Liquefaction Susceptibility Mapping in West Bengal with emphasis on its Capital City Kolkata under the Impact of a few Great Earthquakes triggered from the Himalaya and Northeast India

Document Type : Regular Paper

Authors

Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, India

Abstract

A host of great historical earthquakes from the Himalayas and Northeast India reportedly triggered liquefaction with the surface manifestation of sand boil, ground subsidence and lateral spreading in West Bengal and its capital city Kolkata located in the alluvium-rich Ganga-Brahmaputra river system, thus presenting a strong case towards systematic liquefaction potential analysis for this terrain using multivariate techniques based on a large Geophysical and Geotechnical data base. An integrated computational protocol has provided site classification of the terrain following standard nomenclature and its characterization in terms of absolute and generic spectral site amplification through equivalent linear/ non-linear geotechnical response spectral modelling as an intermediate step towards Liquefaction Potential and Risk assessment of the region. The large Geotechnical database is used for estimating Cyclic Stress Ratio (CSR) and Cyclic Resistance Ratio (CRR), which further delivered Factor of Safety (FOS), Liquefaction Potential Index (LPI), Probability of Liquefaction (PL), and Liquefaction Risk Index (IR) in the State and its capital Kolkata. The State including Kolkata have been classified into ‘Severe’, ‘High’, ‘Moderate’ and ‘Non-liquefiable’ zones based on LPI distribution while the liquefaction risk map classified the terrain into ‘Low (IR ≤20)’, ‘High (20<IR≤30)’ and ‘Extreme (IR>30)’ Risk Zones. An intensely liquefiable stratum with FOS<1 is identified in the 5-15m depth region consisting of coarse-grained variants of sand, silty-sand and clayey-silty sand with an approximately 0.5-12.7m deep groundwater condition. An understanding of the liquefaction potential and its associated risk will act as catalyst in reducing structural vulnerability of the terrain by improving sediment strength.

Keywords

Main Subjects


[1]     Ambraseys, N., Sarma, S. (1969). "Liquefaction of soils induced by earthquakes." Bulletin of the Seismological Society of America, Vol. 59, Issue.  2, pp. 651–664. doi:10.1785/bssa0590020651.
[2]     Sladen, J. A., D’Hollander, R. D., Krahn, J. (1985). "The liquefaction of sands, a collapse surface approach.” Canadian Geotechnical Journal, Vol. 22, Issue.  4, pp. 564–578. doi:10.1139/t85-076.
[3]     Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Jr Harder, L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson-III, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B., Stokoe-II, K. H. (2001). "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, pp. 817–833. doi:10.1061/(asce)1090-0241(2001)127:4(297).
[4]     Nath, S. K. (2011). "Seismic Microzonation Manual.” Geoscience Division Ministry of Earth Sciences, Government of India.
[5]     USGS. (2008). "USGS Open File Report 2008-1150, Shake out Scenario Appendix C: Characteristics of Earthquake-Induced Permanent Ground Deformation and Examples from Past Earthquakes."
[6]     Holzer, T. L., Bennett, M. J., Ponti, D. J., Tinsley III, J. C. (1999). "Liquefaction and Soil Failure During 1994 Northridge Earthquake.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, Issue.  6, pp. 438–452. doi:10.1061/(asce)1090-0241(1999)125:6(438).
[7]     Papathanassiou, G., Pavlides, S., Ganas, A. (2005). "The 2003 Lefkada earthquake: Field observations and preliminary microzonation map based on liquefaction potential index for the town of Lefkada.” Engineering Geology, Vol. 82, pp. 12–31. doi:10.1016/j.enggeo.2005.08.006.
[8]     Shahri, A., Rajablou, R., Ghaderi, A. (2013). "An Improved Method for Seismic Site Characterization with Emphasis on Liquefaction Phenomenon.” Journal of Rehabilitation in Civil Engineering, Vol. 1, Issue.  1, pp. 53–65. doi:10.22075/jrce.2013.5.
[9]     Oldham, R. D. (1899). "Report on the Great Earthquake of June 12th, 1897.” Geological Survey of India, Vol. xxix. doi:10.1017/s0016756800174473.
