A Modeling Strategy for Predicting the Response of Steel Plate-Concrete Composite Walls

Document Type : Regular Paper

Author

PhD, Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

Shear walls are among lateral load resisting systems which are used to provide adequate stiffness, strength, and nonlinear deformation capacity to withstand strong ground motion. Usually at the base of the wall, these structures tolerate inelastic deformations subjected to strong ground motions. Researchers have offered composite walls to solve these problems. Steel plate-concrete composite (SCC) walls have been regarded as an alternative to reinforced concrete walls in terms of seismic performance and constructability. In this study, a new semi-macro modified fixed strut angle finite element model is proposed to predict the nonlinear response of SCC walls using OpenSees. A new modified fixed strut angle model and a quadrilateral flat shell element are adapted to the analysis of SCC shear walls. The numerical model is validated using the results of a set of experimental data reported in the literature. Comprehensive comparisons between analytical-model-predictions and experimental data suggest that the numerical model can accurately simulate the steel plate-concrete composite wall responses.

Keywords

Main Subjects


[1]     Sarir P, Chen J, Asteris PG, Armaghani DJ, Tahir MM. Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng Comput 2021;37:1–19. https://doi.org/10.1007/s00366-019-00808-y.
[2]     Barkhordari MS, Massone LM. Failure Mode Detection of Reinforced Concrete Shear Walls Using Ensemble Deep Neural Networks. Int J Concr Struct Mater 2022;16:33. https://doi.org/https://doi.org/10.1186/s40069-022-00522-y.
[3]     López CN, Massone LM, Kolozvari K. Validation of an efficient shear-flexure interaction model for planar reinforced concrete walls. Eng Struct 2022;252:113590. https://doi.org/10.1016/j.engstruct.2021.113590.
[4]     Kolozvari K, Arteta C, Fischinger M, Gavridou S, Hube M, Isakovic T, et al. Comparative study of state-of-the-art macroscopic models for planar reinforced concrete walls 2018. https://doi.org/https://doi.org/10.14359/51710835.
[5]     Naderpour H, Sharei M, Fakharian P, Heravi MA. Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-NN and GEP. J Soft Comput Civ Eng 2022;6:66–87. https://doi.org/10.22115/scce.2022.283486.1308.
[6]     Barkhordari MS, Massone LM. Efficiency of deep neural networks for reinforced concrete shear walls failure mode detection. 2022 27th Int. Comput. Conf. Comput. Soc. Iran, 2022, p. 1–4. https://doi.org/10.1109/csicc55295.2022.9780477.
[7]     Yang Y, Cho IH. Multiple Target Machine Learning Prediction of Capacity Curves of Reinforced Concrete Shear Walls. J Soft Comput Civ Eng 2021;5:90–113. https://doi.org/10.22115/scce.2021.314998.1381.
[8]     Epackachi S, Whittaker AS, Varma AH, Kurt EG. Finite element modeling of steel-plate concrete composite wall piers. Eng Struct 2015;100:369–84. https://doi.org/10.1016/j.engstruct.2015.06.023.
[9]     Ozaki M, Akita S, Osuga H, Nakayama T, Adachi N. Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear. Nucl. Eng. Des., vol. 228, 2004, p. 225–44. https://doi.org/10.1016/j.nucengdes.2003.06.010.
[10]   Vecchio FJ, McQuade I. Towards improved modeling of steel-concrete composite wall elements. Nucl Eng Des 2011;241:2629–42. https://doi.org/10.1016/j.nucengdes.2011.04.006.
[11]   Wong PS, Vecchio FJ, Trommels H. Vector2 & Formworks user’s manual second edition. Univ Toronto, Canada 2013.
[12]   Emrani SM, Epackachi S, Tehrani P, Imanpour A. A fibre-based modelling technique for the seismic analysis of steel–concrete composite shear walls. Can J Civ Eng 2022;49:993–1007. https://doi.org/10.1139/cjce-2021-0125.
[13]   Xiaowei M, Jianguo N, Muxuan T. Nonlinear finite-element analysis of double-skin steel-concrete composite shear wall structures. Int J Eng Technol 2013;5:648.
[14]   Rafiei S, Hossain KMA, Lachemi M, Behdinan K, Anwar MS. Finite element modeling of double skin profiled composite shear wall system under in-plane loadings. Eng Struct 2013;56:46–57. https://doi.org/10.1016/j.engstruct.2013.04.014.
[15]   Ali A, Kim D, Cho SG. Modeling of nonlinear cyclic load behavior of I-shaped composite steel-concrete shear walls of nuclear power plants. Nucl Eng Technol 2013;45:89–98. https://doi.org/10.5516/NET.09.2011.055.
