[1] Bibm, C.; ERMCO, E. (2005). EFNARC: The European Guidelines for Self Compacting Concrete, Specification, Production and Use, Vol. 63
[2] Lachemi, M.; Hossain, K. M. A.; Lambros, V.; Bouzoubaa, N. (2003). Development of cost-effective self-consolidating concrete incorporating fly ash, slag cement, or viscosity-modifying admixtures, Materials Journal, Vol. 100, No. 5, 419–425
[3] Okamura, H.; Ouchi, M. (1998). Self‐compacting high performance concrete, Progress in Structural Engineering and Materials, Vol. 1, No. 4, 378–383
[4] Varela, H.; Barluenga, G.; Palomar, I. (2020). Influence of nanoclays on flowability and rheology of SCC pastes, Construction and Building Materials, Vol. 243, 118285
[5] Megid, W. A.; Khayat, K. H. (2019). Effect of structural buildup at rest of self-consolidating concrete on mechanical and transport properties of multilayer casting, Construction and Building Materials, Vol. 196, 626–636
[6] Vos, M.; Torres, E.; Alrashidi, R. S.; Riding, K.; Hamilton, T. (2019). Evaluation of bond strength of joints in hybrid uhpc and scc members, International Interactive Symposium on Ultra-High Performance Concrete (Vol. 2), Iowa State University Digital Press
[7] Habel, K.; Viviani, M.; Denarié, E.; Brühwiler, E. (2006). Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC), Cement and Concrete Research, Vol. 36, No. 7, 1362–1370
[8] Wille, K.; Naaman, A. E.; Parra-Montesinos, G. J. (2011). Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way., ACI Materials Journal, Vol. 108, No. 1
[9] de Larrard, F.; Sedran, T. (1994). Optimization of ultra-high-performance concrete by the use of a packing model, Cement and Concrete Research, Vol. 24, No. 6, 997–1009
[10] Meng, W.; Valipour, M.; Khayat, K. H. (2017). Optimization and performance of cost-effective ultra-high performance concrete, Materials and Structures, Vol. 50, No. 1, 1–16
[11] Kovler, K.; Roussel, N. (2011). Properties of fresh and hardened concrete, Cement and Concrete Research, Vol. 41, No. 7, 775–792
[12] Mikanovic, N.; Jolicoeur, C. (2008). Influence of superplasticizers on the rheology and stability of limestone and cement pastes, Cement and Concrete Research, Vol. 38, No. 7, 907–919
[13] Jiao, D.; Shi, C.; Yuan, Q.; An, X.; Liu, Y.; Li, H. (2017). Effect of constituents on rheological properties of fresh concrete-A review, Cement and Concrete Composites, Vol. 83, 146–159
[14] Khaksefidi, S.; Ghalehnovi, M. (2020). Effect of Reinforcement Type on the Tension Stiffening Model of Ultra - High Performance Concrete ( UHPC ), Vol. 3, 72–86. doi:10.22075/JRCE.2020.19420.1368
[15] Ahmadi, N.; Yazdandoust, M.; Yazdani, M. (2021). Simultaneous Effect of Aggregate and Cement Matrix on the Performance of High Strength Concrete, Journal of Rehabilitation in Civil Engineering, 26–39
[16] Falahtabar, M.; Tavakoli, H. R. (2018). Estimation of Mechanical and Durability Properties of Self - Compacting Concrete with Fibers Using Ultrasonic Pulse Velocity, Vol. 2, 43–53. doi:10.22075/JRCE.2018.798.1099
[17] Ding, M.; Yu, R.; Feng, Y.; Wang, S.; Zhou, F.; Shui, Z.; Gao, X.; He, Y.; Chen, L. (2021). Possibility and advantages of producing an ultra-high performance concrete ( UHPC ) with ultra-low cement content, Construction and Building Materials, Vol. 273, 122023. doi:10.1016/j.conbuildmat.2020.122023
[18] Huang, H.; Gao, X.; Teng, L. (2021). Fiber alignment and its effect on mechanical properties of UHPC : An overview, Construction and Building Materials, Vol. 296, 123741. doi:10.1016/j.conbuildmat.2021.123741
[19] Teng, L.; Meng, W.; Khayat, K. H. (2020). Cement and Concrete Research Rheology control of ultra-high-performance concrete made with different fiber contents, Cement and Concrete Research, Vol. 138, No. July, 106222. doi:10.1016/j.cemconres.2020.106222
[20] Wu, Z.; Khayat, K. H.; Shi, C. (2019). Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content, Cement and Concrete Research, Vol. 123, No. October 2018, 105786. doi:10.1016/j.cemconres.2019.105786
[21] Roussel, N.; Coussot, P. (2005). “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow, Journal of Rheology, Vol. 49, No. 3, 705–718