[10]   Ambraseys, N., Bilham, R. (2003). "Reevaluated intensities for the great Assam Earthquake of 12 June 1897, Shillong, India.” Bulletin of the Seismological Society of America, Vol. 93, Issue.  2, pp. 655–673. doi:10.1785/0120020093.
[11]   Stuart, M. (1921). "The Srimangal Earthquake of 8th July, 1918.” Geological Survey of India Memorandum, Vol. 46, Issue.  1, pp. 1–70. doi:10.1017/s001675680009097x.
[12]   Sarkar, J. K., Ansary, M. A., Islam, M. R., Safiullah, A. M. M. (2010). "Potential losses for Sylhet, Bangladesh in a repeat of the 1918 Sri- mangal earthquake.” Environmental Economics, Vol. 1, Issue.  1, pp. 12–31.
[13]   GSI. (1939). "The Bihar-Nepal Earthquake of 1934." Geological Survey of India, Vol. 73, pp. 391.
[14]   Lambert, G. (1898). "India, the Horror-Stricken Empire, Containing a Full Account of the Famine, Plague and Earthquake of 1896–7, Including a Complete Narration of the Relief Work through the Home and Foreign Relief Commision." Mennonite Publishing Company, Elkhart, Indiana.
[15]   Luttman-Johnson, H. (1898). "The earthquake in Assam.” Journal of the Society of Arts, Vol. 46, pp. 473–493.
[16]   Nath, S. K., Raj, A., Thingbaijam, K. K. S., Kumar, A. (2009). "Ground motion synthesis and seismic scenario in Guwahati city-A stochastic approach.” Seismological Research Letters, Vol. 80, Issue.  2, pp. 233–242. doi:10.1785/gssrl.80.2.233.
[17]   GSI. (1918). "Preliminary note on Srimangal earthquake of July 8, 1918.” Geological Survey of India, Vol. 3, pp. 173–189.
[18]   GSI. (1934). "Dhubri earthquake 1930.” Geological Survey of India Memorandum, Vol. 65, pp. 106.
[19]   Gee, E. R. (1934). "The Dhubri earthquake of the 3rd July, 1930.” Office of the Geological Survey.
[20]   GSI. (1939). "The Bihar-Nepal Earthquake of 1934.” Geological Survey of India, Vol. 73, pp. 391.
[21]   Dasgupta, S., Pande, P., Ganguly, D., Iqbal, Z., Sanyal, K., Venaktraman, N. V., Dasgupta, S., Sural, B., Harendranath, L., Mazumdar, K., Sanyal, S., Roy, A., Das, L. K., Misra, P. S., Gupta, H. (2000). "Seismotectonic Atlas of India and its Environs.” Geological Survey of India Special Publication, Vol. 59, pp. 87.
[22]   Kingdon, W. F. (1953). "Flora of Lohit Valley in 1950.” Proceeding of Linnaean Society London, Vol. 164, pp. 2–8.
[23]   GSI. (1993). "Bihar-Nepal Earthquake, August 20, 1988.” Geological Survey of India, Vol. 31, pp. 61–81.
[24]   EERI. (2012). "Earthquake Engineering Research Institute: The Mw 6.9 Sikkim-Nepal Border Earthquake of September 18, 2011." EERI Special Report.
[25]   Martin, S. S., Hough, S. E., Hung, C. (2015). "Ground motions from the 2015 Mw 7.8 Gorkha, Nepal, Earthquake constrained by a detailed assessment of macroseismic data.” Seismological Research Letters, Vol. 86, Issue.  6, pp. 1524–1532. doi:10.1785/0220150138.
[26]   Nath, S. K., Adhikari, M. D., Maiti, S. K., Devaraj, N., Srivastava, N., Mohapatra, L. D. (2014). "Earthquake scenario in West Bengal with emphasis on seismic hazard microzonation of the city of Kolkata, India.” Natural Hazards and Earth System Sciences, Vol. 14, pp. 2549–2575. doi:10.5194/nhess-14-2549-2014.
[27]   Alam, M. K., Hassan, A., Khan, M., Whitney, J. W. (1990). "Geological Map of Bangladesh." Geological Survey of Bangladesh.
