[1] Sarir P, Chen J, Asteris PG, Armaghani DJ, Tahir MM. Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Eng Comput 2021;37:1–19. https://doi.org/10.1007/s00366-019-00808-y.
[2] Barkhordari MS, Massone LM. Failure Mode Detection of Reinforced Concrete Shear Walls Using Ensemble Deep Neural Networks. Int J Concr Struct Mater 2022;16:33. https://doi.org/https://doi.org/10.1186/s40069-022-00522-y.
[3] López CN, Massone LM, Kolozvari K. Validation of an efficient shear-flexure interaction model for planar reinforced concrete walls. Eng Struct 2022;252:113590. https://doi.org/10.1016/j.engstruct.2021.113590.
[4] Kolozvari K, Arteta C, Fischinger M, Gavridou S, Hube M, Isakovic T, et al. Comparative study of state-of-the-art macroscopic models for planar reinforced concrete walls 2018. https://doi.org/https://doi.org/10.14359/51710835.
[5] Naderpour H, Sharei M, Fakharian P, Heravi MA. Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-NN and GEP. J Soft Comput Civ Eng 2022;6:66–87. https://doi.org/10.22115/scce.2022.283486.1308.
[6] Barkhordari MS, Massone LM. Efficiency of deep neural networks for reinforced concrete shear walls failure mode detection. 2022 27th Int. Comput. Conf. Comput. Soc. Iran, 2022, p. 1–4. https://doi.org/10.1109/csicc55295.2022.9780477.
[7] Yang Y, Cho IH. Multiple Target Machine Learning Prediction of Capacity Curves of Reinforced Concrete Shear Walls. J Soft Comput Civ Eng 2021;5:90–113. https://doi.org/10.22115/scce.2021.314998.1381.
[8] Epackachi S, Whittaker AS, Varma AH, Kurt EG. Finite element modeling of steel-plate concrete composite wall piers. Eng Struct 2015;100:369–84. https://doi.org/10.1016/j.engstruct.2015.06.023.
[9] Ozaki M, Akita S, Osuga H, Nakayama T, Adachi N. Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear. Nucl. Eng. Des., vol. 228, 2004, p. 225–44. https://doi.org/10.1016/j.nucengdes.2003.06.010.
[10] Vecchio FJ, McQuade I. Towards improved modeling of steel-concrete composite wall elements. Nucl Eng Des 2011;241:2629–42. https://doi.org/10.1016/j.nucengdes.2011.04.006.
[11] Wong PS, Vecchio FJ, Trommels H. Vector2 & Formworks user’s manual second edition. Univ Toronto, Canada 2013.
[12] Emrani SM, Epackachi S, Tehrani P, Imanpour A. A fibre-based modelling technique for the seismic analysis of steel–concrete composite shear walls. Can J Civ Eng 2022;49:993–1007. https://doi.org/10.1139/cjce-2021-0125.
[13] Xiaowei M, Jianguo N, Muxuan T. Nonlinear finite-element analysis of double-skin steel-concrete composite shear wall structures. Int J Eng Technol 2013;5:648.
[14] Rafiei S, Hossain KMA, Lachemi M, Behdinan K, Anwar MS. Finite element modeling of double skin profiled composite shear wall system under in-plane loadings. Eng Struct 2013;56:46–57. https://doi.org/10.1016/j.engstruct.2013.04.014.
[15] Ali A, Kim D, Cho SG. Modeling of nonlinear cyclic load behavior of I-shaped composite steel-concrete shear walls of nuclear power plants. Nucl Eng Technol 2013;45:89–98. https://doi.org/10.5516/NET.09.2011.055.
[16] Varma AH, Zhang K, Chi H, Booth P, Baker T. In-plane shear behavior of SC composite walls: theory vs. experiment. Proc. 21st IASMiRT Conf. (SMiRT 21), 2011.
[17] Varma AH, Malushte SR, Sener KC, Lai Z. Steel-plate composite (SC) walls for safety related nuclear facilities: Design for in-plane forces and out-of-plane moments. Nucl Eng Des 2014;269:240–9. https://doi.org/10.1016/j.nucengdes.2013.09.019.
[18] Kurt E, Whittaker A, Varma A, Booth P. SC wall piers and basemat connections: numerical investigation of behavior and design 2013.
[19] Nie JG, Ma XW, Tao MX, Fan JS. Nonlinear finite-element analysis of double-skin steel-concrete composite shear wall structures. Harbin Gongye Daxue Xuebao/Journal Harbin Inst Technol 2012;44:147–51. https://doi.org/10.7763/ijet.2013.v5.634.
[20] Construction AI of S. Specification for safety‐related steel structures for nuclear facilities, supplement No. 1 2014.
