[1] Jahangir H, Esfahani MR. Damage localization of Structures Using Adaptive Neuro-Fuzzy Inference System. 7th Natl. Congr. Civ. Eng., Zahedan, Iran: 2013.
[2] Daneshvar MH, Gharighoran A, Zareei SA, Karamodin A. Early damage detection under massive data via innovative hybrid methods: application to a large-scale cable-stayed bridge. Struct Infrastruct Eng 2020:1–19. https://doi.org/10.1080/15732479.2020.1777572.
[3] Jahangir H, Khatibinia M, Kavousi M. Application of Contourlet Transform in Damage Localization and Severity Assessment of Prestressed Concrete Slabs. Soft Comput Civ Eng 2021;5:39–67. https://doi.org/10.22115/SCCE.2021.282138.1301.
[4] Jahangir H, Karamodin A. Structural Behavior Investigation Based on Adaptive Pushover Procedure. 10th Natl. Congr. Civ. Eng., Tehran, Iran: 2015.
[5] Jahangir H, Bagheri M. Evaluation of Seismic Response of Concrete Structures Reinforced by Shape Memory Alloys (Technical Note). Int J Eng 2020;33. https://doi.org/10.5829/ije.2020.33.03c.05.
[6] Jahangir H, Esfahani MR. Numerical Study of Bond – Slip Mechanism in Advanced Externally Bonded Strengthening Composites. KSCE J Civ Eng 2018;22:4509–18. https://doi.org/10.1007/s12205-018-1662-6.
[7] Jahangir H, Esfahani MR. Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour. Steel Compos Struct 2020;34:877–89. https://doi.org/10.12989/scs.2020.34.6.877.
[8] Jahangir H, Esfahani MR. Experimental analysis on tensile strengthening properties of steel and glass fiber reinforced inorganic matrix composites. Sci Iran 2020. https://doi.org/10.24200/SCI.2020.54787.3921.
[9] Bagheri M, Chahkandi A, Jahangir H. Seismic Reliability Analysis of RC Frames Rehabilitated by Glass Fiber-Reinforced Polymers. Int J Civ Eng 2019. https://doi.org/10.1007/s40999-019-00438-x.
[10] Jahangir H, Daneshvar Khoram MH, Esfahani MR. Application of vibration modal data in gradually detecting structural damage (In Persian). 4th Int. Conf. Acoust. Vib., Tehran, Iran: 2014.
[11] Arefzade T, Hosseini Vaez S, Naderpour H, Ezzodin A. Identifying location and severity of multiple cracks in reinforced concrete cantilever beams using modal and wavelet analysis. J Struct Constr Eng 2016;3:72–83.
[12] Altunışık AC, Okur FY, Karaca S, Kahya V. Vibration-based damage detection in beam structures with multiple cracks: modal curvature vs. modal flexibility methods. Nondestruct Test Eval 2019;34:33–53. https://doi.org/10.1080/10589759.2018.1518445.
[13] Daneshvar MH, Gharighoran A, Zareei SA, Karamodin A. Damage Detection of Bridge by Rayleigh-Ritz Method. J Rehabil Civ Eng 2020;8:111–20. https://doi.org/10.22075/JRCE.2019.17603.1337.
[14] Singh J, Roy AK. Wind Pressure Coefficients on Pyramidal Roof of Square Plan Low Rise Double Storey Building. Comput Eng Phys Model 2019;2:1–16. https://doi.org/10.22115/cepm.2019.144599.1043.
[15] Seyedi SR, Keyhani A, Jahangir H. An Energy-Based Damage Detection Algorithm Based on Modal Data. 7th Int. Conf. Seismol. Earthq. Eng., International Institute of Earthquake Engineering and Seismology (IIEES); 2015, p. 335–6.