[16]   Varma AH, Zhang K, Chi H, Booth P, Baker T. In-plane shear behavior of SC composite walls: theory vs. experiment. Proc. 21st IASMiRT Conf. (SMiRT 21), 2011.
[17]   Varma AH, Malushte SR, Sener KC, Lai Z. Steel-plate composite (SC) walls for safety related nuclear facilities: Design for in-plane forces and out-of-plane moments. Nucl Eng Des 2014;269:240–9. https://doi.org/10.1016/j.nucengdes.2013.09.019.
[18]   Kurt E, Whittaker A, Varma A, Booth P. SC wall piers and basemat connections: numerical investigation of behavior and design 2013.
[19]   Nie JG, Ma XW, Tao MX, Fan JS. Nonlinear finite-element analysis of double-skin steel-concrete composite shear wall structures. Harbin Gongye Daxue Xuebao/Journal Harbin Inst Technol 2012;44:147–51. https://doi.org/10.7763/ijet.2013.v5.634.
[20]   Construction AI of S. Specification for safety‐related steel structures for nuclear facilities, supplement No. 1 2014.
[21]   Nguyen NH, Whittaker AS. Numerical modelling of steel-plate concrete composite shear walls. Eng Struct 2017;150:1–11. https://doi.org/10.1016/j.engstruct.2017.06.030.
[22]   Wang W, Ren Y, Han B, Ren T, Liu G, Liang Y. Seismic performance of corrugated steel plate concrete composite shear walls. Struct Des Tall Spec Build 2019;28:e1564. https://doi.org/10.1002/tal.1564.
[23]   Hallquist JO. LS-DYNA keyword user’s manual. Livermore Softw Technol Corp 2007;970:299–800.
[24]   Wright W. User’s manual for LEWICE version 3.2. NASA CR-214255 2008.
[25]   McKenna F, Scott MH, Fenves GL. Nonlinear Finite-Element Analysis Software Architecture Using Object Composition. J Comput Civ Eng 2010;24:95–107. https://doi.org/10.1061/(asce)cp.1943-5487.0000002.
[26]   Yuqiu XYL. quadrilateral membrane element with vertex rotational freedom from generalized compatible condition [j]. Eng Mech 1993;3.
[27]   Batoz J, Tahar M Ben. Evaluation of a new quadrilateral thin plate bending element. Int J Numer Methods Eng 1982;18:1655–77.
[28]   Lu X, Tian Y, Cen S, Guan H, Xie L, Wang L. A High-Performance Quadrilateral Flat Shell Element for Seismic Collapse Simulation of Tall Buildings and Its Implementation in OpenSees. J Earthq Eng 2018;22:1662–82. https://doi.org/10.1080/13632469.2017.1297269.
[29]   Orakcal K, Massone LM, Ulugtekin D. A Hysteretic Constitutive Model for Reinforced Concrete Panel Elements. Int J Concr Struct Mater 2019;13:51. https://doi.org/10.1186/s40069-019-0365-9.
[30]   Belytschko T, Liu WK, Moran B, Elkhodary K. Nonlinear finite elements for continua and structures. John wiley & sons; 2013.
[31]   Uluğtekin D. Analytical modeling of reinforced concrete panel elements under reversed cyclic loadings. Boğaziçi University, 2010.
[32]   Vecchio FJ, Collins MP. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J 1986;83:219–31.
[33]   Pang X-BD, Hsu TTC. Behavior of reinforced concrete membrane elements in shear. Struct J 1995;92:665–79.
[34]   Mansour M, Hsu TTC. Behavior of Reinforced Concrete Elements under Cyclic Shear. II: Theoretical Model. J Struct Eng 2005;131:54–65. https://doi.org/10.1061/(asce)0733-9445(2005)131:1(54).
[35]   Mansour M, Hsu TTC. Behavior of Reinforced Concrete Elements under Cyclic Shear. I: Experiments. J Struct Eng 2005;131:44–53. https://doi.org/10.1061/(asce)0733-9445(2005)131:1(44).
[36]   Vecchio FJ, Collins MP. Compression response of cracked reinforced concrete. J Struct Eng 1993;119:3590–610.
[37]   Kolozvari K, Tran TA, Orakcal K, Wallace JW. Modeling of Cyclic Shear-Flexure Interaction in Reinforced Concrete Structural Walls. II: Experimental Validation. J Struct Eng 2015;141:04014136. https://doi.org/10.1061/(asce)st.1943-541x.0001083.
[38]   Kolozvari K, Orakcal K, Wallace JW. Shear-flexure interaction modeling for reinforced concrete structural walls and columns under reversed cyclic loading. Pacific Earthq Eng Res Center, PEER Rep 2015.
[39]   Kolozvari K, Orakcal K, Wallace JW. Modeling of Cyclic Shear-Flexure Interaction in Reinforced Concrete Structural Walls. I: Theory. J Struct Eng 2015;141:04014135. https://doi.org/10.1061/(asce)st.1943-541x.0001059.
[40]   Kolozvari K. Analytical modeling of cyclic shear-flexure interaction in reinforced concrete structural walls. UCLA, 2013.
[41]   Kolozvari K, Orakcal K, Wallace JW. New opensees models for simulating nonlinear flexural and coupled shear-flexural behavior of RC walls and columns. Comput Struct 2018;196:246–62. https://doi.org/10.1016/j.compstruc.2017.10.010.