[21] Nguyen NH, Whittaker AS. Numerical modelling of steel-plate concrete composite shear walls. Eng Struct 2017;150:1–11. https://doi.org/10.1016/j.engstruct.2017.06.030.
[22] Wang W, Ren Y, Han B, Ren T, Liu G, Liang Y. Seismic performance of corrugated steel plate concrete composite shear walls. Struct Des Tall Spec Build 2019;28:e1564. https://doi.org/10.1002/tal.1564.
[23] Hallquist JO. LS-DYNA keyword user’s manual. Livermore Softw Technol Corp 2007;970:299–800.
[24] Wright W. User’s manual for LEWICE version 3.2. NASA CR-214255 2008.
[25] McKenna F, Scott MH, Fenves GL. Nonlinear Finite-Element Analysis Software Architecture Using Object Composition. J Comput Civ Eng 2010;24:95–107. https://doi.org/10.1061/(asce)cp.1943-5487.0000002.
[26] Yuqiu XYL. quadrilateral membrane element with vertex rotational freedom from generalized compatible condition [j]. Eng Mech 1993;3.
[27] Batoz J, Tahar M Ben. Evaluation of a new quadrilateral thin plate bending element. Int J Numer Methods Eng 1982;18:1655–77.
[28] Lu X, Tian Y, Cen S, Guan H, Xie L, Wang L. A High-Performance Quadrilateral Flat Shell Element for Seismic Collapse Simulation of Tall Buildings and Its Implementation in OpenSees. J Earthq Eng 2018;22:1662–82. https://doi.org/10.1080/13632469.2017.1297269.
[29] Orakcal K, Massone LM, Ulugtekin D. A Hysteretic Constitutive Model for Reinforced Concrete Panel Elements. Int J Concr Struct Mater 2019;13:51. https://doi.org/10.1186/s40069-019-0365-9.
[30] Belytschko T, Liu WK, Moran B, Elkhodary K. Nonlinear finite elements for continua and structures. John wiley & sons; 2013.
[31] Uluğtekin D. Analytical modeling of reinforced concrete panel elements under reversed cyclic loadings. Boğaziçi University, 2010.
[32] Vecchio FJ, Collins MP. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J 1986;83:219–31.
[33] Pang X-BD, Hsu TTC. Behavior of reinforced concrete membrane elements in shear. Struct J 1995;92:665–79.
[34] Mansour M, Hsu TTC. Behavior of Reinforced Concrete Elements under Cyclic Shear. II: Theoretical Model. J Struct Eng 2005;131:54–65. https://doi.org/10.1061/(asce)0733-9445(2005)131:1(54).
[35] Mansour M, Hsu TTC. Behavior of Reinforced Concrete Elements under Cyclic Shear. I: Experiments. J Struct Eng 2005;131:44–53. https://doi.org/10.1061/(asce)0733-9445(2005)131:1(44).
[36] Vecchio FJ, Collins MP. Compression response of cracked reinforced concrete. J Struct Eng 1993;119:3590–610.
[37] Kolozvari K, Tran TA, Orakcal K, Wallace JW. Modeling of Cyclic Shear-Flexure Interaction in Reinforced Concrete Structural Walls. II: Experimental Validation. J Struct Eng 2015;141:04014136. https://doi.org/10.1061/(asce)st.1943-541x.0001083.
[38] Kolozvari K, Orakcal K, Wallace JW. Shear-flexure interaction modeling for reinforced concrete structural walls and columns under reversed cyclic loading. Pacific Earthq Eng Res Center, PEER Rep 2015.
[39] Kolozvari K, Orakcal K, Wallace JW. Modeling of Cyclic Shear-Flexure Interaction in Reinforced Concrete Structural Walls. I: Theory. J Struct Eng 2015;141:04014135. https://doi.org/10.1061/(asce)st.1943-541x.0001059.
[40] Kolozvari K. Analytical modeling of cyclic shear-flexure interaction in reinforced concrete structural walls. UCLA, 2013.
[41] Kolozvari K, Orakcal K, Wallace JW. New opensees models for simulating nonlinear flexural and coupled shear-flexural behavior of RC walls and columns. Comput Struct 2018;196:246–62. https://doi.org/10.1016/j.compstruc.2017.10.010.
[42] Chang GA, Mander JB. Seismic energy based fatigue damage analysis of bridge columns: part I: evaluation of seismic capacity: NCEER Technical Report No. NCEER-94-0006 [RI. Buffalo, New York: the State University of New York; 1994.
[43] Areias P, Rabczuk T, Msekh MA. Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng 2016;312:322–50. https://doi.org/10.1016/j.cma.2016.01.020.
[44] Rabczuk T, Areias PMA, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 2007;72:524–48. https://doi.org/10.1002/nme.2013.
