[1] Metwally IM. Prediction of punching shear capacities of two-way concrete slabs reinforced with FRP bars. HBRC J 2013;9:125–33. doi:10.1016/j.hbrcj.2013.05.009.
[2] Hassan M, Ahmed EA, Benmokrane B. Punching shear behavior of two-way slabs reinforced with FRP shear reinforcement. J Compos Constr 2015. doi:10.1061/(ASCE)CC.1943-5614.0000493.
[3] Durucan C, Anil Ö. Effect of opening size and location on the punching shear behavior of interior slab-column connections strengthened with CFRP strips. Eng Struct 2015. doi:10.1016/j.engstruct.2015.09.033.
[4] Azimi A. GMDH-Network to Estimate the Punching Capacity of FRP-RC Slabs. Soft Comput Civ Eng 2017;1:86–92. doi:10.22115/scce.2017.48352.
[5] Naderpour H, Rezazadeh Eidgahee D, Fakharian P, Rafiean AH, Kalantari SM. A new proposed approach for moment capacity estimation of ferrocement members using Group Method of Data Handling. Eng Sci Technol an Int J 2020;23:382–91. doi:10.1016/j.jestch.2019.05.013.
[6] Rezazadeh Eidgahee D, Rafiean AH, Haddad A. A Novel Formulation for the Compressive Strength of IBP-Based Geopolymer Stabilized Clayey Soils Using ANN and GMDH-NN Approaches. Iran J Sci Technol Trans Civ Eng 2020;44:219–29. doi:10.1007/s40996-019-00263-1.
[7] Rezazadeh Eidgahee D, Haddad A, Naderpour H. Evaluation of shear strength parameters of granulated waste rubber using artificial neural networks and group method of data handling. Sci Iran 2019;26:3233–44. doi:10.24200/sci.2018.5663.1408.
[8] Naderpour H, Fakharian P, Rafiean AH, Yourtchi E. Estimation of the Shear Strength Capacity of Masonry Walls Improved with Fiber Reinforced Mortars (FRM) Using ANN-GMDH Approach. J Concr Struct Mater 2016;1:47–59. doi:10.30478/JCSM.2016.48988.
[9] Hamed Akbarpour MA. Prediction of punching shear strength of two-way slabs using artificial neural network and adaptive neuro-fuzzy inference system. Neural Comput Appl 2016:1–12. doi:10.1007/s00521-016-2239-2.
[10] Hassan NZ, Osman MA, El-Hashimy AM, Tantawy HK. Enhancement of punching shear strength of flat slabs using shear-band reinforcement. HBRC J 2018. doi:10.1016/j.hbrcj.2017.11.003.
[11] Akhundzada H, Donchev T, Petkova D. Strengthening of slab-column connection against punching shear failure with CFRP laminates. Compos Struct 2019. doi:10.1016/j.compstruct.2018.09.076.
[12] Marí A, Cladera A, Oller E, Bairán JM. A punching shear mechanical model for reinforced concrete flat slabs with and without shear reinforcement. Eng Struct 2018. doi:10.1016/j.engstruct.2018.03.079.
[13] Hamdy M, Saafan M, Elwan SK, Elzeiny SM, Abdelrahman A. Punching Shear Behavior of RC Flat Slabs Strengthened with Steel Shear Bolts. Int J Curr Eng Technol 2018. doi:10.14741/ijcet/v.8.3.20.
[14] Gokkus U, Yildirim M, Yilmazoglu A. Prediction of Concrete and Steel Materials Contained by Cantilever Retaining Wall by Modeling the Artificial Neural Networks. J Soft Comput Civ Eng 2018;2:47–61. doi:10.22115/scce.2018.137218.1078.
[15] Wu X, Yu S, Xue S, Kang THK, Hwang HJ. Punching shear strength of UHPFRC-RC composite flat plates. Eng Struct 2019. doi:10.1016/j.engstruct.2019.01.099.
[16] Naderpour H, Nagai K, Fakharian P, Haji M. Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods. Compos Struct 2019;215:69–84. doi:10.1016/j.compstruct.2019.02.048.
[17] Azizi R, Talaeitaba SB. Punching shear strengthening of flat slabs with CFRP on grooves (EBROG) and external rebars sticking in grooves. Int J Adv Struct Eng 2019. doi:10.1007/s40091-019-0218-4.
[18] Darvishan E. Prediction of the Lateral Confinement Coefficient of The concrete Columns Confined by FRP using the Artificial Neural Network. Concr Res 2020;13:67–80. doi:10.22124/jcr.2020.12174.1335.
[19] Fakharian P, Naderpour H, Haddad A, Rafiean AH, Rezazadeh ED. A Proposed Model for Compressive Strength Prediction of FRP-Confined Rectangular Columns in terms of Genetic Expression Programming (GEP). Concr Res 2018. doi:10.22124/jcr.2018.7162.1191.
[20] Li X, Khademi F, Liu Y, Akbari M, Wang C, Bond PL, et al. Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion. J Environ Manage 2019;234:431–9. doi:10.1016/j.jenvman.2018.12.098.