[28]   GSI. (1999). "Geology and Mineral Resources of the States of India, Pt. 1: West Bengal, Miscl.” Geological Survey of India, Vol. 30, pp. 42.
[29]   Nath, S. K., Ghatak, C., Sengupta, A., Biswas, A., Madan, J., Srivastava, A. (2021). "Regional–Local Hybrid Seismic Hazard and Disaster Modeling of the Five Tectonic Province Ensemble Consisting of Westcentral Himalaya to Northeast India.” Springer Nature Singapore Pte Ltd. 2021, T. G. Sitharam et Al. (Eds.), Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics, Springer Transactions in Civil and Environmental Engineering, pp. 307–358. doi:10.1007/978-981-16-1468-2_14.
[30]   Nakamura, Y. (1989). "Method for dynamic characteristics estimation of subsurface using microtremor on the ground surface.” Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), Vol. 30, Issue.  1.
[31]   Bard, P. Y. (1998). "Microtremor measurement: a tool for site effect estimation?” State-of-the-Art Paper, Proceedings of the Second International Symposium on the Effects of Surface Geology on Seismic Motion, Yokohama, December 1-3, 1998, Irikura, Kudo, Okada and Sasatani (Editors), Balkema, Vol. 3, pp. 1251–1279.
[32]   Park, C. B., Miller, R. D., Xia, J. (1998). "Imaging dispersion curves of surface waves on multi-channel record.” 1998 SEG Annual Meeting, 1377–1380. doi:10.1190/1.1820161.
[33]   Nazarian, S., Stokoe, K. H. (1984). "Nondestructive Testing of Pavements using Surface Waves.” Transportation Research Record, Vol. 993, pp. 67–79.
[34]   Nath, S. K. (2016). "Seismic Hazard Vulnerability and Risk Microzonation Atlas of Kolkata." Geoscience Division, Ministry of Earth Sciences, ©Govt. of India, New Delhi. http://www.moes.gov.in/content/seismic-hazard-vulnerability-and-riskmicrozonation-atlas-kolkata.
[35]   Japan Road Association (JRA). (1980). "Specification and Interpretation of Bridge Design for Highway – Part V: Resilient Design." pp. 14-15.
[36]   Kirar, B., Maheshwari, B. K., Muley, P. (2016). "Correlation Between Shear Wave Velocity (Vs) and SPT Resistance (N) for Roorkee Region.” International Journal of Geosynthetics and Ground Engineering, Vol. 2, Issue.  1, pp. 9. doi:10.1007/s40891-016-0047-5.
[37]   Naik, S. P., Patra, N. R. (2018). "Generation of Liquefaction Potential Map for Kanpur City and Allahabad City of Northern India: An Attempt for Liquefaction Hazard Assessment.” Geotechnical and Geological Engineering, Vol. 36, Issue.  1, pp. 293–305. doi:10.1007/s10706-017-0327-4.
[38]   UBC. (1997). "Uniform building code.” In: International Conference of Building Officials., Whittier, CA.
[39]   Nath, S. K., Thingbaijam, K. K. S. (2011). "Peak ground motion predictions in India: An appraisal for rock sites.” Journal of Seismology, Vol. 15, Issue.  2, pp. 295–315. doi:10.1007/s10950-010-9224-5.
[40]   Sun, C. G., Kim, H. S., Chung, C. K., Chi, H. C. (2014). "Spatial zonations for regional assessment of seismic site effects in the Seoul metropolitan area.” Soil Dynamics and Earthquake Engineering, Issue.  56, pp. 44–56. doi:10.1016/j.soildyn.2013.10.003.
[41]   Sun, C. G., Kim, H. S., Cho, H. I. (2018). "Geo-proxy-based site classification for regional zonation of seismic site effects in South Korea.” Applied Sciences (Switzerland), Vol. 23, pp. 4. doi:10.3390/app8020314.
[42]   Boore, D. M. (1983). "Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra.” Bulletin of the Seismological Society of America, Vol. 73, pp. 1865–1894.
