[1] Du, J., Meng, W., Khayat, K. H., Bao, Y., Guo, P., Lyu, Z., ... & Wang, H. (2021). New development of ultra-high-performance concrete (UHPC). Composites Part B: Engineering, 109220.
[2] SETRA (Service d’études techniques des routes et autoroutes), and AFGC (Association Française de Génie Civil), (2002) ‘Ultra High Performance Fiber – Reinforced Concretes- Interim Recommendations (Bétons Fibrés à UltraHautes Performacnes – Recommandations Provisoires), France.
[3] ACI 239 (2012). Committee on Ultra-High-Performance Concrete, American Concrete Institute, Farmington Hills, MI, US.
[4] FIB (fédération internationale du béton), (2013). Model Code for Concrete Structures. International
Federation for Structural Concrete, Ernst & Sohn, Lausanne, Switzerland.
[5] BS EN 206:2013+A2 (2021) Concrete. Specification, performance, production and conformity. British Standards Institute.
[6] Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and concrete research, 25(7), 1501-1511.
[7] Zhang, D., Yu, J., Wu, H., Jaworska, B., Ellis, B. R., & Li, V. C. (2020). Discontinuous micro-fibers as intrinsic reinforcement for ductile Engineered Cementitious Composites (ECC). Composites Part B: Engineering, 184, 107741.
[8] McMullen, K. F., & Zaghi, A. E. (2021). Rapid rehabilitation of deteriorated beam ends with ultra-high performance concrete. In Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations (pp. 1706-1713). CRC Press.
[9] Sturm, A. B., Visintin, P., & Oehlers, D. J. (2020). Blending fibres to enhance the flexural properties of UHPFRC beams. Construction and Building Materials, 244, 118328.
[10] Donnini, J., Lancioni, G., Chiappini, G., & Corinaldesi, V. (2021). Uniaxial tensile behavior of ultra-high performance fiber-reinforced concrete (uhpfrc): Experiments and modeling. Composite Structures, 258, 113433.
[11] Tran, N. T., Nguyen, D. L., Kim, D. J., & Ngo, T. T. (2021). Sensitivity of various fibre features on shear capacities of ultra-high-performance fibre-reinforced concrete. Magazine of Concrete Research, 1-17.
[12] Tam, C. M., Tam, V. W., & Ng, K. M. (2012). Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong. Construction and Building Materials, 26(1), 79-89.
[13] Dong, Y. (2018). Performance assessment and design of ultra-high performance concrete (UHPC) structures incorporating life-cycle cost and environmental impacts. Construction and Building Materials, 167, 414-425.
[14] Yu, R., Spiesz, P., & Brouwers, H. J. H. (2014). Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC). Cement and concrete research, 56, 29-39.
[15] Wille, K., El-Tawil, S., & Naaman, A. E. (2014). Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement and Concrete Composites, 48, 53-66.
[16] Naaman, A. E. (2003). Engineered steel fibers with optimal properties for reinforcement of cement composites. Journal of advanced concrete technology, 1(3), 241-252.
[17] Maalej, M., & Li, V. C. (1994). Flexural/tensile-strength ratio in engineered cementitious composites. Journal of Materials in Civil Engineering, 6(4), 513-528.
[18] Joo Kim, D., El-Tawil, S., & Naaman, A. E. (2009). Rate-dependent tensile behavior of high performance fiber reinforced cementitious composites. Materials and Structures, 42(3), 399-414.
[19] Tran, T. K., & Kim, D. J. (2013). Investigating direct tensile behavior of high performance fiber reinforced cementitious composites at high strain rates. Cement and Concrete Research, 50, 62-73.
[20] Kanakubo, T. (2006). Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites. Journal of Advanced Concrete Technology, 4(1), 3-17.
[21] Naaman, A. E., & Homrich, J. R. (1989). Tensile stress-strain properties of SIFCON. Materials Journal, 86(3), 244-251.
[22] Hassan, M. M., Schiermeister, L., & Staiger, M. P. (2015). Sustainable production of carbon fiber: Effect of cross-linking in wool fiber on carbon yields and morphologies of derived carbon fiber. ACS Sustainable Chemistry & Engineering, 3(11), 2660-2668.