[42]   Chang GA, Mander JB. Seismic energy based fatigue damage analysis of bridge columns: part I: evaluation of seismic capacity: NCEER Technical Report No. NCEER-94-0006 [RI. Buffalo, New York: the State University of New York; 1994.
[43]   Areias P, Rabczuk T, Msekh MA. Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng 2016;312:322–50. https://doi.org/10.1016/j.cma.2016.01.020.
[44]   Rabczuk T, Areias PMA, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 2007;72:524–48. https://doi.org/10.1002/nme.2013.
[45]   Markeset G, Hillerborg A. Softening of concrete in compression—localization and size effects. Cem Concr Res 1995;25:702–8.
[46]   Bosco M, Ferrara E, Ghersi A, Marino EM, Rossi PP. Improvement of the model proposed by Menegotto and Pinto for steel. Eng Struct 2016;124:442–56. https://doi.org/10.1016/j.engstruct.2016.06.037.
[47]   Kunnath SK, Heo Y, Mohle JF. Nonlinear Uniaxial Material Model for Reinforcing Steel Bars. J Struct Eng 2009;135:335–43. https://doi.org/10.1061/(asce)0733-9445(2009)135:4(335).
[48]   Filippou FC, Bertero VV, Popov EP. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints 1983.
[49]   Elmorsi M, Kianoush MR, Tso WK. Nonlinear analysis of cyclically loaded reinforced concrete structures. Struct J 1998;95:725–39.
[50]   Marafi NA, Makdisi AJ, Eberhard MO, Berman JW. Impacts of an M9 Cascadia Subduction Zone Earthquake and Seattle Basin on Performance of RC Core Wall Buildings. J Struct Eng 2020;146:4019201.
[51]   Bai Y, Lin X, Mou B. Numerical modeling on post-local buckling behavior of circular and square concrete-filled steel tubular beam columns. Int J Steel Struct 2016;16:531–46. https://doi.org/10.1007/s13296-016-6022-0.
[52]   Akiyama H, Sekimoto H, Fukihara M, Nakanishi K, Hara K. A compression and shear loading tests of concrete filled steel bearing wall 1991.
[53]   Haghi N, Epackachi S, Taghi Kazemi M. Macro modeling of steel-concrete composite shear walls. Structures 2020;23:383–406. https://doi.org/10.1016/j.istruc.2019.10.018.
[54]   Coleman J, Spacone E. Localization Issues in Force-Based Frame Elements. J Struct Eng 2001;127:1257–65. https://doi.org/10.1061/(asce)0733-9445(2001)127:11(1257).
[55]   Jansen DC, Shah SP. Effect of length on compressive strain softening of concrete. J Eng Mech 1997;123:25–35.
[56]   Gupta RS. Pre-Stressed Concrete Structures. Princ. Struct. Des., vol. 18, 2019, p. 409–36. https://doi.org/10.1201/9781351027700-18.
[57]   Mander JB, Priestley MJN, Park R. Theoretical stress-strain model for confined concrete. J Struct Eng 1988;114:1804–26.
[58]   Cho SG, Park WK, So GH, Yi ST, Kim D. Seismic capacity estimation of Steel Plate Concrete (SC) shear wall specimens by nonlinear static analyses. KSCE J Civ Eng 2015;19:698–709. https://doi.org/10.1007/s12205-013-1271-3.
[59]   Ma K, Ma Y, Liu B. Quasistatic Cyclic Tests and Finite Element Analysis of Low-Aspect Ratio Double Steel Concrete Composite Walls. Adv Civ Eng 2019;2019. https://doi.org/10.1155/2019/5917380.
[60]   Epackachi S. Experimental, numerical, and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls. State University of New York at Buffalo; 2014.
[61]   Epackachi S, Nguyen NH, Kurt EG, Whittaker AS, Varma AH. In-Plane Seismic Behavior of Rectangular Steel-Plate Composite Wall Piers. J Struct Eng 2015;141:04014176. https://doi.org/10.1061/(asce)st.1943-541x.0001148.
[62]   Cheng C, Zhou D. Experimental study on seismic behavior of composite concrete and double-steel-plate shear walls with binding bars. Int. Conf. Adv. Exp. Struct. Eng., vol. 2015- Augus, University of Illinois Urbana-Champaign, United States; 2015.
[63]   Nie JG, Hu HS, Fan JS, Tao MX, Li SY, Liu FJ. Experimental study on seismic behavior of high-strength concrete filled double-steel-plate composite walls. J Constr Steel Res 2013;88:206–19. https://doi.org/10.1016/j.jcsr.2013.05.001.
[64]   Barkhordari MS, Tehranizadeh M, Scott MH. Numerical modelling strategy for predicting the response of reinforced concrete walls using Timoshenko theory. Mag Concr Res 2021;73:988–1010. https://doi.org/10.1680/jmacr.19.00542.
[65]   Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv Eng Softw 2016;100:19–31. https://doi.org/10.1016/j.advengsoft.2016.06.005.
[66]   Amini A, Abdollahi A, Hariri-Ardebili MA, Lall U. Copula-based reliability and sensitivity analysis of aging dams: Adaptive Kriging and polynomial chaos Kriging methods. Appl Soft Comput 2021;109:107524. https://doi.org/10.1016/j.asoc.2021.107524.