[43]   Motazedian, D., Atkinson, G. M. (2005). "Stochastic finite-fault modeling based on a dynamic corner frequency.” Bulletin of the Seismological Society of America, Vol. 95, Issue.  3, pp. 995–1010. doi:10.1785/0120030207.
[44]   Raghu Kanth, S. T. G., Sreelatha, S., Dash, S. K. (2008). "Ground motion estimation at Guwahati city for an Mw 8.1 earthquake in the Shillong plateau.” Tectonophysics, Vol. 448, Issue.  1–4, pp. 98–114. doi:10.1016/j.tecto.2007.11.028.
[45]   Rodolfo Saragoni, G., Hart, G. C. (1973). "Simulation of artificial earthquakes.” Earthquake Engineering & Structural Dynamics, Vol. 2, pp. 249–268. doi:10.1002/eqe.4290020305.
[46]   Nath, S. K., Thingbaijam, K. K. S., Vyas, J. C., Sengupta, P., Dev, S. M. S. P. (2010). "Macroseismic-driven site effects in the Southern Territory of West Bengal, India.” Seismological Research Letters, Vol. 81, Issue.  3, pp. 480–487. doi:10.1785/gssrl.81.3.480.
[47]   Raghu Kanth, S. T. G., Dash, S. K. (2010). "Deterministic seismic scenarios for North East India.” Journal of Seismology, Vol. 14, pp. 143–167. doi:10.1007/s10950-009-9158-y.
[48]   Hough, S. E., Bilham, R. (2008). "Site response of the Ganges basin inferred from re-evaluated macro-seismic observations from the 1897 Shillong, 1905 Kangra, and 1934 Nepal earthquakes.” Journal of Earth System Science, Vol. 117, pp. 773–782.
[49]   Dhanya, J., Gade, M., Raghukanth, S. T. G. (2017). "Ground motion estimation during 25th April 2015 Nepal earthquake.” Acta Geodaetica et Geophysica, Vol. 52, pp. 69–93. doi:10.1007/s40328-016-0170-8.
[50]   Hashash, Y. M. A., Groholski, D. R., Phillips, C. A., Park, D., Musgrove, M. (2011). "DEEPSOIL 5.0, user Manual and Tutorial." University of Illinois,  Urbana, IL, USA.
[51]   Kramer, S. L. (1996). "Geotechnical Earthquake Engineering." Prentice Hall, Upper Saddle River, NJ, USA.
[52]   Seed, H. B., Idriss, I. M. (1971). "Simplified procedure for evaluating soil liquefaction potential.” ASCE J Soil Mech Found Div, Vol. 97, Issue.  9, pp. 1249–1273. doi:10.1061/jsfeaq.0001662.
[53]   Seed, H. B., Idriss, I. M., Arango, I. (1983). "Evaluation of liquefaction potential using field performance data.” Journal of Geotechnical Engineering, Vol. 3, pp. 109. doi:10.1061/(ASCE)0733-9410(1983)109:3(458).
[54]   Ishihara, K. (1985). "Stability of natural deposits during earthquakes.” Proc. 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, August 1985. Vol. 1, (Balkema).
[55]   Douqlas, B. J., Olsen, R. S., Martin, G. R. (1981). "Evaluation of the Cone Penetrometer Test for Use in SPT- Liquefaction Potential Assessment." ASCE National Convention, Session on In-Situ Testing to Evaluate Liquefaction Susceptibility, ASCE National Convention, St. Louis, Missouri.
[56]   Robertson, P. K., Campanella, R. G., Wightman, A. (1983). "SPT-CPT correlations.” Journal of Geotechnical Engineering, Vol. 109, Issue.  11, pp. 1449–1459. doi:10.1061/(ASCE)0733-9410(1983)109:11(1449).
[57]   Campanella, R. G., Robertson, P. K. (1984). "A seismic cone penetrometer to measure engineering properties of soil.” 1984 SEG Annual Meeting, SEG 1984, pp. 138–141. doi:10.1190/1.1894361.
[58]   Arulmoli, K., Arulanandan, K., Seed, H. B. (1985). "New method for evaluating liquefaction potential.” Journal of Geotechnical Engineering, Vol. 111, Issue.  1. doi:10.1061/(ASCE)0733-9410(1985)111:1(95).