[16] Pahlevan Mosavari, A. Jahangir H, Esfahani MR. The Effect of Sensor Weight on Obtained Data from Modal Tests (In Persian). 9th Natl. Congr. Civ. Eng., Mashhad, Iran: Ferdowsi University of Mashhad; 2016.
[17] Yang YB, Yang JP. State-of-the-Art Review on Modal Identification and Damage Detection of Bridges by Moving Test Vehicles. Int J Struct Stab Dyn 2018;18:1850025. https://doi.org/10.1142/S0219455418500256.
[18] Naderpour H, Fakharian P. A synthesis of peak picking method and wavelet packet transform for structural modal identification. KSCE J Civ Eng 2016;20:2859–67. https://doi.org/10.1007/s12205-016-0523-4.
[19] Jahangir H, Esfahani MR. Structural Damage Identification Based on Modal Data and Wavelet Analysis. 3rd Natl. Conf. Earthq. Struct., Kerman, Iran: 2012.
[20] Avci O. Amplitude-Dependent Damping in Vibration Serviceability: Case of a Laboratory Footbridge. J Archit Eng 2016;22:04016005. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000211.
[21] Amabili M. Nonlinear damping in large-amplitude vibrations: modelling and experiments. Nonlinear Dyn 2018;93:5–18. https://doi.org/10.1007/s11071-017-3889-z.
[22] Li W, Vu V-H, Liu Z, Thomas M, Hazel B. Extraction of modal parameters for identification of time-varying systems using data-driven stochastic subspace identification. J Vib Control 2018;24:4781–96. https://doi.org/10.1177/1077546317734670.
[23] Lu L, Song H, Huang C. Effects of random damages on dynamic behavior of metallic sandwich panel with truss core. Compos Part B Eng 2017;116:278–90. https://doi.org/10.1016/j.compositesb.2016.10.051.
[24] Rezazadeh Eidgahee D, Rafiean AH, Haddad A. A Novel Formulation for the Compressive Strength of IBP-Based Geopolymer Stabilized Clayey Soils Using ANN and GMDH-NN Approaches. Iran J Sci Technol Trans Civ Eng 2019. https://doi.org/10.1007/s40996-019-00263-1.
[25] Rezazadeh Eidgahee D, Haddad A, Naderpour H. Evaluation of shear strength parameters of granulated waste rubber using artificial neural networks and group method of data handling. Sci Iran 2019;26:3233–44. https://doi.org/10.24200/sci.2018.5663.1408.
[26] Naderpour H, Rezazadeh Eidgahee D, Fakharian P, Rafiean AH, Kalantari SM. A new proposed approach for moment capacity estimation of ferrocement members using Group Method of Data Handling. Eng Sci Technol an Int J 2020;23:382–91. https://doi.org/10.1016/j.jestch.2019.05.013.
[27] Jahangir H, Rezazadeh Eidgahee D. A new and robust hybrid artificial bee colony algorithm – ANN model for FRP-concrete bond strength evaluation. Compos Struct 2021;257:113160. https://doi.org/10.1016/J.COMPSTRUCT.2020.113160.
[28] Ghorbani B, Arulrajah A, Narsilio G, Horpibulsuk S, Leong M. Resilient moduli of demolition wastes in geothermal pavements: Experimental testing and ANFIS modelling. Transp Geotech 2021;29:100592. https://doi.org/10.1016/j.trgeo.2021.100592.
[29] Ghorbani B, Arulrajah A, Narsilio G, Horpibulsuk S. Experimental investigation and modelling the deformation properties of demolition wastes subjected to freeze–thaw cycles using ANN and SVR. Constr Build Mater 2020;258:119688. https://doi.org/10.1016/j.conbuildmat.2020.119688.
[30] Sadrossadat E, Ghorbani B, Hamooni M, Moradpoor Sheikhkanloo MH. Numerical formulation of confined compressive strength and strain of circular reinforced concrete columns using gene expression programming approach. Struct Concr 2018;19:783–94. https://doi.org/10.1002/suco.201700131.
