[1] X. B. Lin, R. A. Smith, (1998). Fatigue growth prediction of internal surface cracks in pressure vessels. Journal Pressure Vessel Technology, ASME, 120:17–23.
                                                                                                                                                                                                                                [2] Raju, I.S., Newman, J.C. (1986).  Stress intensity factors for circumferential surface cracks in pipes and rods. In Fracture Mechanics: Seventeenth Volume, ed. J. Underwood, R. Chait, C. Smith, D. Wilhem, W. Andrews, and J. Newman (West Conshohocken, PA: ASTM International), 789–805.
                                                                                                                Doi:10.1520/STP17428S
                                                                                                                [3] Carpinteri, A., Brighenti R., Spagnoli, A. (1998). Part-through cracks in pipes under cyclic bending. Nuclear Engineering and Design. 185:1–10.
                                                                                                                doi:10.1016/S0029-5493(98)00189-7
                                                                                                                [4] Carpinteri, A., Brighenti R., (1998). Circumferential surface flaws in pipes under cyclic axial loading. Engineering Fracture Mechanics. 60:383–396. Doi:10.1016/S0013-7944(98)00036-8
                                                                                                                [5] Carpinteri, A., Brighenti R., Spagnoli, A. (2000). External surface cracks in shells under cyclic internal pressure. Fatigue Fracture Engineering Materials and Structures. 23:467–476.
                                                                                                                Doi:10.1046/j.1460-2695.2000.00320.x
                                                                                                                                                                                                                                Doi:10.1016/j.ijmecsci.2004.02.007
                                                                                                                [7] Ligoria, S.A., Knight G.S., Ramachandra Murthy, D.S., (2005). Three-dimensional finite element analysis of a semi-elliptical circumferential surface crack in a carbon steel pipe subjected to a bending moment. Journal of Strain Analysis. 40:525–533. Doi:10.1243/030932405X16052
                                                                                                                [8] Shahani, A.R., Habibi, S.E. (2007). Stress intensity factors in hollow cylinder containing a circumferential semi-elliptical crack subjected to combined loading. International Journal of Fatigue. 291:128–140. Doi:10.1016/j.ijfatigue.2006.01.017
                                                                                                                [9] Shahani, A.R., Mohammadi Shodja M., Shahhosseini, A. (2010). Experimental investigation and finite element analysis of fatigue crack growth in pipes containing a circumferential semi-elliptical crack subjected to bending. Experimental Mechanics. 50:563–573.
                                                                                                                Doi:10.1007/s11340-009-9229-6
                                                                                                                [10] Fillery, B.P.  Hu, X.Z. (2012). Compliance based assessment of stress intensity factor in cracked hollow cylinders with finite boundary restraint: Application to thermal shock part II. Engineering Fracture Mechanics. 79:18–35.
                                                                                                                Doi:10.1016/j.engfracmech.2011.09.011
                                                                                                                [11] Ghajar, R., Abbaspour Niasani M., Saeidi Googarchin, H., (2014). Explicit expressions of stress intensity factor for external semi-elliptical circumferential cracks in a cylinder under mechanical and thermal loads. Modares Mechanical Engineering. 14:90-98. (In Persian)
                                                                                                                [12] Abbaspour Niasani M., Ghajar, R., Saeidi Googarchin, H.,  Sharifi, S.M.H., (2017).  Crack growth pattern prediction in a thin walled cylinder based on closed form thermo-elastic stress intensity factors. Journal of Mechanical Science and Technology. 31:1603–1610.
                                                                                                                Doi:10.1007/s12206-017-0307-x
                                                                                                                [13] Nabavi, S.M., Montazer Torbati, E., Jamal-Omidi, M. (2020). Weight function for an external circumferential semielliptical crack in a cylinder. Fatigue Fracture Engineering Materials and Structures. 43:1487–1499. doi:10.1111/ffe.13224
                                                                                                                [14] Fakhri, O.M., Kareem, A.K., Ismail, A.E.,  Jamian, S., Nemah, M.N., (2019).  Mode I SIFs for internal and external surface semi-elliptical crack located on a thin cylinder. Test Engineering and Management. 81:586–596.