[59]   Tokimatsu, K., Yoshimi, Y. (1983). "Empirical Correlation of Soil Liquefaction based on SPT N-value and Fines Content.” Soils and Foundations, Vol. 23, pp. 4. doi:10.3208/sandf1972.23.4_56
[60]   Seed, H. B., Tokimatsu, K., Harder, L. F., Chung, R. M. (1985). "Influence of SPT procedures in soil liquefaction resistance evaluations.” Journal of Geotechnical Engineering, Vol. 111, Issue.  12, pp. 1425–1445. doi:10.1061/(ASCE)0733-9410(1985)111:12(1425).
[61]   Yegian, M. K., Whitman, R. V. (1978). "Risk analysis for ground failure by liquefaction.” ASCE J Geotech Eng Div, Vol. 104, Issue.  7, pp. 921–938. doi:10.1061/ajgeb6.0000672.
[62]   Liao, S. S. C., Veneziano, D., Whitman, R. V. (1988). "Regression models for evaluating liquefaction probability.” Journal of Geotechnical Engineering, Vol. 114, Issue.  4, pp. 389–411. doi:10.1061/(ASCE)0733-9410(1988)114:4(389).
[63]   Juang, C. H., Ching, J., Luo, Z., Ku, C. S. (2012). "New models for probability of liquefaction using standard penetration tests based on an updated database of case histories.” Engineering Geology, Vol. 133, pp. 85–93. doi:10.1016/j.enggeo.2012.02.015.
[64]   Iwasaki, T., Tatsuoka, F., Tokida, K., Yasuda, S. (1978). "A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan.” Proceedings of the 2nd International Conference on Microzonation for Safer Construction-Research and Application, San Francisco, California, USA, pp. 885–896.
[65]   Iwasaki, T., Tokida, K., Tatsuoka, F., Watanbe, S., Yasuda, S., Sato, H. (1982). "Microzonation for soil liquefaction potential using simplified methods.” Third International Earthquake Microzonation Conference Proceedings, Vol. 3, pp. 1319–1330.
[66]   Nath, S. K., Srivastava, N., Ghatak, C., Adhikari, M. Das, Ghosh, A., Sinha Ray, S. P. (2018). "Earthquake induced liquefaction hazard, probability and risk assessment in the city of Kolkata, India: its historical perspective and deterministic scenario.” Journal of Seismology, Vol. 22, pp. 35–68. doi:10.1007/s10950-017-9691-z.
[67]   Lee, D. H., Ku, C. S., Yuan, H. (2004). "A study of the liquefaction risk potential at Yuanlin, Taiwan.” Engineering Geology, Vol. 71, Issue.  1–2, pp. 97–117. doi:10.1016/S0013-7952(03)00128-5.
[68]   Ambraseys, N. N. (1988). "Engineering seismology: Part II.” Earthquake Engineering & Structural Dynamics. doi:10.1002/eqe.4290170102.
[69]   Wang, C. Y., Manga, M., Wong, A. (2005). "Floods on Mars released from groundwater by impact.” Icarus, Vol. 175, Issue.  2, pp. 551–5. doi:10.1016/j.icarus.2004.12.003.
[70]   C. Pirrotta, M. S. Barbano, P. Guarnieri, F. Gerardi. (2007). "A new dataset and empirical relationships between magnitude/intensity and epicentral distance for liquefaction in central-eastern Sicily.” Annals of Geophysics, Vol. 50, Issue.  6. doi:10.4401/ag-3055.
[71]   Kuribayashi, E., Tatsuoka, F. (1975). "Brief Review of Liquefaction During Earthquakes in Japan.” Soils and Foundations, Vol. 15, Issue.  4, pp. 81–92. doi:10.3208/sandf1972.15.4_81.
[72]   Youd, T. L. (1977). "Packing Changes and Liquefaction Susceptibility.” Journal of the Geotechnical Engineering Division, Vol. 103, Issue.  8, pp. 918–922. doi:10.1061/ajgeb6.0000478.
