Simultaneous Effect of Aggregate and Cement Matrix on the Performance of High Strength Concrete

Document Type : Regular Paper

Authors

1 Department of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

2 Department of Civil Engineering, Tafresh University, Tafresh, Iran

3 Department of Civil Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

In the current experimental work, the simultaneous effect of fineness modulus, water-to-cementitious materials [W/(C+M)], and also micro silica content were investigated on workability, mechanical and physical properties of high strength concrete. For this purpose, 45 mix-designs were made by selecting five different ratios of micro-silica, three W/(C+M) ratios, and three distributions of particle size and then the slump, compressive strength, elastic modulus, and split tensile strength of each designed concrete mixture were determined. Findings showed that increasing the micro-silica content up to 10 wt% improves the mechanical properties of concrete and then leads to a reduction in strength parameters, so that the effect of changes in the micro-silica content on mechanical parameters of concrete becomes more prominent with increasing and decreasing the fineness modulus of aggregate and W/(C+M) ratio, respectively. It was also observed that increasing the micro-silica content leads to reducing the slump and unit weight of concrete so that this reduction is more noticeable in the low fineness modulus of aggregate and water-cement ratio.

Graphical Abstract

Simultaneous Effect of Aggregate and Cement Matrix on the Performance of High Strength Concrete

Highlights

  • The effect of fineness modulus, water-to-cement ratio and microsilica content were investigated on mechanical and physical properties of concrete.
  • 10% was introduced as the optimal value of microsilica content.
  • Split tensile strength was defined as a function of compressive strength.