[31] Kiran KKH, Kori JG. Controlling Blast Loading of the Structural System by Cladding Material. Comput Eng Phys Model 2018;1:79–99. https://doi.org/10.22115/cepm.2018.141294.1038.
[32] Law SS, Li XY, Zhu XQ, Chan SL. Structural damage detection from wavelet packet sensitivity. Eng Struct 2005;27:1339–48. https://doi.org/10.1016/j.engstruct.2005.03.014.
[33] Li F, Meng G, Ye L, Lu Y, Kageyama K. Dispersion analysis of Lamb waves and damage detection for aluminum structures using ridge in the time-scale domain. Meas Sci Technol 2009;20:095704. https://doi.org/10.1088/0957-0233/20/9/095704.
[34] Vieira Filho J, Baptista FG, Inman DJ. Time-domain analysis of piezoelectric impedance-based structural health monitoring using multilevel wavelet decomposition. Mech Syst Signal Process 2011;25:1550–8. https://doi.org/10.1016/j.ymssp.2010.12.003.
[35] Rauter N, Lammering R. Impact Damage Detection in Composite Structures Considering Nonlinear Lamb Wave Propagation. Mech Adv Mater Struct 2015;22:44–51. https://doi.org/10.1080/15376494.2014.907950.
[36] Patel SS, Chourasia AP, Panigrahi SK, Parashar J, Parvez N, Kumar M. Damage Identification of RC Structures Using Wavelet Transformation. Procedia Eng 2016;144:336–42. https://doi.org/10.1016/j.proeng.2016.05.141.
[37] Qu H, Li T, Chen G. Adaptive wavelet transform: Definition, parameter optimization algorithms, and application for concrete delamination detection from impact echo responses. Struct Heal Monit 2018:147592171877620. https://doi.org/10.1177/1475921718776200.
[38] Naito H, Bolander JE. Damage detection method for RC members using local vibration testing. Eng Struct 2019;178:361–74. https://doi.org/10.1016/j.engstruct.2018.10.031.
[39] Jahangir H, Esfahani MR. Strain of Newly – Developed Composites Relationship in Flexural Tests (In Persian). J Struct Constr Eng 2018;5:92–107. https://doi.org/10.22065/jsce.2017.91828.1255.
[40] Ghalehnovi M, Yousefi M, Karimipour A, de Brito J, Norooziyan M. Investigation of the Behaviour of Steel-Concrete-Steel Sandwich Slabs with Bi-Directional Corrugated-Strip Connectors. Appl Sci 2020;10:8647. https://doi.org/10.3390/app10238647.
[41] Chaboki HR, Ghalehnovi M, Karimipour A, de Brito J, Khatibinia M. Shear behaviour of concrete beams with recycled aggregate and steel fibres. Constr Build Mater 2019;204:809–27. https://doi.org/10.1016/j.conbuildmat.2019.01.130.
[42] Karimipour A, Edalati M. Shear and flexural performance of low, normal and high-strength concrete beams reinforced with longitudinal SMA, GFRP and steel rebars. Eng Struct 2020;221:111086. https://doi.org/10.1016/j.engstruct.2020.111086.
[43] Karimipour A, Ghalehnovi M. Comparison of the effect of the steel and polypropylene fibres on the flexural behaviour of recycled aggregate concrete beams. Structures 2021;29:129–46. https://doi.org/10.1016/j.istruc.2020.11.013.
[44] Ghalehnovi M, Karimipour A, Anvari A, de Brito J. Flexural strength enhancement of recycled aggregate concrete beams with steel fibre-reinforced concrete jacket. Eng Struct 2021;240:112325. https://doi.org/10.1016/j.engstruct.2021.112325.
[45] Jahangir H, Bagheri M, Delavari SMJ. Cyclic Behavior Assessment of Steel Bar Hysteretic Dampers Using Multiple Nonlinear Regression Approach. Iran J Sci Technol Trans Civ Eng 2021;45:1227–51. https://doi.org/10.1007/s40996-020-00497-4.
