of steel braced frames with aluminum shear yielding dampers. Eng Struct 2013;46:737–47. https://doi.org/10.1016/J.ENGSTRUCT.2012.08.027.
[6] Zhang C, Zhang Z, Shi J. Development of high deformation capacity low yield strength steel shear panel damper. J Constr Steel Res 2012;75:116–30. https://doi.org/10.1016/J.JCSR.2012.03.014.
[7] Xu L-Y, Nie X, Fan J-S. Cyclic behaviour of low-yield-point steel shear panel dampers. Eng Struct 2016;126:391–404. https://doi.org/10.1016/J.ENGSTRUCT.2016.08.002.
[8] Sahoo DR, Singhal T, Taraithia SS, Saini A. Cyclic behavior of shear-and-flexural yielding metallic dampers. J Constr Steel Res 2015;114:247–57. https://doi.org/10.1016/J.JCSR.2015.08.006.
[9] Hsu H-L, Halim H. Brace performance with steel curved dampers and amplified deformation mechanisms. Eng Struct 2018;175:628–44. https://doi.org/10.1016/J.ENGSTRUCT.2018.08.052.
[10] Qu B, Dai C, Qiu J, Hou H, Qiu C. Testing of seismic dampers with replaceable U-shaped steel plates. Eng Struct 2019;179:625–39. https://doi.org/10.1016/J.ENGSTRUCT.2018.11.016.
[11] Kelly JM, Skinner RI, Heine AJ. Mechanisms of energy absorption in special devices for use in earthquake resistant structures. Bull NZ Soc Earthq Eng 1972;5:63–88.
[12] Skinner RI, Kelly JM, Heine AJ. Hysteretic dampers for earthquake-resistant structures. Earthq Eng Struct Dyn 1974;3:287–96. https://doi.org/10.1002/eqe.4290030307.
[13] Bergman D. Evaluation of cyclic testing of steel-plate devices for added damping and stiffness. Ann Arbor Mich.: Dept. of Civil Engineering University of Michigan; 1987.
[14] Whittaker AS, Bertero V V., Thompson CL, Alonso LJ. Seismic Testing of Steel Plate Energy Dissipation Devices. Earthq Spectra 1991;7:563–604. https://doi.org/10.1193/1.1585644.
[15] Tsai K, Chen H, Hong C, Su Y. Design of Steel Triangular Plate Energy Absorbers for SeismicāResistant Construction. Earthq Spectra 1993;9:505–28. https://doi.org/10.1193/1.1585727.
[16] Yeh CH, Lu LY, Chung LL, Huang CS. Test of a Full-Scale Steel Frame with TADAS. Earthq Eng Eng Seismol 2001;3.
[17] Gray MG, Christopoulos C, Packer JA. Cast Steel Yielding Brace System for Concentrically Braced Frames: Concept Development and Experimental Validations. J Struct Eng 2014;140:04013095. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000910.
[18] Ahmadie Amiri H, Najafabadi EP, Estekanchi HE. Experimental and analytical study of Block Slit Damper. J Constr Steel Res 2018;141:167–78. https://doi.org/10.1016/j.jcsr.2017.11.006.
[19] Oh SH, Kim YJ, Ryu HS. Seismic performance of steel structures with slit dampers. Eng Struct 2009;31:1997–2008. https://doi.org/10.1016/j.engstruct.2009.03.003.
[20] Chan RWK, Albermani F. Experimental study of steel slit damper for passive energy dissipation. Eng Struct 2008;30:1058–66. https://doi.org/10.1016/J.ENGSTRUCT.2007.07.005.
[21] Hsu HL, Halim H. Improving seismic performance of framed structures with steel curved dampers. Eng Struct 2017;130:99–111. https://doi.org/10.1016/j.engstruct.2016.09.063.
[22] Hsu HL, Halim H. Brace performance with steel curved dampers and amplified deformation mechanisms. Eng Struct 2018;175:628–44. https://doi.org/10.1016/j.engstruct.2018.08.052.
[23] Maleki S, Bagheri S. Pipe damper, Part I: Experimental and analytical study. J Constr Steel Res 2010;66:1088–95. https://doi.org/10.1016/j.jcsr.2010.03.010.
[24] Maleki S, Bagheri S. Pipe damper, Part II: Application to bridges. J Constr Steel Res 2010;66:1096–106. https://doi.org/10.1016/j.jcsr.2010.03.011.
[25] Maleki S, Mahjoubi S. Dual-pipe damper. J Constr Steel Res 2013;85:81–91. https://doi.org/10.1016/j.jcsr.2013.03.004.
[26] Maleki S, Mahjoubi S. Infilled-pipe damper. J Constr Steel Res 2014;98:45–58. https://doi.org/10.1016/j.jcsr.2014.02.015.
[27] Mahjoubi S, Maleki S. Seismic performance evaluation and design of steel structures equipped with dual-pipe dampers. J Constr Steel Res 2016;122:25–39. https://doi.org/10.1016/J.JCSR.2016.01.023.
[28] Cheraghi A, Zahrai SM. Innovative multi-level control with concentric pipes along brace to reduce seismic response of steel frames. J Constr Steel Res 2016;127:120–35. https://doi.org/10.1016/J.JCSR.2016.07.024.
[29] Zahrai SM, Hosein Mortezagholi M. Cyclic Performance of an Elliptical-Shaped Damper with Shear Diaphragms in Chevron Braced Steel Frames. J Earthq Eng 2018;22:1209–32. https://doi.org/10.1080/13632469.2016.1277436.
[30] Abbasnia R, Vetr MGH, Ahmadi R, Kafi MA. Experimental and analytical investigation on the steel ring ductility. J Sharif Sci Technol 2008;52:41–8.
[31] Bazzaz M, Andalib Z, Kheyroddin A, Kafi MA. Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system. Steel Compos Struct 2015;19:917–37. https://doi.org/10.12989/scs.2015.19.4.917.
[32] Andalib Z, Kafi MA, Kheyroddin A, Bazzaz M. Experimental investigation of the ductility and performance of steel rings constructed from plates. J Constr Steel Res 2014;103:77–88. https://doi.org/10.1016/j.jcsr.2014.07.016.
[33] ABAQUS-6.8-1. standard user’s manual. Hibbitt, Karlsson and Sorensen, Inc. vols. 1, and 3. Version 6.8-1. USA: 2008.
[34] IS2800. Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No. 2800. Tehran, Iran: 2014.
[35] AISC 341-16. AISC Committee, Seismic Provisions for Structural Steel Buildings. America: 2016.
[36] ATC-24. Guidelines for cyclic seismic testing of components of steel structures. California: 1992.
[37] Mohebkhah A, Azandariani MG. Shear resistance of retrofitted castellated link beams: Numerical and limit analysis approaches. Eng Struct 2020;203:109864. https://doi.org/10.1016/j.engstruct.2019.109864.
[38] Choi I-R, Park H-G. Ductility and Energy Dissipation Capacity of Shear-Dominated Steel Plate Walls. J Struct Eng 2008;134:1495–507. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:9(1495).
[39] Gorji Azandariani M, Gholhaki M, Kafi MA. Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading. Eng Struct 2020;203. https://doi.org/10.1016/j.engstruct.2019.109866.
[40] Vision2000 S. Performance-based seismic engineering. Structural Engineers Association of California, Sacramento, CA: 1995.
[41] ATC-40. Seismic evaluation and retrofit of concrete buildings. 1996.
[42] FEMA 273-274. Federal Emergency Management Agency, NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings. Washington, DC.: n.d.
[43] FEMA 356. Federal Emergency Management Agency, Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Washington, DC, USA: 2000.