Keywords

Main Subjects


[1] Shannag, M. J. (2000). High strength concrete containing natural pozzolan and silica fume. Cement and concrete composites, 22(6), 399-406. DOI: 10.1016/S0958-9465(00)00037-8.
[2] Sabir, B. B., Wild, S., & Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and concrete composites, 23(6), 441-454. DOI: 10.1016/S0958-9465(00)00092-5.
[3] Isaia, G. C., GASTALDInI, A. L. G., & Moraes, R. (2003). Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cement and concrete composites, 25(1), 69-76. DOI: 10.1016/S0958-9465(01)00057-9.
[4] Sata, V., Jaturapitakkul, C., & Kiattikomol, K. (2007). Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete. Construction and Building Materials, 21(7), 1589-1598. DOI: 10.1016/j.conbuildmat.2005.09.011.
[5] Bondar, D., Lynsdale, C. J., Milestone, N. B., & Hassani, N. (2012). Oxygen and chloride permeability of alkali-activated natural pozzolan concrete. ACI Materials Journal, 109(1), 53-61.
[6] Wilson, W., Rivera-Torres, J. M., Sorelli, L., Durán-Herrera, A., & Tagnit-Hamou, A. (2017). The micromechanical signature of high-volume natural pozzolan concrete by combined statistical nanoindentation and SEM-EDS analyses. Cement and Concrete Research, 91, 1-12. DOI: 10.1016/j.cemconres.2016.10.004.
[7] Almusallam A, Beshr H, Maslehuddin M, Al-Amoudi, O. Effect of silica fume on the mechanical properties of low-quality coarse aggregate concrete. Cement & Concrete Composites 26 (2004) 891–900. DOI: 10.1016/j.cemconcomp.2003.09.003.
[8] Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., & Fairbairn, E. D. M. R. (2009). Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cement and concrete research, 39(2), 110-115. DOI: 10.1016/j.cemconres.2008.11.005.
[9] Omrane, M., Kenai, S., Kadri, E. H., & Aït-Mokhtar, A. (2017). Performance and durability of self-compacting concrete using recycled concrete aggregates and natural pozzolan. Journal of Cleaner Production, 165, 415-430. DOI: 10.1016/j.jclepro.2017.07.139
[10] Shaban, W. M., Yang, J., Su, H., Liu, Q. F., Tsang, D. C., Wang, L., ... & Li, L. (2019). Properties of recycled concrete aggregates strengthened by different types of pozzolan slurry. Construction and Building Materials, 216, 632-647. DOI: 10.1016/j.conbuildmat.2019.04.231.
[11] Wu KR, Chen B, Yao W, Zhang D. Effect of coarse aggregate type on mechanical properties of high-performance concrete. Cement and Concrete Research 31 (2001) 1421–1425. DOI: 10.1016/S0008-8846(01)00588-9.
[12] Paiva, H., Silva, A. S., Velosa, A., Cachim, P., & Ferreira, V. M. (2017). Microstructure and hardened state properties on pozzolan-containing concrete. Construction and Building Materials, 140, 374-384. DOI: 10.1016/j.conbuildmat.2017.02.120.
[13] Pachideh, G., & Gholhaki, M. (2019). Effect of pozzolanic materials on mechanical properties and water absorption of autoclaved aerated concrete. Journal of Building Engineering, 26, 100856. DOI: 10.1016/j.jobe.2019.100856.
[14] Raggiot, B. B., Positieri, M. J., Locati, F., Murra, J., & Marfil, S. (2020). Zeolite, study of aptitude as a natural pozzolan applied to structural concrete. Journal of Construction, 14(2), 14-20.
[15] Li, L. G., Zheng, J. Y., Zhu, J., & Kwan, A. K. H. (2018). Combined usage of micro-silica and nano-silica in concrete: SP demand, cementing efficiencies, and synergistic effect. Construction and Building Materials, 168, 622-632. DOI: 10.1016/j.conbuildmat.2018.02.181
[16] Massana, J., Reyes, E., Bernal, J., León, N., & Sánchez-Espinosa, E. (2018). Influence of nano-and micro-silica additions on the durability of a high-performance self-compacting concrete. Construction and Building Materials, 165, 93-103. DOI: 10.1016/j.conbuildmat.2017.12.100.
[17] Lee, N. K., Koh, K. T., Kim, M. O., & Ryu, G. S. (2018). Uncovering the role of micro silica in hydration of ultra-high performance concrete (UHPC). Cement and Concrete Research, 104, 68-79. DOI: 10.1016/j.cemconres.2017.11.002.
[18] Kennedy HL. Revised Application of Fineness Modulus In Concrete Proportioning. ACI Materials Journal, V. 36, June 1940, pp. 597-614.
[19] Bittencourt, R. M., Fontoura, J. T. F., Andrade, W. D., & Monteiro, P. J. M. (2001). Mass concrete mixtures based on fineness modulus and geometrical gradation. Journal of materials in civil engineering,13(1), 33-40. DOI: 10.1061/(ASCE)0899-1561(2001)13:1(33).
[20] Poon CS, Lam CS. The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks. Cement & Concrete Composites 30 (2008) 283–289. DOI: 10.1016/j.cemconcomp.2007.10.005.
[21] Karamloo, M., Mazloom, M., & Payganeh, G. (2016). Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete. Construction and Building Materials, 123, 508-515. DOI: 10.1016/j.conbuildmat.2016.07.061.
[22] Donza H, Cabrera O, Irassar EF. High-strength concrete with different fine aggregate. Cement and Concrete Research 32 (2002) 1755–1761. DOI: 10.1016/S0008-8846(02)00860-8.
[23] Jiang, C., Wu, Y. F., & Jiang, J. F. (2017). Effect of aggregate size on stress-strain behavior of concrete confined by fiber composites. Composite Structures, 168, 851-862. DOI: 10.1016/j.compstruct.2017.02.087.
[24] Ghasemi, M., Ghasemi, M. R., & Mousavi, S. R. (2018). Investigating the effects of maximum aggregate size on self-compacting steel fiber reinforced concrete fracture parameters. Construction and Building Materials, 162, 674-682. DOI: 10.1016/j.conbuildmat.2017.11.141.
[25] Park, S., Lee, E., Ko, J., Yoo, J., & Kim, Y. (2018). Rheological properties of concrete using dune sand. Construction and Building Materials, 172, 685-695. DOI: 10.1016/j.conbuildmat.2018.03.192.
[26] Jang, S. J., & Yun, H. D. (2018). Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete. Composite Structures, 185, 203-211. DOI: 10.1016/j.compstruct.2017.11.009.