[46] Mallat S. A wavelet tour of signal processing. London, UK: Academic Press; 1999.
[47] Hanteh M, Rezaifar O, Gholhaki M. Selecting the appropriate wavelet function in the damage detection of precast panel building based on experimental results and numerical method. Sharif J Civ Eng 2021. https://doi.org/10.24200/J30.2020.56237.2812.
[48] Hanteh M, Rezaifar O, Gholhaki M. Selecting the appropriate wavelet function in the damage detection of precast full panel building based on experimental results and wavelet analysis. J Civ Struct Heal Monit 2021;11:1013–36. https://doi.org/10.1007/s13349-021-00497-6.
[49] Ovanesova AV, Suárez LE. Applications of wavelet transforms to damage detection in frame structures. Eng Struct 2004;26:39–49. https://doi.org/10.1016/j.engstruct.2003.08.009.
[50] Fakharian P. Structural Damage Detection Using Wavelet Packet Transform and Improved Peak-Picking Method. Semnan University, 2014.
[51] Fakharian P, Naderpour H. Damage Severity Quantification Using Wavelet Packet Transform and Peak Picking Method. Pract Period Struct Des Constr 2022;27. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000639.
[52] Hanteh M, Rezaifar O, Gholhaki M. Damage Detection in Precast Full Panel Building Based on Experimental Results and Continuous Wavelet Analysis Analytical Method. Modares Civ Eng J 2021;21.
[53] Rasouli A, Kourehli SS, Ghodrati Amiri G, Kheyroddin A. A Two-Stage Method for Structural Damage Prognosis in Shear Frames Based on Story Displacement Index and Modal Residual Force. Adv Civ Eng 2015;2015:1–15. https://doi.org/10.1155/2015/527537.
[54] Gao RX, Yan R. Wavelets: Theory and applications for manufacturing. Boston, MA: Springer US; 2011. https://doi.org/10.1007/978-1-4419-1545-0.
[55] Hanteh M, Rezaifar O. Damage detection in precast full panel building by continuous wavelet analysis analytical method. Structures 2021;29:701–13. https://doi.org/10.1016/j.istruc.2020.12.002.
[56] Pahlevan Mosavari M. Damage detection on slabs using modal analysis. Ferdowsi University of Mashhad, 2014.
[57] Lubliner J, Oliver J, Oller S, Oñate E. A plastic-damage model for concrete. Int J Solids Struct 1989;25:299–326. https://doi.org/10.1016/0020-7683(89)90050-4.
[58] Oñate E, Oller S, Oliver J, Lubliner J. A constitutive model for cracking of concrete based on the incremental theory of plasticity. Eng Comput 1988;5:309–19. https://doi.org/10.1108/eb023750.
[59] Oller S, Oñate E, Miquel J, Botello S. A plastic damage constitutive model for composite materials. Int J Solids Struct 1996;33:2501–18. https://doi.org/10.1016/0020-7683(95)00161-1.
[60] Pappalardo CM, Guida D. Adjoint-based optimization procedure for active vibration control of nonlinear mechanical systems. J Dyn Syst Meas Control 2017;139:081010. https://doi.org/10.1115/1.4035609.
[61] Sohn H, Czarnecki JA, Farrar CR. Structural Health Monitoring Using Statistical Process Control. J Struct Eng 2000;126:1356–63. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1356).
[62] Sun Z, Chang CC. Statistical Wavelet-Based Method for Structural Health Monitoring. J Struct Eng 2004;130:1055–62. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:7(1055).
[63] Han J-G, Ren W-X, Sun Z-S. Wavelet packet based damage identification of beam structures. Int J Solids Struct 2005;42:6610–27. https://doi.org/10.1016/j.ijsolstr.2005.04.031.