                                                                                                                [15] Al-Moayed, O.M., Kareem, A.K., Ismail, A.E., Jamian, S., Nemah, M.N., (2019). Distribution of Mode I stress intensity factors for single circumferential semi-elliptical crack in thick cylinder. International Journal of Integrated Engineering. 11:102–111.
                                                                                                                [16] Al-Moayed, O.M., Kareem, A.K., Ismail, A.E., Jamian, S., Nemah, M.N., (2020). Influence coefficients for a single superficial cracked thick cylinder under torsion and bending moments. International Journal of Integrated Engineering. 12:132–144.
                                                                                                                [17] Qian, X., Li, T., (2010). Effect of residual stresses on the linear-elastic KI–T field for circumferential surface flaws in pipes. Engineering Fracture Mechanics. 77:2682–2697. Doi:10.1016/j.engfracmech.2010.06.014
                                                                                                                [18] Miyazaki, K., Mochizuki, M., (2011). The effects of residual stress distribution and component geometry on the stress intensity factor of surface crack. Journal of Pressure Vessel Technology. 133:1–7.
                                                                                                                Doi:10.1115/1.4002671
                                                                                                                [19] Zareei, A., Nabavi, S.M., (2016).  Weight function for circumferential semi-elliptical cracks in cylinders due to residual stress fields induced by welding. Archive of Applied Mechanics. 86:1219–1230.
                                                                                                                Doi:10.1007/s00419-015-1087-3
                                                                                                                [20] Zareei, A., Nabavi, S.M., (2016).  Calculation of stress intensity factors for circumferential semi-elliptical cracks with high aspect ratio in pipes. International Journal of Pressure Vessels and Piping. 146:32–38. Doi: 10.1016/j.ijpvp.2016.05.008
                                                                                                                [21] Nabavi, S.M., Shahmorady, M.B. (2020). Stress intensity factors for circumferential semi-elliptical cracks in cylinders subjected to forced convection heat transfer. International Journal of Integrated Engineering. 12:232–239.
                                                                                                                [22] Paarmann, M., Sander, M., (2020). Analytical determination of stress intensity factors in thick walled thermally loaded components. Engineering Fracture Mechanics. 235, e107125.
                                                                                                                Doi:10.1016/j.engfracmech.2020.107125
                                                                                                                [23] Banks-Sills, L., (1991). Application of the finite element to linear elastic fracture mechanic. Applied Mechanics Review. 44:447–461. Doi: 10.1115/1.3119488
                                                                                                                [24] Anderson, T.L., (2017). Fracture Mechanics- Fundamentals and Applications, 4th Edition, Boca Raton, CRC Press.
                                                                                                                [25] Institute AP. API 579-1/ASME FFS-1. Fitness-for-service. 2nd Edition, 2007.
                                                                                                                [26] Laham S. Stress intensity factor and limit load. Handbook, British Energy Generation Limited, 1998.
                                                                                                                [27] Bergman, M. (1995). Stress intensity factors for circumferential surface cracks in pipes. Fatigue Fracture Engineering Materials and Structures. 18:1155–1172.
                                                                                                                Doi:10.1111/j.1460-2695.1995.tb00845.x
                                                                                                                [28] Hetnarski R.B., Eslami M.R. (2019). Thermal stresses: advanced theory and applications. 2nd Edition, Springer.
                                                                                                                [29] Alipour, K. Nabavi, S.M., Bakhshan, M., Rahimi, F., Zareei, H., (2013) Thermal stresses solutions in cylinders due to steady state forced convection heat transfer. 13th Conference of Iranian Aerospace Society, Tehran, University of Tehran, Faculty of New Science and Technology.