[27] Singh, M., & Siddique, R. (2016). Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. Journal of Cleaner Production, 112, 620-630. DOI: 10.1016/j.jclepro.2015.08.001.
[28] ACI Committee 211 (2009) ACI 211. 1-91 Standard practice for selecting proportions for normal, heavyweight, and mass concrete. DOI:
[29] Juenger, M. C. G., & Jennings, H. M. (2002). New insights into the effects of sugar on the hydration and microstructure of cement pastes. Cement and concrete research, 32(3), 393-399. DOI: 10.1016/S0008-8846(01)00689-5.
[30] ASTM C143 (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International. DOI:
[31] BS EN 12390-3 (2002). Testing of hardened concrete. Part 3: Compressive Strength of Test Specimens. DOI:
[32] ASTM C496/C496M-17 (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International. DOI:
[33] Yazdandoust, M. (2019). Shaking table modeling of MSE/soil nail hybrid retaining walls. Soils and Foundations, 59(2), 241-252. DOI: 10.1016/j.sandf.2018.05.013.
[34] Yazdandoust, M. (2019). Assessment of horizontal seismic coefficient for three different types of reinforced soil structure using physical and analytical modeling. International Journal of Geomechanics, 19(7), 04019070. DOI: 10.1061/(ASCE)GM.1943-5622.0001344.
[35] Yazdandoust, M., Panah, A. K., & Ghalandarzadeh, A. (2019). Effect of reinforcing technique on strain-dependent dynamic properties of reinforced earth walls. Soils and Foundations, 59(4), 1001-1012. DOI: 10.1016/j.sandf.2019.04.005.
[36] Yazdandoust, M., & Ghalandarzadeh, A. (2020). Pseudo-static coefficient in reinforced soil structures. International Journal of Physical Modelling in Geotechnics, 20(6), 320-337. DOI: 10.1680/jphmg.18.00013.
[37] Kakavand, M. R. A., Neuner, M., Schreter, M., & Hofstetter, G. (2018). A 3D continuum FE-model for predicting the nonlinear response and failure modes of RC frames in pushover analyses. Bulletin of Earthquake Engineering, 16(10), 4893-4917. DOI: 10.1007/s10518-018-0388-7.
[38] Kakavand, M. R. A., & Allahvirdizadeh, R. (2019). Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural, shear, or axial failure modes. Frontiers of Structural and Civil Engineering, 13(5), 1251-1270. DOI: 10.1007/s11709-019-0554-2.
[39] Azadi Kakavand, M. R., & Khanmohammadi, M. (2018). Seismic Fragility assessment of local and global failures in low-rise non-ductile existing RC buildings: Empirical shear-axial modelling vs. ASCE/SEI 41 approach. Computational Engineering and Physical Modeling, 1(1), 38-57.DOI:10.22115/CEPM.2018.114549. 1008.
[40] Farahmand, H., Kakavand, M. R. A., Tafreshi, S. T., & Hafiz, P. (2015). The effect of mechanical and geometric parameters on the shear and axial failures of columns in reinforced concrete frames. Ciência e Natura, 37(6-1), 247-259.
[41] Kakavand, M. R. A. A., Taciroglu, E. B., & Hofstetter, G. C. (2020). An enhanced damage-plasticity model for predicting the cyclic behavior of plain concrete under multiaxial loading conditions", Frontiers of Structural and Civil Engineering, In press.
[42] Bhanja, S., & Sengupta, B. (2005). Influence of silica fume on the tensile strength of concrete. Cement and concrete research, 35(4), 743-747. DOI: 10.1016/j.cemconres.2004.05.024.
[43] Nguyen, T. T., Goodier, C. I., & Austin, S. A. (2020). Factors affecting the slump and strength development of geopolymer concrete. Construction and Building Materials, 261, 119945. DOI: 10.1016/j.conbuildmat.2020.119945.
[44] Sharifi, Y., & Hosainpoor, M. (2020). Compressive strength assessment of concrete containing metakaolin using ANN. Journal of Rehabilitation in Civil Engineering, 8(4), 15-27. DOI: 10.22075/JRCE.2020.19043.1358.
[45] Fatahi, O., & Jafari, S. (2020). Prediction of Lightweight Aggregate Concrete Compressive Strength. Journal of Rehabilitation in Civil Engineering, 8(4), 45-57. DOI:10.22075/JRCE.2017.11556.1192.
[46] Pourahmadi Sefat Arabani, H., SadrMomtazi, A., Mirgozar Langaroudi, M. A., Kohani Khoshkbijari, R., & Amooie, M. (2017). Durability of Self-Compacting Lightweight Aggregate Concretes (LWSCC) as Repair Overlays. Journal of Rehabilitation in Civil Engineering, 5(2), 104-116. DOI: 10.22075/JRCE.2017.11415.1187.
[47] Sharbatdar, M.K., Abbasi, M., Fakharian, P., (2020), Improving the Properties of Self-Compacted Concrete with Using Combined Silica Fume and Metakaolin, Periodica Polytechnica Civil Engineering, 64(2), 535-544. DOI: 10.3311/PPci.11463
[48] Naderi, M., Kaboudan, A., & Akhavan Sadighi, A. (2018). Comparative Study on Water Permeability of Concrete Using Cylindrical Chamber Method and British Standard and Its Relation with Compressive Strength. Journal of Rehabilitation in Civil Engineering, 6(1), 116-131. DOI: 10.22075/JRCE.2017.11415.1187.
[49] Kurda, R., de Brito, J., & Silvestre, J. D. (2019). Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cement and Concrete Composites, 95, 169-182. DOI: 10.1016/j.cemconcomp.2018.10.004.
[50] Zareei, S. A., Ameri, F., Dorostkar, F., & Ahmadi, M. (2017). Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties. Case studies in construction materials, 7, 73-81. DOI: 10.1016/j.cscm.2017.05.001.
[51] Hussain, R. R., Shuraim, A. B., Aslam, F., Alhozaimy, A. M., & Al-Humaiqani, M. M. (2018). Coupled effect of coarse aggregate and micro-silica on the relation between strength and elasticity of high performance concrete. Construction and Building Materials, 175, 321-332. DOI: 10.1016/j.conbuildmat.2018.04.192.

Articles in Press, Accepted Manuscript
Available Online from 15 January 2021
  • Receive Date: 04 July 2020
  • Revise Date: 15 December 2020
  • Accept Date: 15 January 2021