[1] L. Gardner and T. M. Chan, “Cross-section classification of elliptical hollow sections,” Steel Compos. Struct., vol. 7, no. 3, p. 185, 2007.
[2] T. M. Chan and L. Gardner, “Compressive resistance of hot-rolled elliptical hollow sections,” Eng. Struct., vol. 30, no. 2, pp. 522–532, 2008.
[3] T. M. Chan and L. Gardner, “Bending strength of hot-rolled elliptical hollow sections,” J. Constr. Steel Res., vol. 64, no. 9, pp. 971–986, 2008.
[4] T. M. Chan and L. Gardner, “Flexural buckling of elliptical hollow section columns,” J. Struct. Eng., vol. 135, no. 5, pp. 546–557, 2009.
[5] T. M. Chan, L. Gardner, and K. H. Law, “Structural design of elliptical hollow sections: A review,” Proc. Inst. Civ. Eng. Struct. Build., vol. 163, no. 6, pp. 391–402, 2010, doi: 10.1680/stbu.2010.163.6.391.
[6] L. Gardner, T. M. Chan, and M. A. Wadee, “Shear response of elliptical hollow sections,” Proc. Inst. Civ. Eng. Build., vol. 161, no. 6, pp. 301–309, 2008.
[7] A. Karrech and A. Seibi, “Analytical model for the expansion of tubes under tension,” J. Mater. Process. Technol., vol. 210, no. 2, pp. 356–362, 2010.
[8] T. Pervez, A. C. Seibi, and A. Karrech, “Simulation of solid tubular expansion in well drilling using finite element method,” Pet. Sci. Technol., vol. 23, no. 7–8, pp. 775–794, 2005.
[9] P. Barnes, R. Hejazi, and A. Karrech, “Instability of mechanically lined pipelines under large deformation,” Finite Elem. Anal. Des., vol. 146, pp. 62–69, 2018.
[10] C. Guo, M. Elchalakani, A. Karrech, M. R. Bambach, and B. Yang, “Behaviour and design of cold-formed CHS under static pure bending through finite element analysis,” Thin-Walled Struct., vol. 147, p. 106547, 2020.
[11] M.-T. Chen and B. Young, “Cross-sectional behavior of cold-formed steel semi-oval hollow sections,” Eng. Struct., vol. 177, pp. 318–330, 2018.
[12] B. S. EN10210, “2. British Standard: Hot finished structural hollow sections of non-alloy and fine grain steels Part 2: Tolerances, dimensions and sectional properties,” Br. Stand. Inst., 2006.
[13] S. (Steel C. I. and B. C. S. Association), “Steel building design: Design data in accordance with Eurocodes and the UK national annexes.” SCI London, 2009.
[14] T. Haque, J. A. Packer, and X.-L. Zhao, “Equivalent RHS approach for the design of EHS in axial compression or bending,” Adv. Struct. Eng., vol. 15, no. 1, pp. 107–120, 2012.
[15] A. Insausti and L. Gardner, “Analytical modelling of plastic collapse in compressed elliptical hollow sections,” J. Constr. Steel Res., vol. 67, no. 4, pp. 678–689, 2011.
[16] K. H. Law and L. Gardner, “Lateral instability of elliptical hollow section beams,” Eng. Struct., vol. 37, pp. 152–166, 2012.
[17] K. H. Law and L. Gardner, “Buckling of elliptical hollow section members under combined compression and uniaxial bending,” J. Constr. Steel Res., vol. 86, pp. 1–16, 2013.
[18] M. Theofanous, T. M. Chan, and L. Gardner, “Structural response of stainless steel oval hollow section compression members,” Eng. Struct., vol. 31, no. 4, pp. 922–934, 2009.
[19] M. Theofanous, T. M. Chan, and L. Gardner, “Flexural behaviour of stainless steel oval hollow sections,” Thin-Walled Struct., vol. 47, no. 6–7, pp. 776–787, 2009, doi: 10.1016/j.tws.2009.01.001.
[20] M.-T. Chen and B. Young, “Material properties and structural behavior of cold-formed steel elliptical hollow section stub columns,” Thin-Walled Struct., vol. 134, pp. 111–126, 2019.
[21] M. T. Chen and B. Young, “Tests of cold-formed steel elliptical hollow section beams,” 2016.
[22] M.-T. Chen and B. Young, “Structural performance of cold-formed steel elliptical hollow section pin-ended columns,” Thin-Walled Struct., vol. 136, pp. 267–279, 2019.
[23] P. Kumar, S. Pandey, and P. R. Maiti, “A Modified Genetic Algorithm in C++ for Optimization of Steel Truss Structures,” J. Soft Comput. Civ. Eng., vol. 5, no. 1, pp. 95–108, 2021.
[24] R. Abbaschian and R. E. Reed-Hill, Physical Metallurgy Principles-SI Version. Cengage Learning, 2009.
[25] H. M. Tensi, A. Stich, and G. E. Totten, “Quenching and quenching technology,” Chapter, vol. 4, pp. 157–249, 1997.
[26] M. Jandera, L. Gardner, and J. Machacek, “Residual stresses in cold-rolled stainless steel hollow sections,” J. Constr. Steel Res., vol. 64, no. 11, pp. 1255–1263, 2008.
[27] G. Charles, “Salmon, John E. Johnson and Faris A. Malhas-" Steel Structures-Design and Behavior".” Prentice Hall, 2008.
[28] S. Afshan, B. Rossi, and L. Gardner, “Strength enhancements in cold-formed structural sections—Part I: Material testing,” J. Constr. Steel Res., vol. 83, pp. 177–188, 2013.
[29] L. Gardner and D. A. Nethercot, “Experiments on stainless steel hollow sections—Part 1: Material and cross-sectional behaviour,” J. Constr. Steel Res., vol. 60, no. 9, pp. 1291–1318, 2004.
[30] L. Gardner, N. Saari, and F. Wang, “Comparative experimental study of hot-rolled and cold-formed rectangular hollow sections,” Thin-walled Struct., vol. 48, no. 7, pp. 495–507, 2010.
[31] S.-D. Hu, B. Ye, and L.-X. Li, “Materials properties of thick-wall cold-rolled welded tube with a rectangular or square hollow section,” Constr. Build. Mater., vol. 25, no. 5, pp. 2683–2689, 2011.
[32] B. Rossi, H. Degée, and F. Pascon, “Enhanced mechanical properties after cold process of fabrication of non-linear metallic profiles,” Thin-walled Struct., vol. 47, no. 12, pp. 1575–1589, 2009.
[33] M. A. Dabaon, M. H. El-Boghdadi, and M. F. Hassanein, “A comparative experimental study between stiffened and unstiffened stainless steel hollow tubular stub columns,” Thin-walled Struct., vol. 47, no. 1, pp. 73–81, 2009.
[34] B. Young and W.-M. Lui, “Tests of cold-formed high strength stainless steel compression members,” Thin-Walled Struct., vol. 44, no. 2, pp. 224–234, 2006.
[35] X.-L. Zhao, “Section capacity of very high strength (VHS) circular tubes under compression,” Thin-Walled Struct., vol. 37, no. 3, pp. 223–240, 2000.
[36] A. A. S. for T. and Materials, Standard test methods for tension testing of metallic materials. ASTM international, 2009.
[37] HKS, “ABAQUS/Standard user’s manual.” ABAQUS Inc. Pawtucket, RI, 2005.
[38] Shekarchi M, Yekrangnia M, Biniaz A, Raftery GM. Effect of elevated temperatures on the compressive behavior of timber filled steel and pultruded GFRP tubes. Compos Struct. 2021;271:114135.