[21] Hasanzade-Inallu A, Zarfam P, Nikoo M. Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP. J Cent South Univ 2019;26:3156–74. doi:10.1007/s11771-019-4243-z.
[22] Naderpour H, Fakharian P, Hosseini F. Prediction of Behavior of FRP-Confined Circular Reinforced Concrete Columns using Artificial Neural Network. 8th Natl Conf Concr, Tehran, Iran: 2016. doi:10.13140/RG.2.2.11714.58568.
[23] ACI 318-11. Building code requirements for structural concrete (ACI318-11). 2011.
[24] British Standard. Structural use of concrete - Part 1. Code of practice for design and construction 1997:1–128.
[25] Committee ACI 440. Guide for the Design and Construction of Concrete Reinforced with FRP Bars (ACI 440.1 R-06). Am Concr Institute, Detroit, Michigan 2006.
[26] El-Ghandour AW, Pilakoutas K, Waldron P. Punching Shear Behavior of Fiber Reinforced Polymers Reinforced Concrete Flat Slabs: Experimental Study. J Compos Constr 2003;7:258–65. doi:10.1061/(ASCE)1090-0268(2003)7:3(258).
[27] Matthys S, Taerwe L. Concrete slabs reinforced with FRP grids. II: Punching resistance. J Compos Constr 2000;4:154–61.
[28] Ospina CE, Alexander SDB, Roger Cheng JJ. Erratum: Punching of Two-Way Concrete Slabs with Fiber-Reinforced Polymer Reinforcing Bars or Grids (ACI Structural Journal (September-October 2003) 100:5). ACI Struct J 2003;100:834.
[29] El-Gamal S, El-Salakawy E, Benmokrane B. Behavior of concrete bridge deck slabs reinforced with fiber-reinforced polymer bars under concentrated loads. ACI Struct J 2005;102:727–35.
[30] Banthia N, Al-Asaly M, Ma S. Behavior of concrete slabs reinforced with fiber-reinforced plastic grid. J Mater Civ Eng 1995;7:252–7.
[31] Lee JH, Yoon YS, Cook WD, Mitchell D. Improving punching shear behavior of glass fiber-reinforced polymer reinforced slabs. ACI Struct J 2009;106:427–34.
[32] Ahmad SH, Zia P, Yu TJ, Xie Y. Punching Shear Tests of Slabs Reinforced with 3-Dimensional Carbon Fiber Fabric. Concr Int 1994;16:36–41.
[33] El-Salakawy E, Benmokrane B. Serviceability of concrete bridge deck slabs reinforced with fiber-reinforced polymer composite bars. ACI Struct J 2004;101:727–36. doi:10.14359/13395.
[34] Rahman AH, Kingsley CY, Kobayashi K. Service and ultimate load behavior of bridge deck reinforced with carbon FRP grid. J Compos Constr 2000;4:16–23.
[35] Hassan T, Abdelrahman a, Tadros G, Rizkalla S. Fibre reinforced polymer reinforcing bars for bridge decks. Can J Civ Eng 2000;27:839–49. doi:10.1139/l99-098.
[36] Hussein A, Rashid I, Benmokrane B. Two-way concrete slabs reinforced with GFRP bars. Adv Compos Mater Bridg Struct Proceeding 4th Int Conf Adv Compos Mater Bridg Struct CSCE, Calgary, Alta, Canada, July, 2004, p. 20–3.
[37] Ayish M. Punching shear behavior of flat plates with fiber reinforced concrete. Proc Int Conf on, Compos Constr 2004.
[38] Bouguerra K, Ahmed EA, El-Gamal S, Benmokrane B. Testing of full-scale concrete bridge deck slabs reinforced with fiber-reinforced polymer (FRP) bars. Constr Build Mater 2011;25:3956–65. doi:10.1016/j.conbuildmat.2011.04.028.
[39] Ramzy Z, Mahmoud Z, Salma T. Punching behavior and strength of two-way concrete slab reinforced with glass-fiber reinforced polymer (GFRP) rebars. Struct Compos Infrastructures Appl Conf 2007.
[40] Dulude C. Poinçonnement des dalles bidirectionnelles en béton armé d’armature de polymères renforcés de fibres de verre. Université de Sherbrooke; 2011.
[41] Hassan M, Ahmed E, Benmokrane B. Punching-Shear Strength of Normal and High-Strength Two-Way Concrete Slabs Reinforced with GFRP Bars. J Compos Constr 2013;17:04013003. doi:10.1061/(ASCE)CC.1943-5614.0000424.
[42] Nguyen-Minh L, Rovňák M. Punching shear resistance of interior GFRP reinforced slab-column connections. J Compos Constr 2012;17:2–13.
[43] Flood I. Next generation artificial neural networks and their application to civil engineering. Work Eur Gr Intell Comput Eng, 2006, p. 206–21.
[44] Kurnaz TF, Kaya Y. A novel ensemble model based on GMDH-type neural network for the prediction of CPT-based soil liquefaction. Environ Earth Sci 2019. doi:10.1007/s12665-019-8344-7.
[45] Milne L. Feature selection using neural networks with contribution measures. Aust Conf Artif Intell AI’95, Citeseer; 1995, p. 1–8.