[22] Ferrara, L.; Cremonesi, M.; Tregger, N.; Frangi, A.; Shah, S. P. (2012). On the identification of rheological properties of cement suspensions: Rheometry, Computational Fluid Dynamics modeling and field test measurements, Cement and Concrete Research, Vol. 42, No. 8, 1134–1146
[23] Choi, M. S.; Lee, J. S.; Ryu, K. S.; Koh, K.-T.; Kwon, S. H. (2016). Estimation of rheological properties of UHPC using mini slump test, Construction and Building Materials, Vol. 106, 632–639
[24] Jalal, M.; Teimortashlu, E.; Grasley, Z. (2019). Performance-based design and optimization of rheological and strength properties of self-compacting cement composite incorporating micro/nano admixtures, Composites Part B: Engineering, Vol. 163, 497–510
[25] Yahia, A.; Khayat, K. H. (2003). Applicability of rheological models to high-performance grouts containing supplementary cementitious materials and viscosity enhancing admixture, Materials and Structures, Vol. 36, No. 6, 402–412
[26] Yahia, A. (2011). Shear-thickening behavior of high-performance cement grouts—Influencing mix-design parameters, Cement and Concrete Research, Vol. 41, No. 3, 230–235
[27] Gerland, F.; Schleiting, M.; Schomberg, T.; Wünsch, O.; Wetzel, A.; Middendorf, B. (2019). The effect of fiber geometry and concentration on the flow properties of UHPC, Rheology and Processing of Construction Materials, Springer, 482–490
[28] Matos, A. M.; Nunes, S.; Costa, C.; Barroso-Aguiar, J. L. (2019). Characterization of non-proprietary UHPC for use in rehabilitation/strengthening applications, Rheology and Processing of Construction Materials, Springer, 552–559
[29] Yu, R.; Van Onna, D. V; Spiesz, P.; Yu, Q. L.; Brouwers, H. J. H. (2016). Development of ultra-lightweight fibre reinforced concrete applying expanded waste glass, Journal of Cleaner Production, Vol. 112, 690–701
[30] Fuller, W. B.; Thompson, S. E. (1907). The laws of proportioning concrete, Transactions of the American Society of Civil Engineers, Vol. 59, No. 2, 67–143
[31] Andreasen, A. H. M. (1930). Über die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten), Kolloid-Zeitschrift, Vol. 50, No. 3, 217–228
[32] Kurt, A. (2021). Implementation of Ultra-High Performance Concrete in Long-Span Precast Pretensioned Structural Elements for Buildings, North Carolina State University
[33] Alkaysi, M.; El-Tawil, S. (2016). Effects of variations in the mix constituents of ultra high performance concrete (UHPC) on cost and performance, Materials and Structures, Vol. 49, No. 10, 4185–4200
[34] Looney, T.; McDaniel, A.; Volz, J.; Floyd, R. (2019). Development and characterization of ultra-high performance concrete with slag cement for use as bridge joint material, Development, Vol. 1, No. 02
[35] Parichatprecha, R.; Nimityongskul, P. (2009). Analysis of durability of high performance concrete using artificial neural networks, Construction and Building Materials, Vol. 23, No. 2, 910–917
[36] Venkatakrishnaiah, R.; Sakthivel, G. (2015). Bulk utilization of flyash in self compacting concrete, KSCE Journal of Civil Engineering, Vol. 19, No. 7, 2116–2120
[37] Arora, A.; Aguayo, M.; Hansen, H.; Castro, C.; Federspiel, E.; Mobasher, B.; Neithalath, N. (2018). Microstructural packing-and rheology-based binder selection and characterization for Ultra-high Performance Concrete (UHPC), Cement and Concrete Research, Vol. 103, 179–190
[38] Janković, K.; Stanković, S.; Bojović, D.; Stojanović, M.; Antić, L. (2016). The influence of nano-silica and barite aggregate on properties of ultra high performance concrete, Construction and Building Materials, Vol. 126, 147–156
[39] EFNARC, S. (2002). Guidelines for self-compacting concrete, London, UK: Association House, Vol. 32, 34
[40] Concrete, S.-C. (2005). The European guidelines for self-compacting concrete, BIBM, et Al, Vol. 22
[41] BS EN 12390-3:2019 Testing hardened concrete. Compressive strength of test specimens, British Standards Institution - Publication Index | NBS. (2019), 12390
[42] Institution, B. S. (1998). Testing Concrete: Recommendations for the Determination of the Initial Surface Absorption of Concrete, BSI
[43] Build, N. (1999). 492. Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments, Nordtest Method, Vol. 492, No. 10