[23] ELG Carbon Fibre Ltd. LCA benefits of rCF (2017). In: Composite recycling & LCA; Stuttgart, Germany.
[24] Dai, Q., Kelly, J. C., Burnham, A., & Elgowainy, A. (2015). Updated Life-Cycle Assessment of Aluminum Production and Semi-Fabrication for the GREET Model (No. ANL/ESD-15/12). Argonne National Lab.(ANL), Argonne, IL (United States).
[26] Yu, J., Yao, J., Lin, X., Li, H., Lam, J. Y., Leung, C. K., Sham IML, and Shih, K. (2018). Tensile performance of sustainable Strain-Hardening Cementitious Composites with hybrid PVA and recycled PET fibers. Cement and Concrete Research, 107, 110-123.
[27] Keoleian, G. A., Kendall, A., Dettling, J. E., Smith, V. M., Chandler, R. F., Lepech, M. D., & Li, V. C. (2005). Life cycle modeling of concrete bridge design: Comparison of engineered cement.
[28] Kim, S. W., Jang, S. J., Kang, D. H., Ahn, K. L., & Yun, H. D. (2015). Mechanical properties and eco-efficiency of steel fiber reinforced alkali-activated slag concrete. Materials, 8(11), 7309-7321.
[29] Yacout, D. M., Abd El-Kawi, M. A., & Hassouna, M. S. (2016). Cradle to gate environmental impact assessment of acrylic fiber manufacturing. The International Journal of Life Cycle Assessment, 21(3), 326-336.
[30] Barber, A., & Pellow, G. (2006). LCA: New Zealand merino wool total energy use. In 5th Australian Life Cycle Assessment Society (ALCAS) conference, Melbourne (pp. 22-24).
[31] De Fazio, P. (2011). Basalt fiber: from earth an ancient material for innovative and modern application. Energia, Ambientee Innovazione, 3, 89-96.
[32] Inman, M., Thorhallsson, E. R., & Azrague, K. (2017). A mechanical and environmental assessment and comparison of basalt fibre reinforced polymer (BFRP) rebar and steel rebar in concrete beams. Energy Procedia, 111, 31-40.
[33] Song, Y. S., Youn, J. R., & Gutowski, T. G. (2009). Life cycle energy analysis of fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 40(8), 1257-1265.
[34] Vlachopoulos, J. (2009). An assessment of energy savings derived from mechanical recycling of polyethylene versus new feedstock. Hamilton, ON, Canada: The World Bank.
[35] Yu, J., Yao, J., Lin, X., Li, H., Lam, J. Y., Leung, C. K., Sham IML, and Shih, K. (2018). Tensile performance of sustainable Strain-Hardening Cementitious Composites with hybrid PVA and recycled PET fibers. Cement and Concrete Research, 107, 110-123.
[36] Boustead, I. (1999). Ecoprofiles of plastics and related intermediates. Association of Plastics Manufacturers in Europe, Brussels, Belgium.
[37] Yoo, D. Y., Kim, M. J., Kim, S. W., & Park, J. J. (2017). Development of cost effective ultra-high-performance fiber-reinforced concrete using single and hybrid steel fibers. Construction and Building Materials, 150, 383-394.
[38] Meng, W., Valipour, M., & Khayat, K. H. (2017). Optimization and performance of cost-effective ultra-high performance concrete. Materials and structures, 50(1), 1-16.
[39] JCI SF4, (1983). Standard Test Method for Flexural Strength and Flexural Toughness of Fiber Reinforced
Concrete.
[40] NBN, B., (1992). B 15-238: Test on fibre reinforced concrete bending test on prismatic simples. Norme
Belge, Institut Belge de Normalisation. Brussels.
[41] Teutsch, M., 2004. German guidelines on steel fiber concrete. In Proceeding of the North American/European Workshop on Advances in Fiber Reinforced Concrete (pp. 23-28).
[42] ASTM C1399 / C1399M, (2015). Standard Test Method for Obtaining Average Residual-Strength of Fiber-
Reinforced Concrete, ASTM International, West Conshohocken, PA,
www.astm.org.