[73]   Youd, T. L., Perkins, D. M. (1978). "Mapping liquefaction-induced ground failure potential.” ASCE J Geotech Eng Div, Vol. 104, pp. 433–446. doi:10.1061/ajgeb6.0000612.
[74]   Keefer, D. K. (1984). "Landslides caused by earthquakes.” Bulletin of the Geological Society of America, Vol. 95, Issue.  4, pp. 406–421. doi:10.1130/0016-7606(1984)95<406:lcbe>2.0.co,2.
[75]   Papadopoulos, G. A., Lefkopoulos, G. (1993). "Magnitude-distance relations for liquefaction in soil from earthquakes.” Bulletin - Seismological Society of America, Vol. 83, Issue.  3, pp. 925–38. doi:10.1785/bssa0840062019.
[76]   Hough, S. E., Martin, S., Bilham, R., Atkinson, G. M. (2002). "The 26 January 2001 M 7.6 Bhuj, India, earthquake: Observed and predicted ground motions.” Bulletin of the Seismological Society of America, Vol. 92, Issue.  6, pp. 2061–79. doi:10.1785/0120010260.
[77]   Singh, A. P., Shukla, A., Kumar, M. R., Thakkar, M. G. (2017). "Characterizing surface geology, liquefaction potential, and maximum intensity in the kachchh seismic zone, western India, through microtremor analysis.” Bulletin of the Seismological Society of America, Vol. 107, Issue.  3, pp. 1277–92. doi:10.1785/0120160264.
[78]   Malik, N. Z., Muhammad, A., Mirza, S. N. (2007). "Phytosociological Attributes of Different Plant Communities of Pir Chinasi Hills of Azad Jammu and Kashmir.” International Journal of Agriculture & Biology, Vol. 9, Issue.  4, pp. 569–74.
[79]   Subedi, M., Acharya, I. P., Sharma, K., Adhikari, K. (2016). "Liquefaction of Soil in Kathmandu Valley from the 2015 Gorkha, Nepal, Earthquake.” Gorkha Earthquake 2015 Special, Nepal Engineering Association, pp. 108–115.
[80]   Gautam, D. (2017). "Unearthed lessons of 25 April 2015 Gorkha earthquake (MW 7.8): geotechnical earthquake engineering perspectives.” Geomatics, Natural Hazards and Risk, pp. 1–25. doi:10.1080/19475705.2017.1337653.
[81]   Idriss, I. M., Boulanger, R. W. (2006). "Semi-empirical procedures for evaluating liquefaction potential during earthquakes.” Soil Dynamics and Earthquake Engineering, Vol. 26, Issue.  2–4, pp. 115–130. doi:10.1016/j.soildyn.2004.11.023.
[82]   Idriss, I. M., Boulanger, R. W. (2010). "Spt-based liquification triggering procedures.” Report UCD/CGM-10/02.
[83]   Boulanger, RW and Idriss, I. M. (2014). "CPT and SPT Based Liquefaction Triggering Procedures.” Center for Geotechnical Modeling, Rep. No. UCD/CGM-14 1.
[84]   Andrus, R. D., Chung, R. M. (1995). "Ground Improvement Techniques for Liquefaction Remediation Near Existing Lifelines.” Building and Fire Research Laboratory, National Institute of Standards and Technology. U.S. Department of Commerce.
 [85]  Ledbetter, R. H. (1985). "Improvement of liquefiable foundation conditions beneath existing structures" Technical Report - US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
[86]   National Research Council. (1985). "Liquefaction of Soils during Earthquakes, Committee on Earthquake Engineering."  National Research Council, National Academy Press, Washington.
[87]   Kramer, S. L., Holtz, R. D. (1991). "Soil improvement and foundation remediation with emphasis on seismic hazards.” National Science Foundation, Seattle, Washington, pp. 106.
[88]   JSSMFE. (1995). "Remedial Measure Against Soil Liquefaction--From Investigation and Design to Implementation." Japanese Society for Soil Mechanics and Foundation Engineering. (in Japanese, Translation into English in Progress).
  • Receive Date: 30 July 2021
  • Revise Date: 09 December 2021
  • Accept Date: 17 December 2021
  • First Publish Date: 17 December 2021