[45] Markeset G, Hillerborg A. Softening of concrete in compression—localization and size effects. Cem Concr Res 1995;25:702–8.
[46] Bosco M, Ferrara E, Ghersi A, Marino EM, Rossi PP. Improvement of the model proposed by Menegotto and Pinto for steel. Eng Struct 2016;124:442–56. https://doi.org/10.1016/j.engstruct.2016.06.037.
[47] Kunnath SK, Heo Y, Mohle JF. Nonlinear Uniaxial Material Model for Reinforcing Steel Bars. J Struct Eng 2009;135:335–43. https://doi.org/10.1061/(asce)0733-9445(2009)135:4(335).
[48] Filippou FC, Bertero VV, Popov EP. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints 1983.
[49] Elmorsi M, Kianoush MR, Tso WK. Nonlinear analysis of cyclically loaded reinforced concrete structures. Struct J 1998;95:725–39.
[50] Marafi NA, Makdisi AJ, Eberhard MO, Berman JW. Impacts of an M9 Cascadia Subduction Zone Earthquake and Seattle Basin on Performance of RC Core Wall Buildings. J Struct Eng 2020;146:4019201.
[51] Bai Y, Lin X, Mou B. Numerical modeling on post-local buckling behavior of circular and square concrete-filled steel tubular beam columns. Int J Steel Struct 2016;16:531–46. https://doi.org/10.1007/s13296-016-6022-0.
[52] Akiyama H, Sekimoto H, Fukihara M, Nakanishi K, Hara K. A compression and shear loading tests of concrete filled steel bearing wall 1991.
[53] Haghi N, Epackachi S, Taghi Kazemi M. Macro modeling of steel-concrete composite shear walls. Structures 2020;23:383–406. https://doi.org/10.1016/j.istruc.2019.10.018.
[54] Coleman J, Spacone E. Localization Issues in Force-Based Frame Elements. J Struct Eng 2001;127:1257–65. https://doi.org/10.1061/(asce)0733-9445(2001)127:11(1257).
[55] Jansen DC, Shah SP. Effect of length on compressive strain softening of concrete. J Eng Mech 1997;123:25–35.
[56] Gupta RS. Pre-Stressed Concrete Structures. Princ. Struct. Des., vol. 18, 2019, p. 409–36. https://doi.org/10.1201/9781351027700-18.
[57] Mander JB, Priestley MJN, Park R. Theoretical stress-strain model for confined concrete. J Struct Eng 1988;114:1804–26.
[58] Cho SG, Park WK, So GH, Yi ST, Kim D. Seismic capacity estimation of Steel Plate Concrete (SC) shear wall specimens by nonlinear static analyses. KSCE J Civ Eng 2015;19:698–709. https://doi.org/10.1007/s12205-013-1271-3.
[59] Ma K, Ma Y, Liu B. Quasistatic Cyclic Tests and Finite Element Analysis of Low-Aspect Ratio Double Steel Concrete Composite Walls. Adv Civ Eng 2019;2019. https://doi.org/10.1155/2019/5917380.
[60] Epackachi S. Experimental, numerical, and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls. State University of New York at Buffalo; 2014.
[61] Epackachi S, Nguyen NH, Kurt EG, Whittaker AS, Varma AH. In-Plane Seismic Behavior of Rectangular Steel-Plate Composite Wall Piers. J Struct Eng 2015;141:04014176. https://doi.org/10.1061/(asce)st.1943-541x.0001148.
[62] Cheng C, Zhou D. Experimental study on seismic behavior of composite concrete and double-steel-plate shear walls with binding bars. Int. Conf. Adv. Exp. Struct. Eng., vol. 2015- Augus, University of Illinois Urbana-Champaign, United States; 2015.
[63] Nie JG, Hu HS, Fan JS, Tao MX, Li SY, Liu FJ. Experimental study on seismic behavior of high-strength concrete filled double-steel-plate composite walls. J Constr Steel Res 2013;88:206–19. https://doi.org/10.1016/j.jcsr.2013.05.001.
[64] Barkhordari MS, Tehranizadeh M, Scott MH. Numerical modelling strategy for predicting the response of reinforced concrete walls using Timoshenko theory. Mag Concr Res 2021;73:988–1010. https://doi.org/10.1680/jmacr.19.00542.
[65] Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv Eng Softw 2016;100:19–31. https://doi.org/10.1016/j.advengsoft.2016.06.005.
[66] Amini A, Abdollahi A, Hariri-Ardebili MA, Lall U. Copula-based reliability and sensitivity analysis of aging dams: Adaptive Kriging and polynomial chaos Kriging methods. Appl Soft Comput 2021;109:107524. https://doi.org/10.1016/j.asoc.2021.107524.