[43] RILEM TC 162-TDF, (2003), “Final Recommendation of RILEM TC 162-TDF: Test and Design Methods
for Steel Fibre Reinforced Concrete: σ-ε Design Method,” Materials and Structures, V. 36, No. 262, Oct., pp.560-567.
[44] DIN EN 14561, (2006). Chemical Disinfectants and Antiseptics – Quantitative Carrier Test for the
Evaluation of Bactericidal Activity for Instruments Used in the Medical Area – Test Method and Requirements (Phase 2, Step 2).
[45] ASTM C1609 / C1609M (2019a), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM International, West Conshohocken, PA,
www.astm.org.
[46] ASTM C293 / C293M, (2016). Standard Test Method for Flexural Strength of Concrete (Using Simple
Beam with Center-Point Loading), ASTM International, West Conshohocken, PA,
www.astm.org.
[47] Navalurkar, R.K., Hsu, C.T.T., Kim, S.K. and Wecharatana, M., (1999). True fracture energy of
concrete. Materials Journal, 96(2), pp.213-225.
[48] Chiaia, B., Fantilli, A.P. and Vallini, P., (2007). Evaluation of minimum reinforcement ratio in FRC
members and application to tunnel linings. Materials and Structures, 40(6), pp.593-604.
[49] Zhang, T.G., Leng, Y.B. and Gao, D.Y., (2010). Test for crack opening displacement of steel fiber
reinforced concrete under Three-Point Bending. In Applied Mechanics and Materials (Vol. 36, pp. 157-161). Trans Tech Publications.
[50] Ding, Y., (2011). Investigations into the relationship between deflection and crack mouth opening
displacement of SFRC beam. Construction and Building Materials, 25(5), pp.2432-2440.
[51] Aslani, F. and Bastami, M., (2015). Relationship between deflection and crack mouth opening
displacement of self-compacting concrete beams with and without fibers. Mechanics of Advanced Materials and Structures, 22(11), pp.956-967.
[52] Meng, W., & Khayat, K. H. (2018). Effect of hybrid fibers on fresh properties, mechanical properties, and autogenous shrinkage of cost-effective UHPC. Journal of Materials in Civil Engineering, 30(4), 04018030.
[53] Eide, M. B., & Hisdal, J. M. (2012). Ultra High Performance Fibre Reinforced Concrete (UHPFRC)–State of the art: FA 2 Competitive constructions: SP 2.2 Ductile high strength concrete.
[54] ASTM C150 / C150M (2020), Standard Specification for Portland Cement, ASTM International, West Conshohocken, PA,
www.astm.org.
[55] ASTM C494 / C494M (2019), Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA,
www.astm.org.
[56] Hegger, J., & Rauscher, S. (2008). UHPC in composite construction. In Ultra High Performance Concrete (UHPC). Second International Symposium on Ultra High Performance Concrete. Kassel (Vol. 5, No. 07).
[57] ASTM C39 / C39M (2021), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA,
www.astm.org.
[58] Pourbaba, M., & Joghataie, A. (2019). Determining shear capacity of ultra-high performance concrete beams by experiments and comparison with codes. Scientia Iranica, 26(1), 273-282.
[59] Pourbaba, M., Sadaghian, H., & Mirmiran, A. (2019). Flexural response of UHPFRC beams reinforced with steel rebars. Adv. Civ. Eng. Mater, 8(3), 20190129.
[60] Ahangarnazha, B. H., Pourbaba, M., & Afkar, A. (2020). Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra-high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT). Steel and Composite Structures, An International Journal, 35(4), 463-474.
[61] ATENA (2016), Finite Element Software, ATENA Program Documentation, Theory and FRC User Manual, Cervenka Consulting, Prague, Czech Republic.
[62] Farzam, M., Sadaghian, H., & Khodadade, G. (2019). Shear behaviour of elongated rectangular wall–footing connections under eccentric loads. Magazine of Concrete Research, 71(1), 43-54.
[63] Farzam, M., & Sadaghian, H. (2018). Mechanical model for punching shear capacity of rectangular slab‐column connections. Structural Concrete, 19(6), 1983-1991.
[64] Sadaghian, H., & Farzam, M. (2019). Numerical investigation on punching shear of RC slabs exposed to fire. Computers and Concrete, 23(3), 217-233.
[65] Dadmand, B., Pourbaba, M., Sadaghian, H., & Mirmiran, A. (2020a). Effectiveness of steel fibers in ultra-high-performance fiber-reinforced concrete construction. Advances in concrete construction, 10(3), 195-209.
[66] Dadmand, B., Pourbaba, M., Sadaghian, H., & Mirmiran, A. (2020b). Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC. Computers and Concrete, 26(5), 451-465.
[67] Sadaghian, H., Pourbaba, M., Andabili, S. Z., & Mirmiran, A. (2021). Experimental and numerical study of flexural properties in UHPFRC beams with and without an initial notch. Construction and Building Materials, 268, 121196.
[68] Dadmand, B., Pourbaba, M., & Riahi, R. (2022). Experimental and Numerical Investigation of Different Types of Jacketing Effect on Retrofitting RC Short Columns Using ECC Concrete. Periodica Polytechnica Civil Engineering, 66(2), 603-613.
[69] Naderpour, H., Nagai, K., Fakharian, P., & Haji, M. (2019). Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods. Composite Structures, 215, 69-84.
[70] Suksawang, N., Wtaife, S., & Alsabbagh, A. (2018). Evaluation of Elastic Modulus of Fiber-Reinforced Concrete. ACI Materials Journal, 115(2).
[71] BS EN 14651, (2007). Test method for metallic fibre concrete—Measuring the flexural tensile strength
(limit of proportionality (LOP), residual). European Committee for Standardization, B-1050 Brussels.
[72] Almusallam, T., Ibrahim, S.M., Al-Salloum, Y., Abadel, A. and Abbas, H., (2016). Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete. Cement and Concrete Composites, 74, pp.201-217.
[73] Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of applied mechanics, 18(3), 293-297.
[74] Bazant, Z. P., & Chen, E. P. (1997). Scaling of structural failure.
[75] Carpinteri, A., & Chiaia, B. (1997). Multifractal scaling laws in the breaking behaviour of disordered materials. Chaos, Solitons & Fractals, 8(2), 135-150.
[76] Kim, J. K., & Yi, S. T. (2002). Application of size effect to compressive strength of concrete members. Sadhana, 27(4), 467.
[77] Guo, Z. H. (1997). Strength and deformation of concrete. Beijing: Tsinghua University Press, 156, 156.
[78] Yan, G. "Study on failure criterion and constitutive relationship of 200 MPa reactive powder concrete (RPC200)." Beijing Jiaotong University Doctoral Dissertation (2005).
[79] Wang, L. M., & Xu, S. L. (2002). Characteristic curve of concrete and fiber reinforced concrete. Journal-Dalian University of Technology, 42(5), 580-585.
[80] Wu, Z., Shi, C., He, W., & Wu, L. (2016). Effects of steel fiber content and shape on mechanical properties of ultra-high performance concrete. Construction and building materials, 103, 8-14.
[81] Dehnavipour, H., Mehrabani, M., Fakhriyat, A., & Jakubczyk-Gałczyńska, A. (2019). Optimization-based design of 3D reinforced concrete structures. Journal of Soft Computing in Civil Engineering, 3(3), 95-106.
[82] Nagaraj, A. (2021). Rheology of Fresh Concrete-A Review. Journal of Rehabilitation in Civil Engineering.
[83] Naderpour, H., Rafiean, A. H., & Fakharian, P. (2018). Compressive strength prediction of environmentally friendly concrete using artificial neural networks. Journal of Building Engineering, 16, 213-219.
[84] Skazlić, M., & Bjegović, D. (2009). Toughness testing of ultra-high performance fibre reinforced concrete. Materials and Structures, 42(8), 1025-1038.
[85] Walraven, J. C. (2009). High performance fiber reinforced concrete: progress in knowledge and design codes. Materials and Structures, 42(9), 1247-1260.